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Abstract. We propose a novel method for planar hand detection from a
single uncalibrated image, with the purpose of estimating the articulated
pose of a generic model, roughly adapted to the current hand shape. The
proposed method combines line and point correspondences, associated
to finger tips, lines and concavities, extracted from color and intensity
edges. The method robustly solves for ambiguous association issues, and
refines the pose estimation through nonlinear optimization. The result
can be used in order to initialize a contour-based tracking algorithm, as
well as a model adaptation procedure.

1 Introduction

Hand tracking is an important and still challenging task in computer vision,
for many desirable applications such as gesture recognition for natural Human-
Computer Interfaces (HCI), virtual devices, and tele-manipulation tasks (see for
example the review work [4, Chap. 2]).

In order to reduce the problem complexity, dedicated devices (data gloves)
have been developed, directly providing the required measurements for pose
estimation. However, such devices somehow constrain the field of applicability
as well as the motion freedom of the user, at the same time requiring a carefully
calibrated and often expensive setup (particularly when infrared cameras and
markers are involved).

In a purely markerless context, [10] employs a flock of features for track-
ing, while detection is performed by an AdaBoost classifier [11] trained on Haar
features [17]; however, although showing nice robustness properties, both proce-
dures do not provide any articulated pose information, but only the approximate
location over the image. The most well-known approaches to articulated track-
ing in 2D and 3D [14,15,6, 2, 13, 5] are instead based on contours, which provide
a rich and precise visual cue, and profit from a large pool of predicted features
(contour points and lines) from the previous frame, through dynamical data
association and local search.

However, all of these tracking approaches assume at least a partially manual
initialization (hand detection), providing an initial localization of the hand. Hand
detection amounts to a global search in a high-dimensional parameter space,
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using purely static data association [12,1] and fusion mechanisms, that strongly
limit the amount of distinctive features that can be reliably matched to the
model.

This paper deals with the problem of fully automatic, articulated hand de-
tection, using static feature correspondences (points and lines) extracted from
two complimentary modalities, namely skin color and intensity edges.

The paper is organized as follows: in Section 2 we first describe the visual
cues, and the association criteria, used in order to obtain the geometric feature
correspondences to the generic model. Afterwards, Section 3 describes the artic-
ulated pose estimation procedure. Experimental results are provided in Section
4, together with a discussion of possible development roads.

2 Visual features for hand detection

From the input image, we detect two kinds of features: fingertips and concavi-
ties, obtained from skin color segmentation, and finger lines, detected along the
intensity edges.

2.1 Point features from color segmentation

The input image is first converted to HSV color space, which is well-suited for
skin color segmentation, and pixels are classified through a 2D Gaussian Mixture
Model (GMM) in the Hue and Saturation channels [18].

Afterwards, we compute the conver hull of the main connected component
(blob), and note that most of the time, fingertips and concavities are approx-
imately located, respectively, on the convex hull vertices and concavity defects
[3]: the latter are defined as the maximum-distance points to the respective hull
segments (left side of Fig. 1).

In order to identify the fingertips among the hull vertices, all vertices and
defects have to be properly thresholded and classified. In particular, the overall
palm scale is estimated by rpam, the radius of the maximum-inscribed circle
(MIC) within the color blob; this proves to be robust with respect to the fingers
configuration, and the center provides also a rough position estimate. The MIC
is quickly computed, by maximizing the distance transform [7].

Fig. 1 also illustrates the scheme used to identify the hull points representing
fingertips and the concavities representing palm points. For this purpose, for
each hull segment we consider two scale-independent and dimensionless indices,
related to the palm size r: the maximum concavity depth D/r, and the length
L/r; with these values, we classify segments according to four cases indicated in
the picture.

The next step consists in merging the fingertip points, by removing too short
segments from the sequence (cases 3 and 4 with L/r <t ), and averaging their
endpoints. If a sequence of 5 fingertips is obtained, we identify the thumb and
the small finger, by looking for the largest, clock-wise angle between fingertips,
measured around the palm center c. Otherwise, the algorithm recognizes the
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case of insufficient information, and returns a detection failure, thus avoiding
any attempt to further processing and pose estimation.
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Fig. 1. Left: Using the convex hull for fingertip and concavity detection. Right: Seg-
ments detected via the probabilistic Hough transform.

2.2 Line features from intensity edges

As a second modality, we use intensity edges. In particular, from the Canny edge
map we detect straight line segments, through a probabilistic Hough transform
[9], that can be matched to the model lines. The right side of Fig. 1 shows an
example of line detection.

A segment correspondence in principle provides 2 point correspondences (i.e.
4 measurements). However, as we can see from Fig. 1 (right side), the endpoints
of the segment are not as well localized as the line itself (in terms of direction
and distance to the origin); therefore, the most reliable matching can be obtained
by pure line correspondences.

A line is described in homogeneous coordinates by a 3-vector 1 = (a,b,d)T,
defined by the equation

ax+by+d=01"x=0 (1)

with # = (z,y,1)T the homogeneous coordinates of a point belonging to 1. We
also assume, without loss of generality, that the orthogonal vector n = (a,b)? is
normalized (a4 b? = 1), so that the third component d represents the distance
of the line to the origin.

2.3 Data association to a generic model

For pose estimation, the detected features have to be associated to the correct
model features from a generic model.
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Fig. 2. Left: a simple shape model, made up of ellipses and rectangles; red lines rep-
resent the 2D skeleton; green contour lines are used for matching. Right: Definition of
model line and point features.

For this purpose, we abstractly describe a finger model as a triplet of points
and two lines (right side of Fig. 2): the fingertip (x), the left and the right
concavity points (c;, c,), two lines representing the left and the right edges (1,
1), and a set of flags, signalling if the respective feature has been detected in
the image.

The candidate points obtained from the convex hull are first considered, by
taking parallel neighboring lines lLiest and lyighe, previously aligned in order to
have the same normal directions, forming a candidate finger if:

Infn,| > 1.0 — cos €angle (2)
[(Fx>0)A(1Ix<0)]v[1x<0)A(1fx>0)] (3)
LipDist < ller! < t:i_pDist (4)
(|17 e1| < teonepist) A ([} €| < teoneist) (5)

These conditions state that: the lines have to be approximately parallel, i.e.
the angle between the two normals is checked against a threshold eangie (eq. (2));
the fingertip x should lie between both lines (eq. (3)); the fingertip x should be
close enough to both lines 1 (but also not too close, eq. (4)); and finally, each
concavity point ¢ should be quite close to the respective line 1 (eq. (5)).

3 Articulated pose estimation from corresponding
features

After establishing the correct data association, the next problem is to estimate
the hand pose, minimizing the re-projection error of all detected model features
(points and lines) with respect to their noisy measurements.
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In our approach, the hand model is an articulated skeleton (left side of Fig.
2), composed of 6 rigid links (one for the palm and for each of the fingers). In
particular, the palm undergoes a 2D similarity transform (roto-translation and
uniform scale), with 4-dof, while each finger carries an additional rotation angle
0;, so that the 9 pose parameters p are

p= (tz7ty’9p78a91702793794a95)T (6)

Starting from the generic model, made up of simple shapes (ellipses and
rectangles), we first compute the reference lines and points, by using the same
procedure of Sec. 2.3, applied to a rendered image of the model. This has the
advantage of keeping generality with respect to the model, at the same time
providing the reference features in an automatic way, for a given shape.

3.1 Single-body pose estimation

The pose of each link of the hand in 2D can be represented by a (3 x 3) ho-
mogeneous transform T, projecting points from model to screen coordinates.
Moreover, in order to keep generality for the articulated chain, a parent trans-
form T pre-multiplying 7' may be present, considered constant for a single-body
pose estimation, and possibly belonging to a different transformation group (for
example, for each finger 7' may be a full similarity, while T is a single-axis rota-

tion).
For our purposes, we restrict the attention to 2D similarities
— sRt
7= o] ™)

where s is a scale factor, R a (2 x 2) orthogonal matrix, and t the translation
vector. This is a good model for planar hand estimation problems, where the
distance to the camera center is large enough compared to the hand size.

Point correspondences Given N model points X and corresponding noisy
image measurements x in homogeneous coordinates

X; = (X, Y, )75 % = (25,95, 1) (8)

we look for the optimal transformation 7™ that projects the model points X;
“as close as possible” to the measured points x;, i.e. satisfying

We can pre-process the data points x;, by writing
TXz =T71Xi Eii,Vi (10)

where X; = (Z;, i, 1) become the data values for pose estimation.
If T(p) has a linear parametrization p, then we have

Toxs (p)X; = X; - p (11)

where the (2 X n) matrix X is a function of X;, and Thy3 is the upper (2 x3)
submatrix of 7' (non-homogeneous coordinates).
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Line correspondences We formulate the line correspondence problem as fol-
lows [12]: given n; model segments (L}, L?) matched to image lines |; = (n;, d;)7,
find T such that both projected endpoints lie on 1;

Vi:1] (IT-L}) =1 (IT-L}) =0 (12)

In the above equation, the term T' can again be removed, by pre-processing the
data lines 1

17 =17T = (a7, d) (13)
which can be seen as the dual version of (10).

Finally, if the parametrization is linear in p, then the estimation problem
becomes linear as well: by denoting with f;ll, f;f the equivalent matrices to L}, L?,
respectively (as in the previous Section) we can write the two equations (12) in
a more compact way

. - R al 1.l - 1.
Li-p+d; =0; Li:[nZLZ];diZ[@} (14)

~“TT2
n; L

Single-body pose estimation Under a linear parametrization T'(p), given n;
line and n,, point correspondences respectively, we can write the single-body LSE
estimation problem

ng
p" = min (Y |[Li-p+d;
i=1

pER?

o Mo 2
3% x| (15)
j=1

with I:l-, d; defined in (14), and the pre-processed measurements 1;, X; given by
(13) and (10), respectively.

This problem is linear in p, and can be solved in one step, via the singular
value decomposition (SVD) technique.

3.2 Articulated pose estimation

Recovering articulated pose parameters is accomplished by a two-step procedure.

Initialization In order to initialize the articulated parameters, we use a hier-
archical approach:

1. We examine the skeleton tree, starting from the root (i.e. the palm of the
hand) and estimating its similarity parameters alone. For this purpose, two
point correspondences (concavity defects, palm center) are sufficient to esti-
mate the similarity parameters py, ..., ps [16].

2. Afterwards, for all child nodes (i.e. the fingers), we use the parent T estimate
as a reference matrix T for each link, and employ all available point and line
correspondences in order to estimate its pose as in (15)

This approach does not require any initial guess for p, and usually provides
a good initial estimate py.
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Nonlinear LSE refinement using contour points The geometric error of
the articulated chain with respect to the global pose parameters p has an overall
nonlinear form, due to the fact that intermediate T matrices are multiplied along
the skeleton, in order to produce the finger transforms, and each of them is a
function of a subset of pose parameters.

For this purpose, the measurements are obtained in a standard way [8], by
sampling a set of m contour points yzf and image normals n{ , uniformly over the
articulated chain (Fig. 3). The contour points are re-projected and matched to
the closest intensity edges z; at each Gauss-Newton iteration, providing dynamic
data association with a much larger set of measurements for the pose estimation
problem.

By writing the normal equations (for sake of simplicity, with equal weights
for all features), we have

Z J;‘Z n;n! Jy, 6p = Z J):,Fi n/ ey, (16)
i=1 i=1

where dp are the incremental pose parameters w.r.t. the previous iteration, and
the (2 x 9) Jacobian matrices

Bo= 5 ] o)

provide the derivatives of screen projections w.r.t. the pose parameters, for each
sample contour point. Fig. 3 shows an example of non-linear pose estimation.

Fig. 3. Articulated pose estimation with contour points and normals, after Gauss-
Newton optimization.

4 Experimenal results

We provide here some experiments, showing the performance of the detector for
different, more or less crucial hand poses (with closed fingers).
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Fig. 4. Hand detection result for different postures. Top row: initialization; bottom
row: nonlinear LSE refinement.

The first row of Fig. 4 show the result of the pose initialization algorithm
of Sec. 3.2, obtained after detection of line and point features, with our data
association procedure. It can be seen, that in all cases the detected pose of the
hand is close to the correct one; however, the initialization privileges the palm
parameters, and uses only the basic features from the detection step.

The second row of Fig. 4 show the result of the subsequent pose refinement
(Sec. 3.2) after 10 Gauss-Newton iterations. In all cases the tracker converges
to a correct pose estimate, despite the mismatched sizes of the model fingers to
the real size of the subject. As already emphasized, this step achieves the cor-
rect overall scaling and matching, by uniformly optimizing over the full contour
features (yellow lines), and ignoring the wrist and internal model lines (gray).

Fig. 5. Left: detection performance with background clutter. Right: detection failures.

By considering more challenging situations, in the first 3 frames of Fig. 5 we
show the detection performance in presence of clutter, both conerning intensity
edges and other skin-colored objects. The last 3 frames show some examples
of data association failures: bent fingers, out-of-plane rotations, and too close
fingers. In the whole sequence, all of these case are recognized by the detector,
that does not attempt to perform any incorrect pose estimation.

In order to provide numerical evaluations, we tested the algorithm against
ground-truth data, obtained by a manual alignment of the model to the above
given images.
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Fig. 6. Error of the pose detection w.r.t. the visually computed ground truth.
(s, R, tz,ty) = palm scale, rotation and translation; Rinumbs = rotation angle for the
thumb, etc.

Denoting with p” and p¥ the true and estimated pose respectively, we com-
pute the estimation error as e; = p/ — pE. Fig. 6 shows the error components
for each of the images. In particular, translations (¢,,t,) are given in pixels, and
rotation angles in 10~! degrees.

The presented algorithm was tested on an Intel Core 2 Duo with 2,33GHz,
2GB RAM and a NVIDIA 8600GT GPU with 256MB graphics memory. As
operating system we use Ubuntu Linuz 8.04. For video input, an AVT Guppy
F033C firewire camera was used to capture frames with a resolution of 656 x 494
at 25Hz. Using this setup the algorithm averagely performs at 5 FPS.

5 Conclusion and future work

In this paper, we presented a hand detection and pose estimation methodology,
based on a generic model with articulated degrees of freedom, using geometric
feature correspondences of points and lines. In particular, the method has been
demonstrated for a planar case, with similarity transform and planar fingers
motion.

A full 3D detection involves more complex issues, which can be best dealt
with by using multiple views and related features association. However, the ideas
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presented so far can serve as as a basis for a more complex approach, where
multiple convex hulls are used in order to detect fingertips and palm concavities,
while detected edge segments can be (at least in part) associated to individual
finger links, by using the detected point information.
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