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Abstract
In this paper, a new method for deformable 3D shape registration is proposed. The algorithm computes shape
transitions based on local similarity transforms which allows to model not only as-rigid-as-possible deformations
but also local and global scale. We formulate an ordinary differential equation (ODE) which describes the transi-
tion of a source shape towards a target shape. We assume that both shapes are roughly pre-aligned (e.g., frames
of a motion sequence). The ODE consists of two terms. The first one causes the deformation by pulling the source
shape points towards corresponding points on the target shape. Initial correspondences are estimated by closest-
point search and then refined by an efficient smoothing scheme. The second term regularizes the deformation by
drawing the points towards locally defined rest positions. These are given by the optimal similarity transform
which matches the initial (undeformed) neighborhood of a source point to its current (deformed) neighborhood.
The proposed ODE allows for a very efficient explicit numerical integration. This avoids the repeated solution of
large linear systems usually done when solving the registration problem within general-purpose non-linear opti-
mization frameworks. We experimentally validate the proposed method on a variety of real data and perform a
comparison with several state-of-the-art approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction

Deformable (non-rigid) shape registration is a fundamental
problem in computational geometry with applications in the
fields of computer vision, computer graphics, medical im-
age processing and many others. In recent years, 3D ge-
ometry acquisition techniques have been developed which
allow to capture the surface of deforming objects in real
time [WLG07]. In order to analyze the motion of the object
it is important to register subsequent scans and/or to regis-
ter a complete geometric model to the scans. Since the ob-
ject is undergoing a non-rigid motion, rigid registration al-
gorithms [CM91, BM92, GMGP05, PB09] can not be used
adequately in this setting.

The problem of deformable shape registration can loosely
be defined as follows. Given a source shape S and a tar-
get shape T find a “reasonable” deformation F that brings
S “close” to T . In this paper, we assume that S and T are
consisting of a finite set of points with an underlying neigh-
borhood structure. Examples include range images, meshes
and volumetric grids, just to name a few. In this case, the de-

formation we are looking for is a mapping F : S → R3. To
choose a reasonable one from the space of all mappings, we
have to impose some constraints on the deformation. This
is called regularization of F . We use a regularizer that pulls
each source shape point xk towards its rest position given by
the optimal similarity transform which matches the initial
(undeformed) neighborhood of xk to its current (deformed)
neighborhood. This is a generalization of the object defor-
mation technique presented in [MHTG05, RJ07, SOG08],
where local rigid shape matching is used. Employing sim-
ilarity transforms instead of rigid ones allows to model as-
rigid-as-possible shape deformations plus local scale. Note
that the topic of the papers [MHTG05, RJ07, SOG08] is the
generation of physically plausible animations. To the best of
our knowledge, this is the first paper which exploits rigid
and similarity-based shape matching as regularizers in the
context of deformable 3D shape registration.

In order to deform the source shape such that it comes
closer to the target shape T , each source point moves to-
wards a corresponding point on T . We use closest-point
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search to establish preliminary correspondences which are
further refined by a simple but effective vector field smooth-
ing procedure.

Considering the regularizer and the correspondence field,
we introduce a system of ordinary differential equations
(ODEs) which describes the non-rigid motion of the source
shape. The iterative solution of the ODEs yields a trajectory
for each source point from its initial position to its end posi-
tion on the target shape. In the case of incomplete data, the
points move according to the regularizer and fill in missing
regions in a reasonable way. Our method computes a dense
correspondence between source and target. Since the initial
correspondence estimation is based on closest-point compu-
tations we assume that both shapes are roughly pre-aligned.
This assumption holds in a variety of situations like, e.g., in
the case of scanning a deforming object at high frame rates
such that the inter-frame displacements are small.

The rest of the paper is organized as follows. After review-
ing previous work in Section 2, we describe our algorithm in
Section 3. Important implementation issues are discussed in
Section 4. Section 5 presents experimental results. Conclu-
sions are drawn in the final Section 6 of the paper.

2. Related Work

There is a large variety of deformable registration algorithms
each one having its advantages and drawbacks. In this paper,
our main criterion to judge the methods is the processing
time they require.

One class of deformable registration approaches con-
sists of the feature-based methods. Several papers [WAS10,
WZL∗10, BK10, RBBK10] proposed to use local invariant
geometric descriptors to compute a one-to-one mapping be-
tween corresponding features on the input shapes. However,
detecting feature points and establishing the correspondence
can be problematic especially in the presence of noise and
missing data. Furthermore, many shapes do not have distinc-
tive features which gives rise to many ambiguous correspon-
dences and the matching algorithm degenerates to a brute
force search [AMCO08].

A different strategy is to transform the shapes to a canon-
ical representation in a suitable space in which the cor-
respondence problem is easier to solve. Several papers
[EK03, BBK06, WSBA07, WSB09] proposed to compute
isometry-invariant embeddings of the original shapes in a
low-dimensional Euclidean space and to establish the corre-
spondence using rigid registration algorithms. These meth-
ods, however, tend to be costly and, moreover, fail for in-
complete data (caused by surface holes, partial views, etc.).

The methods cited so far solve the correspondence prob-
lem even in the presence of significant deformations and
without making any assumptions about an initial alignment
of the shapes. However, the deformations are restricted to

isometries (an exception is [BK10] which can handle an
additional global or local scaling). Furthermore, the actual
warp between the shapes has to be computed in an addi-
tional step using the established correspondences as con-
straints [MHTG05, RJ07, BPWG07, SOG08]. In contrast to
this, our method is not restricted to a particular family of
transformations and it efficiently computes both a dense cor-
respondence and the warp between the shapes.

There is a variety of registration algorithms specialized
to articulated shapes. [ACP03] presented a framework for
deformable marker-based fitting of a high-resolution tem-
plate to 3D scans of different humans in the same pose.
In [ASK∗05] a deformable model was learned that is able to
synthesize realistic muscle deformations based on the pose
of an articulated human skeleton. Both methods can be used
for human shape completion as well. Further shape comple-
tion algorithms which use deformable registration modules
were presented in [KS05, PMG∗05]. In [CZ08], a fully au-
tomatic approach for articulated shape registration was pro-
posed. The registration problem is converted to a discrete
labeling problem and solved via graph cuts. However, this
seems to be very costly since the authors report processing
times of more than an hour for shapes consisting of not more
than 12,000 points.

A further class of non-rigid registration algorithms con-
sists of iterative solvers. They deform the source shape in an
iterative fashion until an “optimal” alignment to the target
shape is achieved. Many methods in this class are extensions
of the classic ICP algorithm [CM91, BM92]. In [IGL03], a
non-rigid registration technique was introduced which de-
composes the input scans in a coarse-to-fine hierarchical
manner in overlapping rigid pieces which are aligned sepa-
rately. However, the resulting deformation is not continuous
which can lead to artifacts in the overlapping regions. Fur-
thermore, the procedure has a quadratic time complexity in
the number of pieces. In [BR04], the discontinuity issue was
resolved by incorporating a global thin-plate splines warp
which guarantees the smoothness of the solution. A general-
ization of this method to the simultaneous matching of mul-
tiple scans was proposed in [BR07].

Instead of assuming a one-to-one correspondence be-
tween the shape points, one-to-many relaxations can be used
in order to enlarge the basin of convergence and thus to in-
crease robustness against imprecise initializations. Signifi-
cant contributions along these lines are the softassign and
deterministic annealing technique [CR03] and the coherent
point drift algorithm [MS10]. A statistical registration ap-
proach without explicitly establishing point-to-point corre-
spondences was proposed in [TK04]. The input point sets are
modeled as probability distributions and a distance measure
between them is minimized over the transform space. Re-
cently, a Gaussian mixture models-based approach [JV11]
was proposed which can be seen as a generalization of
[CR03, TK04, MS10]. However, these algorithms compute
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registration results which are not as precise as ours and are
much slower than our method (see the experimental compar-
isons in Section 5).

A deformable ICP extension was introduced in [ARV07].
The authors formulated a cost function, similar to the one
used in [ACP03], which measures the cost of a given non-
rigid alignment between the shapes. The deformation is
modeled using one affine 3× 4 transformation matrix per
shape point. This gives rise to a cost function of 12m vari-
ables, where m is the number of points in the source shape.
In order to solve this highly over-determined system, a stiff-
ness term (a regularizer) is introduced. It penalizes differ-
ences between the transformation matrices of neighboring
points.

A similar strategy was proposed in [SAY∗09]. The au-
thors iteratively minimized an error measure which is based
on an elastic convolution between the difference of corre-
sponding points in the shapes. This is the 3D surface patch
analog to 2D template matching commonly used in image
processing. In [LSP08], the deformation is also modeled
using one affine transformation matrix per point. The cost
function comprises four energy terms and depends on 15m+
6 variables. The authors minimized it with the Levenberg-
Marquardt algorithm.

Note that the iterative methods cited above model the de-
formation in a very redundant way: many more degrees of
freedom (DoFs) are introduced than needed to describe an
arbitrary motion of a system of m points in R3. This results
in high-dimensional and computationally heavy optimiza-
tion problems. In contrast to this, our approach is based on a
system of ODEs with 3m unknowns, which is the least num-
ber necessary to model a general motion of a system with 3m
DoFs. Furthermore, since the proposed ODEs system allows
for a very efficient explicit integration we avoid to repeatedly
solve large linear systems which is usually done during the
minimization of non-linear cost functions. Thus, our method
is efficient in terms of both computational complexity and
memory.

3. Method Description

Before we describe our deformable shape registration algo-
rithm in detail let us first introduce some notation used in
the paper. Consider the source shape S = (VS,ES), where
VS = {x0

1, . . . ,x
0
m} ⊂ R3 is the set of initial positions of the

points x1, . . . ,xm and ES = {N1, . . . ,Nm} is the neighbor-
hood structure. Each Nk contains the indices (including k) of
the neighbors of xk. The position of xk at a time t is given by
a function t 7→ xk(t), with initial value xk(0) = x0

k . Let Xk(t)
denote the position of xk and its neighbors at a time t, i.e.,
Xk(t) = (xk1(t), . . . ,xkNk

(t)), where {k1, . . . ,kNk}= Nk.

Analogously, the target shape is a pair T = (VT ,ET ) with
VT = {y1, . . . ,yn} ⊂ R3 being the set of points and ET =
{M1, . . . ,Mn} being the neighborhood structure. Note that

xk
0

sk , Rk , t k
rk

xk t 

Figure 1: The initial (undeformed) neighborhood Xk(0)
(shown on the left) is matched to the current (deformed)
neighborhood Xk(t) (indicated by the dashed lines on the
right) using the similarity transform which minimizes the
sum of squared distances between the corresponding points
x0

i ↔ xi(t). The rest position rk for xk(t) is the transformed
point x0

k .

since T does not deform we use y1, . . . ,yn to denote both
the target points and their positions in R3.

3.1. Shape Matching-Based Regularization

The regularizer pulls each point xk towards its rest position
rk which is computed in the following way:

rk = skRkx0
k + tk. (1)

sk ∈ R is the scale factor, Rk ∈ SO(3) is the rotation matrix
and tk ∈ R3 is the translation vector which optimally match
the initial (undeformed) neighborhood Xk(0) of xk to its cur-
rent (deformed) neighborhood Xk(t). More formally,

(sk,Rk, tk) = argmin
s,R, t

∑
i∈Nk

‖(sRx0
i + t)−xi(t)‖2. (2)

Note that sk, Rk and tk depend on the current positions of
the neighbors of xk. This means that sk, Rk, tk and the rest
position rk are functions of Xk(t). To stress this, when nec-
essary, we write rk(Xk(t)). Fig. 1 illustrates the idea of the
regularization based on similarity shape matching.

The minimization problem (2) is called the absolute orien-
tation problem and is often encountered in different fields as
part of different computational problems [BM92, MHTG05,
MS09]. Our solution is based on [MS09]. First, a linear de-
formation matrix Ak is computed:

Ak = ∑
i∈Nk

(xi(t)− ck(t))(x
0
i − c0

k)
T , (3)

where the center of mass of the initial and the deformed
neighborhood of xk are denoted by c0

k and ck(t), respectively.
Next, the optimal rotation matrix Rk is extracted from Ak us-
ing its singular value decomposition Ak = UΣV T in the fol-
lowing way:

Rk = UCV T , C = diag(1, ...,1,det(UV T )), (4)

where the diagonal matrix C assures that Rk is a rotation and
not a reflection. The scale factor is given by

sk =

√
∑i∈Nk

‖xi(t)− ck(t)‖2

∑i∈Nk
‖x0

i − c0
k‖2

(5)
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(a) (b) source & target

Figure 2: The correspondence field computed with a closest-
point search (a) and with our smoothing procedure (b) for
the input shapes on the right. The black rectangle on the
right marks the part of the little finger magnified in (a) and
(b). Obviously, our procedure estimates the correspondences
much more accurate.

and the translation vector is computed as tk = skRkc0
k−ck(t).

Using Eq. (1) with sk = 1 results in a rigid shape
matching-based regularizer which is well-suited to model
as-rigid-as-possible deformations. Computing the scale ac-
cording to (5) allows us to include a local scale.

The rigid shape matching regularizer was first intro-
duced in [MHTG05] for the generation of physically plau-
sible animations of deforming objects. Further improve-
ments, again, for animating deformations, were proposed
in [RJ07, SOG08]. To the best of our knowledge, there is
no paper which exploits the rigid shape matching (sk = 1)
or similarity-based (sk according to (5)) regularization in the
context of deformable 3D shape registration.

3.2. Correspondence Estimation

In this subsection, we introduce a correspondence field
d : S → R3 which defines a pointwise correspondence be-
tween the source shape S and the target shape T . As al-
ready discussed in Section 2, there is a substantial amount
of work in the field of non-rigid correspondence estima-
tion [BK10, RBBK10, WZL∗10, WAS10, ZWW∗10]. These
methods solve the problem without making any assumptions
about the initial alignment of the shapes but, unfortunately,
tend to be costly. In contrast to this, we exploit the fact that
consecutive scans of deforming objects exhibit small inter-
frame displacements and design a simple but effective cor-
respondence establishment procedure.

Perhaps the most common way of doing this (see [BM92,
ARV07, LSP08]) is to compute the vector connecting each
source point xk to its closest point on T :

cT (xk) = argmin
yi∈T

‖xk−yi‖ − xk. (6)

This, however, leads to many wrong correspondences, even
for shapes which are not very far from each other (see
Fig. 2(a)). In this paper, we use cT only as a starting point
of a simple and effective smoothing technique which sig-
nificantly improves the correspondence estimation. In many

cases (like the one shown in Fig. 2(a)), cT is quite irregu-
lar in the sense that it varies too strong when evaluated at
neighboring points on the source shape. This should not be
so since scanning a deforming object at high frame rates pro-
duces a smoothly varying surface which, in turn, results in
a smooth correspondence field between consecutive frames.
This is the reason why we expect a smoothing of cT to im-
prove the correspondence estimation between the shapes.

More precisely, we use cT as a starting point for a local
optimization procedure which returns a displacement field
d : S → R3 which minimizes the smoothness term

Es(d) =
m

∑
k=1

∥∥∥d(xk)−d(xk)
∥∥∥2

, (7)

where m is the number of source shape points and d(xk) =
1

Nk
∑i∈Nk

d(xi) is the mean value of d over the neighborhood
of xk. Furthermore, Es has to be minimized under the con-
straint

xk +d(xk) ∈ T , ∀xk ∈ S. (8)

Essentially, (7) penalizes displacement fields which vary at
neighboring source points and (8) assures that the solution is
indeed a correspondence field, i.e., that d brings each xk to a
point on the target shape and not to some arbitrary position
in R3. This means that d has the form d(xk) = ym− xk for
some ym ∈ T and we have a discrete optimization problem.
Having this in mind, we construct the following optimization
procedure:

1. Initialize d0 := cT and j := 0.
2. Compute d j+1

[for each xk ∈ S compute d j+1(xk)]
a. Get the target point yl which corresponds to xk , i.e., yl =

xk + d j(xk).
b. Among the neighbors of yl , choose the target point ym ∈ T

with minimal ‖(ym−xk)−d j(xk)‖2.
c. Set d j+1(xk) := ym−xk .

[end for]

3. If Es(d j+1) < Es(d j) increment j and go to step 2. Otherwise
terminate the procedure.

The only parameter of this algorithm is the radius of the
neighborhood of the target point yl in step 2.b.. The big-
ger the radius the more global the search, i.e., the greater
the chance to overcome local minima in the landscape of
the smoothness term. Of course, this comes at the cost of a
higher computational load. The algorithm always converges
since yl is part of its own neighborhood and after a certain
number of iterations no further minimization of the terms in
step 2.b. is possible which results in Es(d j+1) = Es(d j).

Fig. 2(b), shows a correspondence field computed with
our smoothing procedure. The improvement compared to the
closest-point field cT is obvious.
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3.3. The ODEs System and its Integration

In contrast to [MHTG05, RJ07, BPWG07], we are not in-
terested in creating physically plausible animations of de-
forming objects. Thus, our approach is not based on a
physical model like, e.g., Newton’s second law used in
[MHTG05, RJ07, BPWG07].

At each time instance every source shape point should
move according to both the regularizer and the correspon-
dence field. In other words, the velocity of each xk is a lin-
ear combination of the vector pointing to its rest position,
namely, rk− xk and the vector given by the correspondence
field evaluated at xk which is d(xk). More precisely, we set
the velocity to be a convex combination of rk−xk and d(xk).
Writing this down in a formal way, leads to the following
system of m ordinary differential equations (with m being
the number of source shape points):

.xk(t) = α(rk(Xk(t))−xk(t))+(1−α)d(xk(t)), (9)

xk(0) = x0
k . (10)

Using a convex combination instead of a general linear com-
bination has the advantage of introducing only one parame-
ter α ∈ [0,1] which can be interpreted as the stiffness of the
source shape: the greater the value the more rigid the motion
of the shape. (9) together with (10) define an initial value
problem which we solve numerically using the following in-
tegration scheme:

xn+1
k = xn

k +α(rn
k −xn

k)+(1−α)d(xn
k), (11)

where n is the iteration number. Since this is an explicit
method (Euler’s method with step size 1) its stability is a-
priori not guaranteed. If the step size is chosen too large,
explicit integration schemes can overshoot the equilibrium
of the system by an amount which increases in each itera-
tion and finally leads to an “explosion” [MHTG05]. In our
case, however, this does not happen. Recall from Section 3.2
that for each source point xn

k the correspondence field has the
form d(xn

k) = ym− xn
k for some target point ym. Using this

we can rewrite (11) to get

xn+1
k = αrn

k +(1−α)ym. (12)

This means that the new point xn+1
k lies on the straight line

between rn
k and ym and thus can not overshoot the equilib-

rium since it lies on this line as well. Using a step size larger
than 1 leads to an xn+1

k which overshoots the line (and thus
the equilibrium) and can lead to instability.

3.4. The Overall Registration Procedure

The overall deformable registration algorithm works as fol-
lows. We start the integration of the ODEs system using the
numerical scheme described in Section 3.3 with a high stiff-
ness value α = 0.95. In each iteration, the rest positions and
the correspondences are recomputed as described in Sec-
tions 3.1 and 3.2, respectively, using the updated positions of

Figure 3: A deformation graph computed for a range scan of
a hand. The magnified part on the right shows the nodes as
yellow spheres. Neighboring nodes are connected with black
lines.

the source shape points. This is repeated until convergence
which is detected by checking whether (11) has reached a fix
point. The stiffness parameter is then lowered by 0.05 and
the integration continues. The registration terminates when
the stiffness falls below 0.5.

Note that this procedure does not cope well with missing
data since the correspondence field guides each source point
xk towards a target point no matter if it is the one which se-
mantically corresponds to xk or not. What happens to such a
source point in the course of the registration is that its neigh-
borhood gets too distorted, especially for lower stiffness val-
ues. We detect these points using a simple deformation mea-
sure and let them move only according to the regularizer. We
use

D(n,k) =
1

Nk−1 ∑
i∈Nk
i6=k

|‖xn
i −xn

k‖− lik|
lik

, (13)

as the measure of deformation of the source point xk in the n-
th iteration of the registration algorithm. (This is essentially
the definition of strain in mass-spring systems [WOR10].)
Recall that Nk is the set of indices (including k) of the neigh-
bors of xk and Nk = |Nk|. lik denotes the distance between xi
and xk in the undeformed source shape, i.e., lik = ‖x0

i −x0
k‖.

Note that D(n,k) is dimensionless meaning that it does not
depend on the units in which the shapes are saved. If D(n,k)
exceeds a certain fixed threshold the neighborhood of xk is
considered too distorted and from the n-th iteration on the
point moves only according to the regularizer without being
directly attracted to the target shape. In our implementation,
we set this threshold to 0.2.

4. Implementation Issues

Note that the registration algorithm introduced in the last
section is applicable to all shapes which are represented by
a finite set of points plus an underlying neighborhood struc-
ture. In this Section, we will briefly discuss two important
special cases, namely, range scans and triangular meshes.

A range scan is a 2D image in the xy-plane which stores
a depth value along the z-direction [LSP08]. The range
scans used in the experimental part of the paper contain
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around 30,000 points. This introduces a significant computa-
tional load and leads to an unpractical registration algorithm.
Moreover, many deformations of practical interest like, e.g.,
articulated motion have much fewer degrees of freedom and
can be described in a more efficient way. This is the reason
why we decouple the complexity of the registration algo-
rithm from the geometric complexity by using a so-called
deformation graph [SSP07]. It consists of nodes connected
by undirected edges. We exploit the regularity of the range
scans and cover the xy-plane with non-overlapping three-
dimensional boxes of a certain fixed size. The z-coordinate
of each box is chosen to be median of the z-coordinates of all
shape points being covered by this box. Then for each box
the shape point closest to its center is defined to be a node in
the deformation graph. Boxes having integer xy-coordinates
which do not differ by more than 2 and having z-coordinates
which do not differ by a certain amount (we use 30mm) are
considered to be neighbors. Fig. 3 illustrates this concept.

If the source shape is represented by a triangular mesh,
we use a different strategy. In this case, the deformation
graph is an octree of fixed leaf size. If, furthermore, the mesh
represents a closed surface, we add all leaves to the octree
which are contained within the surface. In this way, a solid
3D lattice is created which results in more stable deforma-
tions [BPWG07].

After the deformation graph has been built it is used for
the registration instead of the original source shape. How-
ever, since we are interested in deforming the shape itself,
the deformation computed for the graph has to be transferred
to the shape. This is done using thin plate spline (TPS) in-
terpolation of the vector field defined by gi− g0

i , where gi
is the position of the i-th graph node after the registration
and g0

i is its initial position. Each source shape point is then
transformed using the computed TPS. We chose this inter-
polation scheme since it produces high-quality vector fields
and is easy to compute for scattered data.

5. Experimental Results

In this Section, the proposed registration algorithm is exper-
imentally validated on a variety of real data sets. All tests
are performed on a laptop with a 3GHz CPU, 4GB RAM
and a Linux operating system. The method is implemented
in C++.

Qualitative Tests First, we show two qualitative test re-
sults using a doll head model as the source shape and a head
model of a girl and a boy as the target shapes. The shapes are
represented as closed triangular meshes. Since they were not
pre-aligned, we preformed a manual rigid registration based
on 8 landmarks. Even after this user intervention the test sce-
nario remains challenging because the models are represent-
ing different “subjects” and there is a significant scale differ-
ence between the shapes. Figure 4 shows the input data sets
and the registration results from several view points.

Range Scan Pairs Next, we run our method on pairs of
range scans representing the same object in different poses.
In order to evaluate the method quantitatively, we measure
the source shape deformation and the RMS error between
source and target and plot them versus the iteration number.
The source shape deformation is defined using (13) as

D(n,S) =
1
m

m

∑
k=1

D(n,k) (14)

and the RMS error between S and T is given by

RMS(n,S,T ) =

√
1
m

m

∑
k=1
‖cT (xn

k)‖2, (15)

where n is the iteration number, m is the number of points
in S and cT (xn

k) computes the vector connecting xn
k to its

closest point in T (see (6)).

Figures 5 to 9 show the data sets used in the test. The scans
are shown as they were captured by the scanning devices
without any additional alignment. These configurations are
used as starting point for our registration algorithm. Fig. 5
shows a range scan pair which is part of a sequence repre-
senting a slowly closing hand. The inter-frame displacement
is small and mainly caused by the bending finders. The reg-
istration computed with our method together with the defor-
mation measure and the RMS error are shown on the right
side of the figure.

Fig. 6 shows a further example of a closing hand. This
time, there is a larger bending deformation plus an additional
global translation. As is to be expected from the initial con-
figuration of the scans the RMS error at the beginning of
the registration is bigger. Furthermore, since the fingers bend
more than in the last example the amount of deformation re-
quired to register the scans is larger. This is confirmed by the
plots on the right side of the figure.

Fig. 7 demonstrates the ability of our algorithm to deal
with incomplete data. Note that there are many holes in both
scans caused by self-occlusion and scan device imperfection.
Our method successfully registers the scans even in areas of
low overlap as the magnified parts of the figure show.

Fig. 8 shows registration of an articulated object, namely,
a bending arm. Note that there is a significant deformation
between the scans. This is a challenging example for feature-
based methods since the scans are smooth and lack distinc-
tive features. Our method successfully recovers the deforma-
tion as depicted in the figure.

In Fig 9, a further example of a moving hand is shown.
Additionally to the local deformation caused by the closing
fingers this example contains a significant global rotation.

Range Scan Sequence Next, we test our method on a se-
quence of range scans representing a closing hand. The first
frame of the sequence is used as the source shape and is se-
quentially registered to the other frames. The result for the
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target shape – 474,962 points

source shape – 371,436 points

target shape – 502,575 points

front view top view

registration results

source shape and
deformation graph

deformed source shape

Figure 4: Registering a doll head (upper left) to a head of a girl and a boy (lower left). The landmarks used for these registration
tests are shown as red dots. Note that there is a significant difference in scale between the source and the target shapes. Our
algorithm successfully performs the registration as shown on the right. The models were downloaded from the AIM@SHAPE
Repository – http://shapes.aim-at-shape.net/

deformation graph
1,435 nodes

initial
alignment

registration
result

source shape
37,658 points

target shape
37,954 points

Figure 5: Registering two range images representing the front part of the same hand in two different poses. The data sets were
obtained with a 3D geometry scanner [WLG07] and are publicly available on the authors webpage.

current frame is used as initialization for the next one. The
sequence consists of 100 frames. Fig. 10 exemplary shows
some frames and the corresponding registration results.

Comparison Finally, we compare the performance of
our method (both registration quality and runtime) with
the performance of several state-of-the-art non-rigid reg-

istration algorithms: the softassign + deterministic anneal-
ing (SDA) approach [CR03], the kernel correlation-based
(KC) method [TK04], the coherent point drift (CPD) al-
gorithm [MS10] and the Gaussian mixture models-based
(GMM) algorithm [JV11]. Note that the KC [TK04] and
the GMM [JV11] methods can perform the registration us-
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deformation graph
1,173 nodes

initial
alignment

source shape
30,492 points

target shape
31,467 points

registration
result

Figure 6: Range scans representing the back part of the same hand in two different poses. The poses differ not only by the
local bending deformation of the fingers but also by a global translation. The data sets were obtained with a 3D geometry
scanner [WLG07] and used in [SAY∗09].

source shape
34,735 points

target shape
39,175 points

deformation
graph
956 nodes

registration
result

initial
alignment

Figure 7: Registering two facial expressions. Note that the scans are noisy and incomplete. Our methods correctly aligns the
shapes even in areas of low overlap.

ing two different deformation models, namely, thin plate
splines (TPS) and Gaussian radial basis functions (GRBF).
This effectively results in six different registration methods
which we will denote as follows: SDA+TPS is the abbrevia-
tion for [CR03], CPD+GRBF stands for [MS10], KC+TPS,
KC+GRBF denote [TK04], and GMM+TPS, GMM+GRBF
stand for [JV11], depending on which deformation model is
employed.

We use the implementation of the above mentioned meth-
ods, publicly available on http://gmmreg.googlecode.com,
and run them on the same hardware and with the same data
sets as our algorithm. The quality of the registration com-
puted by the algorithms is compared using the source shape
deformation measure (14) and the RMS error (15). Table 1
shows the results of the quality comparison. Note that our
algorithm outperforms the others since it produces a lower
RMS error for virtually the same source shape deformation.
The results of the runtime comparison are summarized in
table 2. Our algorithm clearly outperforms all six methods
with the difference in processing time being up to two or-
ders of magnitude.

data set
method Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9

GMM+TPS 497 315 273 332 453
GMM+GRBF 361 244 237 269 267

SDA+TPS 1004 621 501 642 1033
CPD+GRBF 4389 2443 1368 2269 5952

KC+TPS 491 314 273 331 451
KC+GRBF 361 243 237 267 267

our alg. 14 13 11 18 21

Table 2: Computation time (in seconds) taken by our algo-
rithm and six state-of-the-art approaches for the registration
of the scans presented in the paper. Our method clearly out-
performs the others.

6. Conclusions

In this paper, we proposed an efficient algorithm for de-
formable registration of 3D shapes. We focused on modeling
as-rigid-as-possible shape deformations augmented with lo-
cal scale. In contrast to many recent methods, our approach
is not formulated within a general-purpose optimization
framework. The minimization of high-dimensional, non-
linear cost functions is computationally very demanding
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data set
method Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9

GMM+TPS 0.04 0.6 0.05 0.8 0.10 1.4 0.08 1.4 0.06 2.1
GMM+GRBF 0.03 0.8 0.03 0.9 0.07 2.4 0.05 2.2 0.06 2.5

SDA+TPS 0.09 0.7 0.09 0.7 0.11 1.2 0.08 1.3 0.08 0.9
CPD+GRBF 0.30 1.4 0.30 1.2 0.20 1.5 0.30 3.6 0.20 1.7

KC+TPS 0.04 0.6 0.05 0.8 0.10 1.3 0.08 1.4 0.06 1.8
KC+GRBF 0.03 0.8 0.03 0.9 0.09 2.2 0.06 2.2 0.07 2.4

our alg. 0.02 0.2 0.03 0.4 0.07 0.6 0.04 0.7 0.07 0.5

Table 1: Comparing the quality of the registration computed by our algorithm and six state-of-the-art approaches for the scans
presented in the paper. The first number in each table cell gives the source shape deformation (Eq. (14)) and the second one
gives the RMS error in millimeters (Eq. (15)). Our method provides the most precise alignment for a low shape deformation.

deformation graph
1,149 nodes

source shape
34,948 points

target shape
35,271 points

initial alignment
registration result

Figure 8: Registration of a bending arm.

since it involves the repeated solution of large linear systems.
Instead, we rely on a simple and effective numerical integra-
tion scheme and solve an ODEs system which models the
non-rigid motion of a source shape towards a target shape.
The ODE we proposed is based on a correspondence field
and a regularization term. Preliminary correspondences are
estimated with a closest-point search and further refined with
an efficient smoothing procedure. The regularizer is a gen-
eralization of the rigid shape matching technique recently
developed in the context of physically plausible deformation
modeling. We experimentally validated our method on a va-
riety of real range scans and demonstrated that it performs
well on noisy and incomplete data. Finally, an experimental
comparison to six state-of-the-art approaches showed that
the proposed algorithm outperforms them in terms of both
registration quality and processing time.
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