
Representation of Manipulation-Relevant Object Properties and Actions
for Surprise-Driven Exploration

Susanne Petsch and Darius Burschka

Abstract— We propose a framework for the sensor-based
estimation of manipulation-relevant object properties and the
abstraction of known actions in a learning setup from the
observation of humans. The descriptors consists of an object-
centric representation of manipulation constraints and a scene-
specific action graph. The graph spans between the typical
places, where objects are placed. This framework allows to
abstract the strongly varying actions of a human operator and
to monitor unexpected new actions, that require a modification
of the knowledge stored in the system. The usage of an abstract,
object-centric structure enables not only the application of
knowledge in the same situation, but also the transfer to similar
environments. Furthermore, the information can be derived
from different sensing modalities.

The proposed system builds up the representation of
manipulation-relevant properties and actions. The properties,
which are directly related to the object, are stored in the
Object Container. The Functionality Map links the actions
with the typical action areas in the environment. We present
experimental results on real human actions, showing the quality
of the results, that can be obtained with our system.

I. MOTIVATION

A robot should be able to learn unsupervised through
the observation of human actions in its environment. Un-
fortunately, humans do not follow exact trajectories, while
performing repetitive manipulation tasks. The system needs
to be able to abstract the manipulation actions, in order to
focus only on information, which is necessary to accomplish
a manipulation or to cooperate with a human in a given
environment. A mismatch between the expectation of the
robot as an observer system and a current human action
should occur only in situations, in which the change appears
to be a result of a changed function or physical property of
the object. We will call such a mismatch a surprise event in
the following. A surprise event triggers the refinement or the
modification of the stored information. Important examples
are the following: Motion constraints are suddenly changed
in the object transport phase (e.g., a cup carried always
upright is now tilted arbitrarily); an object is suddenly placed
on an unexpected place, e.g., a cup on the floor. These
observations are usually an indication, that the physical
properties of the object (e.g., the level of the liquid in the
object) or their function (not a drinking cup, but a dirty

This work was supported by the European Communitys Seventh Frame-
work Programme FP7/2007-2013 under grant agreement 215821 (GRASP
project)

Susanne Petsch and Darius Burschka are with the Machine Vision
and Perception Group, Department of Informatics, Technische Universität
München. 85748 Garching, Germany
{petsch|burschka}@in.tum.de

Fig. 1. The system creates an abstract map of possible manipulation actions
and goals in the environment.

dish) changed. This needs to be considered in the internal
representation of the manipulation system.

Our aim is to define a model, that allows to map different
physical properties of the object to modifications in the
handling properties. The model should efficiently abstract
known actions applied to a given object, in order to be
able to correctly predict the often strongly varying transport
trajectories and goals. This second property of the system
allows to reason about changes in the function of a specific
object in a given environment. For example, a tool is not
used for its specific purpose anymore, but just put away. The
representation of the object specific properties and actions
needs to be independent of exact Cartesian motion.

A-priori knowledge about an object class is stored in an
Atlas, introduced in [1]. It contains already known properties
of the objects as well as a-priori knowledge about the han-
dling alternatives. Different handling properties might occur
for the same object depending on the context. The correct
alternative has to be selected based on the observation. This
handling property may change over time. Such a modification
is triggered by a mismatch between the expectation and the
observation of the human action. The abstract knowledge
from the Atlas can be mapped into the current context and
stored in the Working Memory. The Working Memory is the
explored representation of the current scene, where the a-
priori (Atlas) knowledge gets registered to provide additional
information about the structures observed by the system. The
Atlas information gets mapped onto representations in the
working memory, that describe the handling properties of
objects and the observed functional relations between the
typical places, where these objects can be found. In this
paper, we focus on these representations of the manipulation-
relevant properties in a given environment. The requirements
on this representation have to be specified and the relevant
knowledge has to be extracted from the observation in an
appropriate manner. A very important aspect is, that not

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-456-5/11/$26.00 ©2011 IEEE 1221

only the object itself (e.g., its properties or physical states)
is defining the way, how it is manipulated, but also the
location at which the manipulation is performed. Certain
actions takes usually place at specific locations, which have
certain properties. For example, washing the dishes is usually
done in the sink and not on a flat table without any water
source around. The conclusion is, that we need not only a
collection of object properties, but also a map, which links
locations in the environment to the specific way how objects
are handled at these locations (see Fig. 1). It is important
to notice, that we are not interested in the exact registration
of the actions to the environment in the sense of navigation,
but in an abstract representation of the functionalities in the
environment. We are not using any semantic information
about the environment. Furthermore, the system does not rely
on any linguistic information.

The representation of the knowledge about the human
actions is split into an object-centric representation, reflecting
the physical properties of an object stored in an Object
Container, and a Functionality Map, representing possible
actions related to the environment. While the Object Con-
tainer is linked only to the object, the Functionality Map is
anchored to the geometric model of the environment. This
framework allows us to limit unexpected events (surprise
events), that cannot be explained with the current knowledge,
to situations, where the physical state or the function of an
object changed. The system is insensitive to variations in the
execution of the same action. Predictions about the current
situations are based on the information stored in Object
Container or the Functionality Map. Therefore, mismatches
between these predictions and observations occur just at an
abstract level. They signal the right moment to update the
stored information.

It is important to consider, that the robot might face
different types of input like, e.g., vision data. This can be
useful in a household environment. Further examples include
procedural descriptions, which provide knowledge in topo-
logical form (e.g., the steps of a surgical procedure). Here,
the trajectories of the human motions are neither used for
workflow applications nor for planning of actions. We focus
on the object-centric constraints and the object’s function in
the environment. Our system does not rely on a trajectory
in a certain representation, like x,y,z-coordinates, or on a
certain colored texture of an object. The properties acquired
in our system have to be sufficient for a manipulation task.
At the same time, they have to be generic and extractable
from different sources.

The goal of this paper is the presentation of a system,
which provides the manipulation-relevant knowledge in a
way, such that the described requirements can be met.

The paper is structured as follows: our approach is pre-
sented in the next section. First, the manipulation-relevant
object properties and the Functionality Map of the envi-
ronment are described, followed by the presentation of the
knowledge extraction. The results of the experiments with
real human actions are described in Section III. We end with
conclusions and future work.

A. Related Work

An extensive work exists in the field of imitation learning.
In [2], HMMs are used for imitation learning of arm move-
ments in manipulation tasks for humanoid robots, in order
to achieve a human-like reproduction of the motions. It is
important to point out the difference between our approach
and non-object-centric approaches. Such approaches are, for
example, imitation learning of motor skills or imitation of
movements with Dynamic Movement Primitives (DMPs),
which encode the trajectories themselves directly [3], [4].
This paper does not aim to encode the trajectories with, e.g.,
DMPs or using the model in [5]. Calinon et al. use imitation
learning, in order to learn control strategies [6]. Approaches
related to Reinforcement Learning [7] use the observations of
humans as reward [8], [9] in the context of imitation learning.
In contrast to theses approaches, our aim goes beyond simple
imitation. We want to generalize the observation to cope with
variations in repetitive human actions.

The intention in imitation tasks is addressed by Jansen and
Belpaeme [10]. They train their agent in a grid with blocks
in a computer simulation. In contrast, we deal with more
complex, real-world environments and our system needs
much less training instances than the one presented in [10].
A real-world example of capturing the user’s intention about
sequential task constraints is presented in [11]. Their system
reasons about the existence of sequential dependencies of
operations.

The object’s motion has to be analyzed, in order to achieve
a further understanding of the object’s functionality. The
effects on a manipulated object (position, orientation) are
taken into account in [12]. The difference to our approach is,
that we obtain information about the manipulation properties
of the object and, furthermore, to the objects functionality in
the environment. In [13], function from motion is analyzed
for “primitive motions”, which are translations or rotations
relative to the main axes of primitive objects. Our approach
goes further to more and more general manipulation-relevant
object properties. In [14], functional roles of objects, like
“pour out”, have been explicitly introduced. These roles
do not refer to the object’s properties, which are directly
observable during manipulation.

It should be to pointed out, that we are not interested
in the reconstruction or the analysis of the environment,
like [15]. We split the information in pure grasp related
object-centric information and the information for trajectory
planning represented by the Functionality Map. The rela-
tive/absolute position of objects to each other have been used
for the consideration of the environment in manipulation
properties in [15]. In [16], a perceptual space (for the color
and shape object properties) and a situation space (for the
displacement of the objects in the scene) are introduced. In
contrast, the object properties in our paper are beyond the
pure visual appearance of the object, since we are interested
in the manipulation-relevant object properties (like motion
constraints, and known linkages between geometric static
occurrences of the object).

1222

Fig. 2. Object Container and Functionality Map. The Object Container
stores the object properties. The Functionality Map is an abstract repre-
sentation of the manipulation-relevant operating areas in the environment.

II. APPROACH

An overview of the system is given in Fig. 2. It illustrates
the Object Container with the object properties, and the
representation of the actions in the Functionality Map. The
map is represented by a graph, which encodes Location Areas
and their connections between them.

A. Manipulation-Relevant Object Properties

Since we are interested in a general knowledge of the
object properties, we do not want to list the x,y,z-coordinates
of the recorded trajectory points, but the abstract handling
properties important for grasp planning. The properties, we
consider as important, are the variation of orientation, the
maximal allowed acceleration, the grasp type allowing a
successful grasp with a given manipulator, the mass and the
center of mass. Some of these properties are not observable
with a pure vision or tracking system. Therefore, the already
described information database Atlas [1], which contains the
“experience” (a-priori information), is used to provide initial
information. The other properties need to be extracted, using,
for example, a vision system.

The handling properties themselves are constraints, which
limit the handling possibilities of the object in a certain sit-
uation. Our object-centric representation has the advantage,
that the representation of a constraint does not rely on a
specific Cartesian position in space. For a specific object, the
internal properties, like fragile or liquid content, constraint
merely the velocity and acceleration parameters independent
of the position in the environment.

B. Functionality Map of the Environment

The Functionality Map provides information about possi-
ble trajectories in the environment. The first component of
the Functionality Map are the Location Areas. These areas
are the locations in the 3D space, where a manipulation
sequence can start or end. We define explicitly location
areas and not single points, since an object is usually
placed in a certain area and not on one certain point in
space. A Location Area does not necessarily imply, that the
manipulated object is standing on a surface. A hand-over step
(e.g., changing hands) can also establish a Location Area,

Fig. 3. Functionality Map of the environment for two exemplary objects.

which is, therefore, not connected to a surface, but to an
area in space.

The connections between different Location Areas are the
next component of the Functionality Map. A connection
exists, if an action has been performed directly between
both areas without visiting another one in between. It is
important to consider, that a connection is directed. A
connection itself stores the different manipulation properties
of the actions, which are performed on this connection. The
properties depend on different factors. The first factor are the
objects themselves. The other factor are the different grasp
alternatives, that can occur for each object. Two exemplary
instantiations of a Functionality Map can be seen in Fig. 3.

The properties, which are stored in the Functionality Map,
are the following:

• pushed object vs. lifted object - An object can be
manipulated by lifting or by pushing it. A pushed object
needs just to be pushed in the desired direction, whereas
lifting an object requires an entire grasp planning (in-
cluding knowledge about the object’s weight).

• arbitrary movement vs. constrained trajectory - The
trajectory between two Location Areas has either an
arbitrary shape or it is the result of a constrained motion.
A constrained motion connects the Location Areas in
a direct manner, avoiding deviations. In contrast, an
arbitrary movement is unconstrained.

• connection relevance - The connection relevance shows
the probability of a connection property, based on the
observed actions.

• velocity constraints during pick-up - The three phases
defining an action introduced in [1] are used: the pick-
up, the transportation and the placement phase. The
maximal speed during the pick-up phase is stored as
velocity constraint in the Functionality Map. It is an
indicator for the difficulty to pick up the object.

• grasp taxonomy - The grasp type is mainly important
for the pick-up and placement phase of the manipulation
and not part of this paper. The grasp taxonomy we
consider for the system is summarized in [17].

• grasp approach vector - The grasp approach vector
is, similarly to the grasp type, mainly important for
the pick-up and placement phase of the manipulation
and is not part of this paper. The grasp direction is
the direction, from which the object is grasped in the
object-centric point of view.

1223

The assignment of the properties to the Object Container
or the Functionality Map depends on the type of the property.
A property, which is related to the function in the environ-
ment, is assigned to the Functionality Map. For example,
the velocity constraint during the pick-up is part of the
Functionality Map, since the possible velocity constraint
depends on the environment of the object (e.g., obstacles).
In contrast, a property, which is directly related to the object
and its state, is a part of the Object Container. An example
for such a property is the maximal allowed acceleration for
an object in a certain state (e.g., no high acceleration for a
filled cup).

C. Acquisition of Knowledge

The presented Object Container and Functionality Map
need to be filled with information. For example, a scene can
be observed with a system, which provides a 6-DoF trajec-
tory of the manipulated objects.

1) Object Container: The properties for the Object Con-
tainer, which we want to consider in this paper, are the
maximal acceleration value and the variation of observed
orientation of the object during the manipulation.

a) Maximal Acceleration: The maximal acceleration
value is approximated by the difference of two consecutive
velocity samples, which, in turn, are computed as the differ-
ence of two consecutive samples.

b) Orientation: The observed orientation is determined
from the given 6-DoF trajectory. Just the orientation change
relative to the gravitational vector is of interest for the
constraints in the manipulation task. The aim is to distinguish
a motion with rotation from a motion without tilting. We use
Hidden Markov Models (HMMs) [18] for the classification
because of their ability of generalization. They are statis-
tical classifiers, which use an observation sequence for the
estimation of the underlying state-sequence. Moreover, they
take into account knowledge of the past (previous state) in
the sequential input. Discrete HMMs with λ = (A,B,Π) are
chosen. They comprise a transition probability matrix A, an
observation symbol probability distribution matrix B and an
initial state distribution Π .

First, the preprocessing takes place, until a codebook of
the rotation information is built. An overlapping window
of 400 ms with a 200 ms overlap (according to [19])
is applied on the sequential input. For each window, the
angles between the axes of the current coordinate frame and
the coordinate frame at the beginning of the manipulation
are measured. Depending on the object and the way of
recording its trajectory, different angular variations can occur
for different objects. A relative amount of change is needed
for each object. Therefore, the angles are normalized for each
object with its maximum angle, occurring in all movements
of the object. After this preprocessing, the collected data
of the rotation information is clustered with the K-means
algorithm [20] independent of its time of occurrence. The
result is a 64 symbol rotation information codebook.

Then two HMMs (each with 10 states) are built, in order
to classify the motions as ones which contain a rotation

(λr) or as rotation-free ones (λnoR). The transition and
emission probabilities for each model are calculated with the
maximum likelihood estimation, using the labeled training
sequences.

For evaluation, the system receives test sequences,
which are preprocessed as described above. The k-nearest-
neighbors-method (knn) is used for the assignment to the
corresponding symbols in each codebook. To evaluate the
classification performance of the trained HMMs, the max-
imum log likelihood log P (otest|λi) of a given model λi

is computed for each test sequence with observations otest
similar to [21]:

λ∗
r = argmax[log P (otest|λnoR), log P (otest|λr)] . (1)

2) Functionality Map:
a) Location Areas: The possible Location Areas have

to be determined first. Therefore, the available trajectories
are split up in single sequences. A sequence starts as soon
as the human grasps the object. The end of the sequence is
reached, when the hand and the object are not in contact any
more. The collected 3D-points of the start and end positions
are clustered. The resulting cluster-centers are the centers of
the Location Areas. It is possible, that the system detects two
Location Areas, which coincide in fact, but appear randomly
as two. If these Location Areas are close to each other and
have the same connection properties, they can be fused.

b) Connection Properties: The next step is the deter-
mination of the connections between the detected Location
Areas and the corresponding properties of the connections
for each object. The properties, we are using in this paper,
are the distinction of a pushed vs. a lifted object, an arbitrary
movement vs. a movement with a constrained trajectory,
the velocity constraints during the pick-up phase and the
connection relevance of a movement property on a certain
connection. If possible, the grasp type of the manipulation
is determined.

Pushed Object vs. Lifted Object: An object is pushed,
if it is in contact with its background during the whole
manipulation. In order to check this contact, the distance
between the object and the supporting surface is measured
along the normal vector of the surface (see [1] for the
computation).

Arbitrary Movement vs. Movement with Constrained Tra-
jectory: A Principle Component Analysis PCA (with rescal-
ing) is performed for the distinction of an arbitrary movement
and a movement with a constrained trajectory. The PCA is
done on a 4.8 s window with a 2.4 s overlap, the resulting
principal components are normalized. We check for arbitrary
motion, where the motion has no major direction component,
but the movement is relatively large in all directions. There-
fore, we are especially interested in the third (and smallest)
component of PCA, since it shows the variation of motion. If
this component has a high amplitude, then all three principal
components have relatively high amplitudes. In this case, the
movement is large in all directions and it is an arbitrary
movement. We define the amplitude of the third component
as “high”, if it meets one of two requirements. The first one

1224

is a comparison with the main direction of motion (= the
first principal component): If the magnitude of the first and
the third component are relatively “close” to each other,
there is hardly any main direction of the movement and the
movement is arbitrary. “Close” means the following: The
component of the smallest movement is multiplied with a
factor (multiplication factor arbitrary-movement). This factor
is the maximal ratio of the first and the third principal
component among all arbitrary movements. It determines,
how many times the largest movement is maximally allowed
to be larger than the smallest movement to classify it still
as an arbitrary motion. The second requirement for a “high”
amplitude of the third component is occurring, when the this
component is higher than a threshold (arbitrary-movement-
threshold). The arbitrary-movement-threshold has to be cho-
sen in the magnitude of the third principal component of
the arbitrary movements. If all the described criteria are not
met, the direction of the smallest motion is not high and the
movement is a movement with a constrained trajectory.

Velocity constraints during the pick-up: The pick-up phase
is defined manually with 50 samples from the starting
position. The speed is computed for two consecutive samples.

Connection relevance: The connection relevance can eas-
ily be determined by dividing the number of occurrences of
a certain movement property on a connection by the number
of all movements on this connection.

Grasp Type: In the current implementation, grasp type is
determined by manual labeling.

III. RESULTS

The proposed system is tested on sequences (seq.) of real
human actions. First, we test our system on external tracking
data (subsection III-A). This data provides directly the 6-
DoF trajectory of the tracked markers, which are placed
on top of the manipulated objects (obj.). The system is
also evaluated on stereo data directly from the manipulation
system (subsection III-B).

A. Basic Results on Tracking Data

The tracking data is recorded with a marker-based IR
tracking system1 at 50 Hz. The data is preprocessed first:
Each sample, which does not differ from the consecutive
one, is deleted. The remaining motion corresponds to an at
least minimal movement. Furthermore, the trajectories are
smoothed with a 1.4 s moving-average-window, in order
to eliminate high-frequency noise, which can especially
occur at the beginning of the movement. After this basic
preprocessing, the sequences vary between 4.3 s and 17.72 s,
the average is 7.45 s (example in Fig. 4, left).

The sequences are recorded with four different objects: a
milk carton, a spoon, a cup and a vase. The cup is grasped
twice: at the handle and at the cylindrical part from the side.
This leads to five “different“ objects for the test. For each
object, there are 18 different actions of a person, shown in
Table I. The implementation is done in Matlab (Statistics

1Advanced Realtime Tracking system. Advanced Realtime Tracking
GmbH, url: http://www.ar-tracking.de/ .

Fig. 4. Left: Arbitrary movements of the tracking data (in mm) for
the cup in red (without rotation) and in blue (with rotation) (line =
original movements, dotted line = result of the basic preprocessing). Right:
Trajectory of a pushed object (seq. 1, vision data).

TABLE I
Left: DESCRIPTION OF THE SEQ. (TRACKING DATA). Right: FURTHER

DESCRIPTION OF THE FOUR CONSTRAINED TRAJECTORY (SEQ. 1-4, 5-8,
9-12, 13-16). POSITIONS: table-start = POS. ON THE TABLE, box = POS.

ON A BOX ON THE TABLE, corner = CORNER OF THE TABLE.

Seq Movement Rotation Seq Start Pos. End Pos.
1-2 constr.: line 1 table-start box
3-4 constr.: pushed 2 box table-start
5-8 constr.: curve 3 table-start corner
9-12 constr.: line x 4 corner table-start
13-16 constr.: curve x
17 arbitrary
18 arbitrary x

Toolbox: PCA, HMM, K-mean algorithm. Bioinformatics
Toolbox: knn-classification.).

The parameters and the initial values for the knowledge
extraction (see Section II-C) are set as follows. The knn-
assignment of a new value to a cluster in the rotation
information codebook is done with k=3. The multiplication
factor arbitrary-movement for the third component is 15,
and the arbitrary-movement-threshold is 0.06. The height
difference to the table is measured along its vertical axis for
the distinction pushed vs. lifted object. The object is pushed,
if its height difference to the table is not changing (±5 mm).
The maximal acceleration is computed for a window of 8 ms.
Furthermore, the initialization of the cluster for the build-
up of the rotation information codebook is set. Otherwise,
the results of the clustering are not always deterministic,
even though they look mostly very similar. The initialization
values are chosen between 0 and 1, since the input values
are the normalized changes of the angles.

1) Object Container: A leave-one-out cross validation is
made for the rotation classification. The results show, that
42 of 45 of the motions without tilting are correctly labeled,
and 30 of 45 motions with titling are correctly classified (see
Table II).

The final result of the Object Container can be seen in
Table III. Acceleration classes are introduced, in order to
make the Object Container more generic. The number of
acceleration classes is set to three for illustration. Each class
represents an approximately equal sized part of the achieved
acceleration values. Table III shows the number of observa-
tions per acceleration class and the rotation-classification.

1225

TABLE II
STATISTICAL RESULTS OF THE CLASSIFICATIONS.

Property: Accuracy True positive True negative
(T = Tracking data, rate rate
V = Vision data)
Rotation (T) 80.0% 66.7% 93.3%
Pushed Object (T) 98.9% 100.0% 87.5%
Arbitrary Traj. (T) 94.4% 80.0% 96.3%
Rotation (V) 77.5% 93.8% 66.7%
Pushed Object (V) 95.0% 87.5% 96.9%
Arbitrary Traj. (V) 80.6% 100.0% 78.6%

TABLE III
RESULT: OBJECT CONTAINER. (R = MOTION WITH ROTATION).

Acceleration class 1 2 3
Objects Tracking no R R no R R no R R
Milk 3 3 6 3 3 0
Spoon 3 1 3 4 4 3
Cup-handle 2 4 3 8 1 0
Cup 5 2 8 1 2 0
Vase 10 4 4 0 0 0
Objects Vision no R R no R R no R R
Object 1 1 1 0 1 2 5
Object 2 3 0 0 0 4 3
Object 3 2 1 1 1 1 4
Object 4 0 2 2 2 1 3

2) Functionality Map: All three used location areas have
been correctly identified. A leave-one-out cross validation is
done for the classification of the (non-)arbitrary movements
(at first without the distinction of a pushed or lifted object).
8 of 10 arbitrary movements are correctly labeled, and 77
of 80 movements with a constrained trajectory are correctly
classified. This shows, that the system performs definitely
better than guessing. One has to consider for the true positive
rate (see Table II), that there are just 10 arbitrary movements
among all 90 sequences, leading to a significant influence of
every mislabeled arbitrary movement.

The classification of the pushed vs. the lifted object is
successful for all sequences except one spoon-sequence.

The results of the Functionality Maps show, that the
system is able to handle some misclassifications, since the
correct high connection relevance is gained for all objects
except for the cup-handle. The best (= completely correct)
results are achieved for the cup and the milk (Fig. 5, left).
The worst result is the Functionality Map of the cup-handle,
since it contains the highest number of misclassifications
(two misclassifications) among all Functionality Maps. The
misclassified arbitrary movements (red self-loop LA 2) and
the misclassified movements with a constrained trajectory
(magenta connection from LA 1 to LA 2) are drawn in Fig. 5
(top, right). The Functionality Maps of the other two objects
have just one misclassification.

B. Results from a Vision System

The vision data is recorded with a Firewire Marlin
FO46C camera at 30 Hz and an image size of 640x480 pixel
(width x height). The trajectories are acquired as described

Fig. 5. Top: Functionality Maps of the tracking data (left: milk, right:
cup-handle). Bottom: Functionality Maps of the vision data (left: obj. 1,
right: obj. 2). Red arrow = constrained trajectory, green arrow = pushed
obj., magenta arrow = arbitrary movement. P = probability.

TABLE IV
SEQUENCE PROPERTIES - VISION SYSTEM. THE START AND END

POSITIONS ARE THE BOTTOM RIGHT (BR), THE BOTTOM LEFT (BL), THE

TOP RIGHT (TR) AND THE TOP LEFT (TL) OF A TABLE.

Seq.: Movement Rotation Start Pos. End Pos.
1, 11, 21, 31 constr.: push br tl
2, 12, 22, 32 constr.: push tl bl
3, 13, 23, 33 constr.: curve bl br
4, 14, 24, 34 arbitrary br br
5, 15, 25, 35 constr.: curve br tl
6, 16, 26, 36 constr.: curve tl br
7, 17, 27, 37 constr.: curve x br tr
8, 18, 28, 38 constr.: curve x tr br
9, 19, 29, 39 constr.: curve x br bl
10, 20, 30, 40 constr.: curve x bl br

in [1]. The C++ Implementation of Hidden Markov Model by
Dekang Lin 2 is (slightly modified) used for the implemen-
tation of HMMs. The PCA, the K-means algorithm and the
knn-classification are done with OpenCV. Ten sequences are
recorded with each of the used four objects. The properties
of the sequences are listed in Table IV. An example is shown
in Fig. 4 (right).

A basic preprocessing is performed (minimal movement
> 0.01/sample, 140 sample moving-average-window) sim-
ilarly to the tracking data. Furthermore, the first and last
20 samples are cut of, in order to deal with the arbitrary
motions at the beginning and at the end of the sequences.
The initialization and threshold values are set as for the
experiment with the tracking data, except for the arbitrary-
movement-threshold (0.06 for the vision data) and the win-
dow for the acceleration-computation (16 ms).

1) Object Container: The occurrence of (non-) rotation is
correctly identified for 31 of 40 sequences (Table II). Eight
sequences are mislabeled as sequences with rotations. All of
them show, that one or both horizontal angles vary during
the manipulation. The variations are not as strong as for most
of the sequences with rotation, but it is still visible. Table III
shows the final result of the Object Container.

2) Functionality Map: The Location Areas themselves
are successfully determined. The assignment is successful

2Copyright (C) 2003 Dekang Lin, lindek@cs.ualberta.ca,
url: http://webdocs.cs.ualberta.ca/ lindek/hmm.htm .

1226

for 77 of 80 positions (96.3%). The misclassifications occur
for the end positions of sequence 8, 21 and 33. These
misclassifications are mainly caused by the z-components
(the depth) of the end positions, which are closer to other
Location Areas.

As the statistical measures in Table II show, the result
of the distinction between a pushed object and an object,
which is lifted for the movement, is remarkable. There is
just one sequence mislabeled as pushed object, and one
sequence mislabeled as raised object. The performance of the
classification as arbitrary movement or as movement with a
constrained trajectory achieves a true positive rate of 100.0%.
Consequently, no arbitrary movement is mislabeled as non-
arbitrary movement. Six sequences are misclassified as ar-
bitrary movements instead of movements with constrained
trajectory. These movements contain small parts with an
arbitrary shape. The kind of grasp is analyzed according to
[17]. All used grasps are power grasps with an abducted
position of the thumb.

The Functionality Maps of object 1 and 4 have just one
wrong assignment of an end location each, everything else is
correct (see object 1 in Fig. 5, left). The Functionality Map
of object 2 suffers mainly from misclassifications as arbitrary
movements (see Fig. 5, right). One movement of object 3 can
be seen a outlier, since its connection property, as well as
the assignment of its end location, are wrong. Besides one
further misclassified connection property, the Functionality
Map of object 3 is correct.

IV. CONCLUSIONS AND FUTURE WORK

The proposed system is developed for abstract representa-
tion of manipulation-relevant knowledge about objects. This
system aims to monitor object properties and function in a
given environment. The experiments on external tracking and
vision data show, that the system can derive the knowledge
from different sources. The presented system allows an
efficient monitoring scheme for the detection of unexpected
(surprising) event, that require an update of the information
in the internal representation. The proposed framework al-
lows to deal with the strong variations in actions performed
by a human operator, reducing the number of false positive
surprise events to a minimum. The proposed descriptors,
consisting of an Object Container and a Functionality Map
spanning typical object locations in a graph, allow a close
monitoring of changes in a physical state of the object and
its function in the environment.

The results from the vision system show, that a single tra-
jectory is not enough to avoid a misclassification. However,
an observation of multiple actions along a given edge of the
Functionality Map allows a robust estimation. Our next goal
is to focus more on unknown situations and environments.
They provide new information to the system.

REFERENCES

[1] S. Petsch and D. Burschka, “Estimation of Spatio-Temporal Object
Properties for Manipulation Tasks from Observation of Humans,” in
IEEE International Conference on Robotics and Automation, Anchor-
age, USA, 2010, pp. 192–198.

[2] T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann, “Imitation learning
of dual-arm manipulation tasks in humanoid robots,” International
Journal of Humanoid Robotics, vol. 5, no. 2, pp. 183–202, 2008.

[3] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement Imitation
with Nonlinear Dynamical Systems in Humanoid Robots,” in IEEE
International Conference on Robotics and Automation, Washington,
DC, USA, 2002, pp. 1398–1403.

[4] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
Generalization of Motor Skills by Learning from Demonstration,” in
IEEE International Conference on Robotics and Automation, Kobe,
Japan, 2009, pp. 763–768.

[5] K.Ogawara, J.Takamatsu, K.Kimura, and K.Ikeuchi, “Generation of a
task model by intergrating multiple observations of human demon-
strations,” in Proceedings of the IEEE Intl. Conf. on Robotics and
Automation (ICRA ’02), May 2002, pp. 1545–1550.

[6] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. Billard,
“Learning and Reproduction Gestures by Imitation,” IEEE Robotics
and Automation Magazine, vol. 17, pp. 44 – 54, 2010.

[7] R. S. S. und A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[8] D. Verma and R. P. N. Rao, “Imitation Learning Using Graphical
Models,” in ECML 2007, J. N. K. et al., Ed., vol. 4701. Lecture Notes
in Artificial Intelligence, Springer-Verlag Berlin Heidelberg, 2007, pp.
757–764.

[9] G. Bombini, N. D. Mauro, T. M. A. Basile, S. Ferilli, and F. Esposito,
“Relational Learning by Imitation,” in KES-AMSTA 2009, A. H. et al.,
Ed., vol. 5559. Lecture Notes in Artificial Intelligence, Springer-
Verlag Berlin Heidelberg, 2009, pp. 273–282.

[10] B. Jansen and T. Belpaeme, “A Model for Inferring the Intention in
Imitation Tasks,” in The 15th IEEE International Symposium on Robot
and Human Interactive Communication, RO-MAN’06, 2006, pp. 238–
243.

[11] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zöllner, “Incremental
Learning of Tasks From User Demonstrations, Past Experiences,
and Vocal Comments ,” IEEE Transactions on Systems, Man, and
Cybernetics - Part B: Cybernetics, vol. 37, no. 2, pp. 322–332, April
2007.

[12] V. Krüger, D. L. Herzog, S. Baby, A. Ude, and D. Kragic, “Learning
actions from observations,” IEEE Robotics and Automation Magazine,
pp. 30–43, June 2010.

[13] Z. Duric, J. A. Fayman, and E. Rivlin, “Function from Motion,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 18,
no. 6, pp. 579–591, June 1996.

[14] R. D. Zöllner and R. Dillmann, “Using multiple probabilistic hypoth-
esis for programming one and two hand manipulation by demonstra-
tion,” in IEEE International Conference on Intelligent Robots and
Systems, Las Vegas, Nevada, USA, 2003, pp. 2926–2931.

[15] M. Mitani, M. Takaya, A. Kojima, and K. Fukunaga, “Environment
Recognition Based on Analysis of Human Actions for Mobile Robot ,”
in The 18th International Conference on Pattern Recognition (IEEE),
2006, pp. 782–786.

[16] A. Chella, H. Dindo, and I. Infantino, “Learning high-level tasks
through imitation,” in Proceedings of the 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006, pp. 3648–3654.

[17] T. Feix, R. Pawlik, H.-B. Schmiedmayer, J. Romero, and D. Kragic,
“The generation of a comprehensive grasp taxonomy,” in Robotics,
Science and Systems Conference: Workshop on Understanding the Hu-
man Hand for Advancing Robotic Manipulation, Poster Presentation,
June 2009.

[18] L. Rabiner, “A tutorial on hidden markov models and selected ap-
plications in speech recognition,” IEEE, vol. 77, no. 2, pp. 257–286,
1989.

[19] M. Kawato, “Trajectory formation in arm movements: Minimization
principles and procedures,” in Advances in Motor Learning and
Control, ser. Human Kinetics, H. N. Zelaznik, Ed. Human Kinetics
Publishers, Chanpaign Illinois, 1996, pp. 225–259.

[20] J. Hartigan and M. Wong, “A k-means clustering algorithm,” Applied
Statistics, vol. 8, no. 1, pp. 100–108, 1979.

[21] C. Reiley and G. Hager, “Task versus subtask surgical skill evaluation
of robotic minimally invasive surgery,” in Medical Image Computing
and Computer-Assisted Intervention -MICCAI 2009, 2009, pp. 435–
442.

1227

