
Model Based Development of Safety-Critical Systems Using Template Based
Code Generation

Matthias Regensburger, Christian Buckl, Alois Knoll, Gerhard Schrott
Department of Informatics

Technische Universität München Garching b. München, Germany
{regensbu,buckl,knoll,schrott}@in.tum.de

Abstract

Model-based development is state of the art in soft-
ware engineering, due to its potential regarding auto-
matic code synthesis. Nevertheless for embedded sys-
tems, where there exists a huge heterogeneity of used
platforms, it is obvious that it is impossible to design
a code generator that supports a priori all required
platforms. Instead a code generator architecture is
needed that is suited for an easy extensibility of the
code generation ability. One possible solution is the
use of template-based approaches. In this paper, we
describe an approach1 to develop safety-critical real-
time systems by using openArchitectureWare, a modu-
lar MDA/MDD generator framework. We will present
the tool-chain and discuss two lab applications.

1 Introduction

Model-based development tools are only of limited
value for the use in embedded systems, since they fo-
cus typically on the application functionality and do
not cover system aspects like fault-tolerance mecha-
nisms. Two main reasons can be identified, why such
code is not targeted. Firstly, the used models are
not suited for the generation of fault-tolerance mecha-
nisms, due to the special requirements for this process.
Such requirements are the necessity of explicit execu-
tion semantics and the support of replica determinism.
The use of domain specific models[2] can solve this
problem. One possible approach is described in [1].

1This work is funded by the German Federal Ministry of Edu-
cation and Research BMBF under grant 01ISF12A

The other problem is related to the platform depend-
ability of code. The concrete implementation depends
on the used hardware, operating system and program-
ming language. It is obvious that it is impossible to
implement a code generator that supports a priori all
possible combinations. In addition, it must be possible
to add new fault-tolerance mechanisms. Therefore, the
code generator must be designed in a way that it can
be easily extended, even by the user. In this paper, we
will focus on one solution using template-based code
generators. Instead of implementing a new code gen-
erator, we will point out the possibilities to use exist-
ing frameworks, e.g. openArchitectureWare (oAW)2.
OpenArchitectureWare is a very powerful and config-
urable model-driven architecture (MDA) and model-
driven development (MDD) suite for generating, trans-
forming and checking models.
The paper is constructed as follows: the different steps
that can be performed when using oAW are described
in the following section. Subsequent, we will give
some details about the realized lab applications, be-
fore we summarize the approach and point out future
research directions.

2 Tool-Chain

Within this section of the paper, we will describe
the use of openArchitectureWare (oAW) in our sys-
tem. Figure 1 depicts the steps of the code generation
process. Basis for the code generation are the mod-
els specified by the application developer. The mod-
eling tool incorporated within oAW allows the spec-
ification of the models using graphical notations, see

2http://www.openarchitectureware.org/

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.25

89

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.25

89

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.25

89

Models

CHECK

M2M

Check Rules

Combined & Extended
Model

Code Generation

User Code

Templates

Generated
Code

Figure 1. Code Generation Steps

Section 2.1. Therefore, syntactical errors are excluded
by design. Nevertheless, it is necessary to check the
semantical correctness of the models. This is done
automatically by executing several tests, see Section
2.2. The validated models are then combined to one
model. The combination includes also the calculation
of extra information that can be used to simplify code
generation. An example is given in Section 2.3. The
extended and combined model is then used for code
generation. Within this process, appropriate templates
to solve application aspects are selected and adopted to
the application, see Section 2.4. The result is a tailored
runtime system, including mechanisms for scheduling,
inter-process communication, fault-tolerance mecha-
nisms and synchronization. In addition, user imple-
mented code that realizes the functionality for the ap-
plication, like a controller function, is embedded into
the generated code. The result of code generation is
described in Section 2.5.

2.1 Modeling

The base for all modeling activities is the Eclipse
Modeling Framework (EMF). With a suitable instan-
tiator any meta-model, for instance UML, XML-
Schema or EMF can be read. The model used to repre-
sent models in EMF is called Ecore. Ecore itself is an
EMF model, and thus it is its own meta-model. Ecore
consists of four classes to define a model: EClass,

EAttribute, EReference and EDataType. The design
of a meta-model is therefore similar to the design of
a model. Thus, extensions of the meta-model can be
realized very simple.
For modeling, Eclipse offers two possibilities: using
the Reflective Editor, a tree-based modeling tool, or
the graphical interface GMF.
Because the specification of a fault-tolerant system
tangles different aspects, it is not useful to combine all
of this information within one model. It must be rather
possible to split up the models into distinct sub models
that can reference each other. Referencing other mod-
els and meta-models is integrated within the Eclipse
Modeling Framework. A detailed description of the
used meta-models can be found in [1].

2.2 Validation

To find semantical errors, we have formulated sev-
eral tests that check the semantical correctness of the
specified models.
The specification of tests is supported in oAW by of-
fering the validation language CHECK, an equivalent
to the object constraint language (OCL) contained in
UML. Tests in CHECK are specified as formulas in
First-Order Logic. One example for a test is depicted
in Figure 1: this test checks whether each declared in-
teraction point, reflected in the concept port within our
meta-model, is accessed by an actor object in read ac-

909090

cess at least once. Other possibilities for tests are to
rule out the unreachability of one application mode or
to validate the correct usage of fault-tolerance mecha-
nisms in relation to the used certification guideline.

2.3 Model-To-Model Transformation

After validating the different models, the models
must be combined into one model. This model is used
as starting point for the code generation. In addition, it
is also necessary to calculate further information that
helps to simplify the code generation. Such informa-
tion is very often contained implicit within the model:
e.g. if the model contains only a unidirectional ref-
erence, it might be useful to add also a reverse ref-
erence. This approach decreases on the one hand the
error-proneness of the initial model, since directed ref-
erences are much easier for the developer to maintain,
while bidirectional references may get easily inconsis-
tent. And on the other hand, we can benefit from bidi-
rectional references when generating the code.
Model-to-Model (M2M)-Transformation is supported
in oAW by offering the functional programming lan-
guage EXTEND. In figure 1, the result of our M2M
transformation can be seen in relation to the object
port. We calculate, which objects access the port in
read or write mode, on which electronic control units
(ECU) the port must be available and assign a unique
ID for every port object.

2.4 Code Generation

As described before, the code generation is based on
templates. Templates represent the actual code gener-
ation ability and can be added very easily. Therefore,
the extensibility of the code generator is guaranteed.
Templates can be used to solve certain aspects of the
run-time system, or to combine the results of different
template to form a run-time system. Most templates
are also platform dependent in the sense that they offer
a solution only for a certain combination of hardware,
operating system and programming language. There-
fore, also the correct selection of adequate templates is
necessary.
OpenArchitectureWare provides for these problems a
special template language, call XPand. Xpand offers
the statements DEFINE to declare a new code gener-
ation function and EXPAND to call other generation

functions during the code generation. OpenArchitec-
tureWare also allows polymorphism as one element to
select adequate templates.
To specify the control flow of the code generation,
the commands FOR/FOREACH and IF/ELSE can be
used. The FOREACH statement is used to gener-
ate code for each object of a certain type that is de-
clared within the model. Finally, the commands FILE
and ENDFILE allow the management of the generated
files. The code generation process is then rather sim-
ple: the adaptation of the templates to the model is
performed using a technique similar to preprocessor
macros. Text sequences between the different XPand
commands are directly copied to the generated files
and variables allow the access to objects and their at-
tributes.
Figure 1 shows one example for a template that is used
to generate code for the declared ports.

2.5 Code Generation Result

Usually, the generated files contain source code for
an arbitrary programming language. But since oAW is
not restricted to one specific output language, it is also
possible to generate documents in natural language.
This can be useful if documents for certification issues
or user-manuals are required.
In the current version of our tool, we are generat-
ing an executable run-time system. This system in-
cludes code for the timely-correct execution of the
application, for process management and scheduling,
as well as communication (interprocess, interproces-
sor) functionality. In addition, the selected fault-
tolerance mechanisms are realized by the run-time sys-
tem. The actual code realizing the application func-
tionality, like control functions, are not covered by the
tool, due to the existence of several other tools like
Matlab/Simulink or SCADE. The application code is
embedded into the run-time system during the code
generation process.

3 Application Examples

To point out the advantages of our approach, we im-
plemented two demo applications with our develop-
ment tool: an elevator control and a time-critical con-
trol application.

919191

In our lab courses, we are using elevators build up with
Fischer-Technik components and self-made circuit-
boards containing a microcontroller for each floor, the
cabin and the cabin motor. All microcontrollers are
connected via CAN-Bus. Each circuit-board acts as
an actuator and/or sensor and controls the door, lights,
safety-light barrier and LED-Display of each floor, the
keys for appointing the movement direction and the
cabin’s indoor control panel. Furthermore, there are
sensors mounted inside the elevator to report the ac-
tual position of the cabin.
Two standard PCs are connected to that CAN network
and perform the control task as a hot-standby system.
The units perform liveliness tests to mutually super-
vise each other. In case of a missing live sign of the
main unit, the backup unit will take over control. In
addition, an error message is send to a third unit per-
forming the monitoring of the system. If instead the
backup unit fails, only the error message is send to the
monitoring unit.
At begin of the execution, each unit will perform tests,
whether the other unit is already performing the con-
trol task. If this is true, the unit will send an integration
request, will eventually receive the information neces-
sary for state synchronization and will integrate into
the system. Note that the fault-tolerance mechanisms
guarantee that exactly one control unit will send the
control messages to the microcontrollers.
If the other unit is not already performing the control
task, the unit will try to synchronize with the other
units and start the control function.
In the second application, we implemented a con-
trol function on a Triple-Modular Redundancy system.
We used for this application, three control units with
Switch Ethernet as communication medium. The task
was to balance a rod by controlling switched solenoids.
For this task, control rates of 1 millisecond were nec-
essary. To achieve consensus on the error states of the
units, we used interval voting. Here, the user had to
specify the allowed deviation of correct values. In ad-
dition, mechanisms to exclude units with erroneous re-
sults and to integrate repaired units into the running
system were generated.
The usage of our tool was very successful in both ap-
plications. The code that had to be implemented by
the application developer was limited to 50 (control
function) to 500 (elevator control) lines of code. The

vast difference between both applications can be ex-
plained by the necessary bit manipulations of the ele-
vator control due to the application protocol, as well as
the greater number on input and output functions.

4 Conclusion

In this paper, we have presented an approach to gen-
erate system-level code using a model-based approach.
The main contribution was to point out the possibil-
ities that are offered by existing template based code
generators, in our example the openArchitectureWare
MDA/MDD suite.
OpenArchitectureWare offers all the possibilities
needed for the generation of such code: multiple mod-
els also using different meta-models are supported,
tests can be specified easily by the use of a language
based on First-Order Logic, model-to-model transfor-
mation is supported to combine the different models
and a template language can be used to implement
components that can be adapted to specific models.
The greatest benefits of this approach are the exten-
sibility of the underlying meta-models and the code
generation ability, the use of templates for various sys-
tem aspects that can be extended later on and the op-
portunity for intuitive modeling of complex embedded
systems. The overall approach has been already tested
in some lab applications, like a pending pendulum and
an elevator application that we have described shortly
in this paper.
The next step is to apply our approach within a real
industrial project to point out the feasibility of the ap-
proach. In addition, we want to use formal methods to
verify the correctness of the generated code. Here, a
first step can be to prove the adequacy of the selected
fault-tolerance mechanisms in relation to the expected
faults.

References

[1] C. Buckl, M. Regensburger, A. Knoll, and G. Schrott.
Models for automatic generation of safety-critical real-
time systems. In Second International Conference
on Availability, Reliability and Security (ARES 2007),
pages 580–587. IEEE Computer Society, Apr 2007.

[2] A. Deursen, P. Klint, and J. M. Visser. Domain-specific
languages. Technical report, CWI (Centre for Mathe-
matics and Computer Science), 2000.

929292

