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ABSTRACT
Industrial-sized hybrid systems are typically not amenable
to formal verification techniques. For this reason, a common
approach is to formally verify abstractions of (parts of) the
original system. However, we need to show that this abstrac-
tion conforms to the actual system implementation including
its physical dynamics. In particular, verified properties of
the abstract system need to transfer to the implementation.
To this end, we introduce a formal conformance relation,
called reachset conformance, which guarantees transference
of safety properties, while being a weaker relation than the
existing trace inclusion conformance. Based on this formal
relation, we present a conformance testing method which
allows us to tune the trade-off between accuracy and com-
putational load. Additionally, we present a test selection
algorithm that uses a coverage measure to reduce the num-
ber of test cases for conformance testing. We experimentally
show the benefits of our novel techniques based on an exam-
ple from autonomous driving.

CCS Concepts
•Computing methodologies→Model verification and
validation; •Software and its engineering→ Software
verification; Software safety; Software verification
and validation; Dynamic analysis; •Computer systems
organization → Embedded systems;

Keywords
Conformance; Testing; Reachability Analysis; Test Selec-
tion; Hybrid Automata

1. INTRODUCTION
Embedded software controls the evolution of the physi-

cal behaviour of systems through a perception-action loop.
Typically, this software comes with safety-critical properties
that should be verified. Since the software strongly interacts
with the physical dynamics, the composed system has to be
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Figure 1: Overall structure of the proposed method.

taken into account for typical verification tasks. Hybrid au-
tomata are a suitable modeling formalism for these systems
that can be directly used to formally verify embedded soft-
ware. However, formal verification is computationally ex-
pensive and becomes infeasible for larger models of embed-
ded systems. For this reason, a common approach is to use
abstractions that are amenable to formal verification [4, 9].
However, when properties are verified on an abstract model,
we have to check that they also transfer to the real system,
which is often ignored or done in a non-formal way. A for-
mal conformance relation between the systems enables to
transfer properties from the abstract model to the real sys-
tem. Given a class of relevant properties, the conformance
relation should be as permissive as possible, yet as strong as
necessary to transfer these properties between systems. A
major problem is that in practice the conformance between
systems cannot be formally shown, because real systems and
complex simulation models are typically not amenable to
formal techniques. In contrast, conformance testing is pos-
sible, which means searching for counter-examples falsify-
ing the considered relation. This is an important condition
for the applicability of formal methods for industrial-sized
problems, because it substantiates the confidence in the ab-
stract model and the properties verified thereon. For (for-
mal) conformance testing there are three main tasks: (i)
formally defining the conformance relation and proving the
transference of properties, (ii) establishing a sound confor-
mance check, such that only true counter-examples are iden-
tified, (iii) selecting test inputs, which produce different be-



haviours, because only a limited, finite number of tests can
be performed. In this work all three tasks are addressed.

It is essential that conformance testing is as formal as pos-
sible, e. g. to have a sound understanding which properties
transfer with the given relation. The question in this pa-
per is, which conformance relation should be used for safety
properties and how conformance testing of this relation can
be done.

Existing notions of conformance mainly determine if the
traces of one system are contained in the set of traces of
another, see Sec. 7. This is usually not an easy task and
leads to very bloated and incomprehensible abstract mod-
els. Reachability analysis has been used for conformance
testing, but the conformance relation has not been formally
defined [4].

The contribution of this paper is a formal framework for
conformance testing of hybrid automata considering safety
properties, as shown in Fig. 1. Given a complex and an ab-
stract model together with an input space, our method effi-
ciently searches for counter-examples falsifying the reachset
conformance relation. This is done by the following steps:
(i) We introduce the formal definition of a conformance re-
lation, called reachset conformance. The relation guarantees
the transference of safety properties and is a weaker relation
than the already existing trace conformance (cf. Sec. 3).
(ii) We formalize the conformance testing approach of Al-
thoff and Dolan [4] and extend it by using tighter overap-
proximations for inclusion checking and prove the soundness
of the presented method. Therefore the trade-off between
accuracy and computational load can be freely adapted and
errors of simulations and measurements can be considered.
(iii) We present a model-based input selection algorithm
based on a reachset coverage measure. It can be used to
reduce the number of tests for a given set of test cases. One
benefit of the framework is the possibility to use measure-
ments of a real system directly for falsification of the reachset
conformance relation. Finally, we experimentally show that
we are able to falsify more conformance relations between
systems than the previous work by Althoff and Dolan [4].

In Sec. 2 we give basic definitions, such as hybrid au-
tomata, traces, and reachable sets. In Sec. 3 we introduce
the formal definition of reachset conformance. We prove the
transference of safety properties and the weakness compared
to trace conformance. A method for reachset conformance
testing for a given input is presented in Sec. 4. For the selec-
tion of relevant inputs, an algorithm is introduced in Sec. 5.
The results of an autonomous driving example are shown in
Sec. 6. Finally, we review the related work in Sec. 7 and
give a conclusion in Sec. 8.

2. MODEL AND DEFINITIONS
We model hybrid systems as hybrid automata with inputs

and outputs. Let ‖g‖2 be the Euclidean vector norm of a
vector g and gT be the transpose of a vector. We use u(.)
as a notation for an input trajectory and u(t) as an input at
time t.

Our definition of a hybrid automaton is a finite automa-
ton whose discrete states are annotated with differential in-
clusions that define the evolution of the continuous states.
Due to non-deterministic modeling, we use differential in-
clusions for the continuous flow resulting in infinitely many
solutions for a given initial state. The initially possible states
are given by the initial set and according to the continuous

evolution and the input, the system can switch its discrete
state. Here, we consider hybrid automata that take con-
tinuous input functions u(.) : R+ → Rd from a set U(.) of
input functions to influence the evolution. For a more pre-
cise definition of hybrid automata, defining invariant sets,
guard conditions, and reset maps, we refer to the work of
Mitchell [18]. For simplicity, we assume that all hybrid au-
tomata are non-zeno and non-blocking and for every input
there exists at least one solution.

A (state) solution x of the hybrid automaton S under a
given input u(.) ∈ U(.) is a trajectory that has the form

x = (q0, x0(.))(q1, x1(.)) . . .

where qi are discrete states and xi : [ti, ti+1] → Rn is the
continuous evolution between ti and ti+1 with t0 = 0 and
ti+1 ≥ ti.

For one solution x, the output trace that is the mapping
of the state solution onto the observable output space, is
defined as τ : R+ → Rm, where

∀i ∀t ∈ [ti, ti+1) : τ(t) = O(qi, xi(t))

holds, where O is the output mapping. The set of all out-
put traces under an input u(.) is denoted by Traces(S, u(.)).
If Traces(S, u(.)) has one element only for every u(.), the
system S is called deterministic. For a finite subset of time
instances T ⊂ R+, the sampled trace of τ is the restriction
to the preimage T

τT : T → Rm, t 7→ τ(t).

For one point in time t, the reachable set of S at time t is
defined as

Reacht(S, u(.)) = {τ(t) | τ ∈ Traces(S, u(.))}

for a given input trajectory u(.).
The elements of Traces are functions over time, whereas

the set Reacht consists of output states for one point in time
t. Note that we define both in the output space, but not in
the state space as done in other works (cf. [4]). We also
consider a set of initial states but do not annotate this with
a subscript. In the following, when we talk about systems,
we assume they are modelled as hybrid automata.

3. REACHSET CONFORMANCE
Throughout the paper we use two systems Sr and Sa. The

system Sr represents a real system or a complex simulation
model that is not amenable to formal verification techniques.
However, we can obtain measurements of executions or sim-
ulation runs for a given input. The system Sa is an abstract
model that is simple enough to be used for formal verifica-
tion. The main question here is if Sr conforms to Sa and
which properties transfer.

First, we discuss the existing trace conformance relation
used in [7]. Although it is a very strong relation that enables
the transference of all properties which are ∀-quantified over
the traces, it is also difficult to generate an abstract model
Sa where it holds. If the focus is on the transference of safety
properties, such as collision-free trajectories for autonomous
vehicles, such a strong relation is not needed. Therefore,
we define the weaker reachset conformance relation that is
able to transfer such properties. This enables us to transfer
safety properties between systems where the trace confor-
mance does not hold.
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Figure 2: The reachable sets do not maintain the
individual state transitions. Solid: States and tran-
sitions, dotted: Reachable sets and their transitions.

3.1 Trace conformance
In this subsection, we discuss the conformance relation

used for instance by Dang [7] (cf. Sec. 7).

Definition 1 (trace conformance). Let Sr and Sa
be two systems with the same input set and output space,
then Sr is trace conformant to Sa, denoted by Sr �Tr Sa,
iff

Traces(Sr, u(.)) ⊆ Traces(Sa, u(.))

holds for all u(.) ∈ U(.).

The trace conformance reflects the conventional notion of
conformance of discrete automata where traces of one sys-
tem also have to be traces of the other. When the trace
conformance does hold, all properties with an ∀-quantifier
over traces, such as Metric Temporal Logic formulas, trans-
fer (cf. [1]). However, considering safety properties only, for
the trace conformance check of nondeterministic hybrid sys-
tems, we have to deal with two problems: (1) We have to
check a relation that transfers more properties than we are
interested in. Therefore we can relate less systems without
any benefit. (2) For conformance testing we have to sample
not only the input space but also the nondeterminism of the
system leading to more traces needed for a test coverage. In
the following subsection we define the reachset conformance
relation to overcome the mentioned problems.

3.2 Reachset conformance
We now introduce the formal definition of a reachset con-

formance relation which is able to preserve safety properties,
such as non-intersection with unsafe states. It is weaker than
trace conformance and can be checked by applying the whole
range of methods from reachability analysis.

Inspired by Althoff and Dolan [4], we formally define a
new notion of conformance that focuses not on the set of
traces, but on the set of reachable states.

Definition 2 (reachset conformance). Let Sr and
Sa be two systems with the same input set and output space,
then Sr is reachset conformant to Sa, denoted by Sr �R Sa,
iff

Reacht(Sr, u(.)) ⊆ Reacht(Sa, u(.)) (1)

holds for all u(.) ∈ U(.) and t ≥ 0.

The proposed reachset conformance allows the transference
of safety properties from Sa to Sr:

Proposition 1. Let two systems Sr and Sa be given with
Sr �R Sa. For any input trajectory u(.) and any unsafe
set Bt the following transference holds for every t:

Reacht(Sa, u(.)) ∩Bt = ∅ ⇒ Reacht(Sr, u(.)) ∩Bt = ∅.

Since the relation considers only reachsets, we do not have
to maintain the individual dependences of each reachable
state for one time instance to another as depicted in Fig. 2.
Since trace conformance considers the entire signals, it is a
stronger relation.

Proposition 2. Let Sr and Sa be two systems with the
same input set and output space, then

Sr �Tr Sa ⇒ Sr �R Sa (2)

holds. The converse holds if the system Sa is deterministic.

Proof. Let u(.) be an input trajectory, t a point in time,
and y ∈ Reacht(Sr, u(.)) and Sr �Tr Sa. Then, there is a
τ ∈ Traces(Sr, u(.)) with τ(t) = y. From Sr �Tr Sa it fol-
lows, that τ is also a trace of Sa and y ∈ Reacht(Sa, u(.)).
The proposition follows, because the aforementioned impli-
cation holds for all y, t, and u(.). When the system Sa is
deterministic, there is only one trace in Traces(Sa, u(.)) and
the reachable sets consist of only one state. Hence Sr has
the same trace and is also deterministic.

The main difference between trace and reachset conformance
consists in the handling of nondeterminism. In the follow-
ing, we present an example to give a better understanding
of the conformance notions and to show that the reverse
implication of Eq. (2) does not hold in general.

Example 1. For the sake of simplicity, we pick two con-
tinuous systems without inputs. Let Sr be a 2-dim. system
with F ((x1, x2)T ) = (x2,−x1)T , output map O((x1, x2)T ) =
x1, and initial set

A = {(x1, x2)T | x21 + x22 = 0.5}.

Then the set of traces is

Traces(Sr) = {0.5 sin(t+ c) | c ∈ [−π, π)}

and the reachable set is the time-invariant set

Reacht(Sr) = [−0.5, 0.5] ∀t ≥ 0.

Let Sa be a 1-dim. abstract system with F (x) = 0, initial
set A = [−1, 1], and output map O(x) = x. Then the set of
traces is

Traces(Sa) = {x(t) | ∃c ∈ [−1, 1] ∀t : x(t) = c}

and the reachable set is Reacht(Sa) = [−1, 1] for all t ≥ 0.
Since both reachable sets are constant over time, it is easy

to see that Sr is reachset conformant to Sa. However, all
traces of Sa are constant traces, so none of the sine traces
of Sr is contained in Sa and Sr is not trace conformant to
Sa. In Fig. 3 the reachable sets and some traces are shown.
Although we use non-determinism only for the initial set,
we also could use non-deterministic flow to design a similar
example.

Even though the system traces could be very different, we
can nevertheless reason about safety properties of the system
Sr with the abstract system Sa. A key point for applicabil-
ity is an implementable conformance checking framework.
Therefore, in the rest of the paper we are dealing with how
to check reachset conformance.
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Figure 3: Systems Sr (solid, light gray) and Sa
(dashed, dark gray) of Example 1.

4. REACHSET CONFORMANCE TESTING
In practice, it is hard to show that Eq. (1) holds for two

systems Sr and Sa, because the system Sr is too complex
and high-dimensional for formal methods, such as reachable
set computations. However, falsification is possible by pro-
viding a counter-example proving the negation of Eq. (1):

∃u(.) ∈ U(.)∃t ≥ 0Reacht(Sr, u(.)) 6⊆ Reacht(Sa, u(.)) (3)

A practical approach is to use simulation runs or real data
measurements as underapproximations of the reachable sets
Reacht(Sr, u(.)). Since neither the simulations nor the mea-
surements provide exact data, we have to consider numerical
errors or measurement errors. Therefore, we have to deal
with an error bound ε and an approximation τεT of the true
timed trace τT with

max
t∈T
‖τεT (t)− τT (t)‖2 ≤ ε. (4)

Note that many other norms can be used, although the
Euclidean norm is used here for the ease of presentation
(cf. [17]). An overapproximation of the reachable set of Sa
and an erroneous trace of Sr can be used to prove that Sr
is not reachset conformant to Sa as depicted in Fig. 4.

Proposition 3 (Counter-example). A counter-ex-
ample, falsifying the conformance relation Sr �R Sa consists
of

1. An input trajectory u(.) ∈ U(.),
2. A point in time t,
3. An overapproximation Reachot (Sa, u(.)) of the reach-

able set of Sa,
4. A sampled, erroneous trace τεT (.) of system Sr under

input u(.) with t ∈ T ,
where all elements x of the output space with ‖x−τεT (t)‖2 ≤ ε
are not contained in Reachot (Sa, u(.)). This implies Sr 6�R
Sa.

Proof. Using Eq. (4), τT (t) = τ(t) is also not contained
in Reachot (Sa, u(.)) which proves Eq. (3) and thus Eq. (1)
cannot hold.

An example is depicted in Fig. 5. If we check the erro-
neous sampled trace without considering the error, we get
the points 2 and 3 as counter-examples. However, the true
point 2 could possibly be contained in the box and we can-
not be sure that it is not. By considering the error we are
able to find the non-spurious counter-example point 3 only.

Reacht(Sa, u(.))

Reachot (Sa, u(.)) Reacht(Sr, u(.))

ε-ball of τεT (t)

Figure 4: A counter-example falsifying the reachset
conformance, because overapproximation (dashed)
and ε-ball (dotted) are disjoint.

1
2

3

Figure 5: Error aware inclusion check: The true
point is somewhere in the ball around the erroneous
point, thus only point 3 is a non-spurious counter-
example.

One advantage of this approach is that the sampled trace
does not have to be a simulation. Erroneous measurements
of the real system can be used also to falsify abstract models,
which plays an important role for the applicability of model-
based design. In the following we describe how to check for
counter-examples.

4.1 Fixed input conformance testing
In this subsection, the conformance testing method as in-

troduced by Althoff and Dolan [4] is described. In the fol-
lowing subsection we develop this method further and take
the error bound ε for trace errors into account. This will
lead to sound counter-examples and to more system pairs
where the non-conformance can be proven.

The goal is to check if the non-conformance Sr 6�R Sa can
be shown by a counter-example for a given input u(.). The
test consists of 3 steps:

1. Compute an underapproximation Reachut (Sr, u(.)) of
the reachable states of Sr for any time t within a finite
set T of points in time.

2. Compute an overapproximationReachot (Sa, u(.)) of the
reachable set of Sa for each t ∈ T .

3. If Reachut (Sr, u(.)) 6⊆ Reachot (Sa, u(.)) holds for any
t ∈ T , at least one counter-example is found.

Rapidly-exploring random trees (RRTs) can be used to un-
derapproximate Reacht(Sr, u(.)), as described in [4]. They
provide an efficient way of estimating the reachable set for
complex systems by simulations and can also be used for
black-box models, of which the dynamics are not known.
As mentioned above, the first step could also be replaced by
real measurements of a system.

The overapproximation of Sa can be efficiently computed
using reachability analysis. Here, we consider the reachabil-
ity tool CORA [3], where reachable set overapproximations
are represented by zonotopes. Zonotopes are special convex
set representations for efficient linear transformations and
Minkowski addition (cf. [5]).



Definition 3 (Zonotope). A n-dimensional zonotope
Z in generator representation (G-representation) is the set

Z = z(c, 〈g1, . . . , gm〉) :=

{
c+

m∑
i=1

λigi

∣∣∣∣∣λi ∈ [−1, 1]

}
,

where c ∈ Rn is the center and g1, . . . , gm ∈ Rn are the
generators of Z.

Zonotopes are special, point symmetric polytopes:

Definition 4 (Polytope). A n-dimensional polytope
P in halfspace representation (H-representation) is the set

P = p(H, k) := {x ∈ Rn | H · x ≤ k}

with H ∈ Rm×n, k ∈ Rm, also called a m-polytope.

The inclusion check by Althoff and Dolan [4] is done by ab-
stracting from the zonotope and the samples to axis-aligned
bounding boxes. Let v be the vector representing the box
size in each dimension, then v = 2

∑m
i=1 |gi| holds. Although

the inclusion check is very fast, it introduces a very coarse
overapproximation which leads to a conservative falsification
result found with less counter-examples found. This prob-
lem actually increases with the number of output dimen-
sions. Therefore we introduce a new approach for inclusion
checking.

4.2 A configurable inclusion check with error-
awareness

In this subsection we introduce a new inclusion check for
points in a zonotope which leads to more counter-examples
and a less conservative falsification result as later demon-
strated in Sec. 6.3. We achieve this by reducing the error
introduced by the transformation of the zonotope to an eas-
ily checkable representation. A useful approximation should
give the possibility to configure the trade-off between accu-
racy and computational time, while providing an estimation
of the approximation error. With the following inclusion
check the trade-off can be freely adapted.

Reachability analysis for nonlinear dynamics with high ac-
curacy needs a lot of generators, sometimes more than 1000.
Because of scaling problems, methods that are only usable
for a small number of generators are not directly applicable.
Therefore, we are using overapproximations of zonotopes for
the inclusion check.

In the following, let Z be a n-dimensional zonotope with
center c and generators g1, . . . , gm. For a polytope P in
H-representation, a point x is contained in P , iff all inequal-
ities H ·x ≤ k hold. This can be efficiently computed. Since
zonotopes are special polytopes, they can be transformed
to H-representation by using one inequality for every facet.
However, Althoff et al. [5] showed that for a zonotope in
dimension n with m independent generators the number of

facets is 2

(
m

n− 1

)
. Hence, the exact transformation ap-

proach does not scale, especially for m ≥ 1000 and n ≥ 3.
However, by using support functions, described by Girard
et al. [11, 17], the zonotope can be tightly overapproxi-
mated.

Definition 5 (Support function). Let a zonotope Z
be given. Then for d ∈ Rn the support function of Z is

ρZ(d) = max
x∈Z

dT · x = dT · c+

m∑
i=1

|dT · gi|.

Since the resulting overapproximation is a polytope, the H-
representation can be used for inclusion checking. The zono-
tope is point symmetric to its center. Therefore, the direc-
tions d and −d can be easily checked together. Hence, the
inclusion in a 2l-polytope can be checked with l directions.

Proposition 4 (Overapproximation). Let a finite
set of directions D ⊂ Rn and a zonotope Z be given. Then

Z ⊆
⋂
d∈D

Hd

holds, where Hd are the halfspaces

Hd = {x ∈ Rn | dT · x ≤ ρZ(d)}.

A point x ∈ Rn is contained in Hd ∩H−d, iff

|dT · x− dT · c| ≤ ρZ(d)− dT · c

holds [10].

Using this polytope, the inclusion can be checked for the
approximation τεT using the error bound ε as shown next.

Proposition 5 (Inclusion check). Let τεT and an
overapproximation Z of the reachable set Reacht(Sa, u(.))
be given. The inequality

|dT · τεT (t)− dT · c| > ρZ(d)− dT · c+ ε‖d‖2 (5)

for any d implies that the real state τ(t) is not contained in
Reacht(Sa, u(.)).

Proof. If the center c of the zonotope is not the ori-
gin, we can translate the zonotope and the point with −c.
Therefore, without loss of generality c = 0 and ‖d‖2 = 1
holds. Let us assume the real state τ(t) is contained in the
zonotope Z and Eq. (5) holds. This leads to the equation

|dT · τεT (t)| > ρZ(d) + ε ≥ |dT · τ(t)|+ ε. (6)

However Eq. (4) and the triangle inequality lead to

|dT · τεT (t)| ≤ |dT · τ(t)|+ |dT · (τεT (t)− τ(t))| ≤ |dT · τ(t)|+ ε,

which is a contradiction to Eq. (6)

The directions remain as free parameters, so that we can
tune the accuracy and computational cost with their selec-
tion. For example, when selecting the directions ei, where
the ei are the canonical basis vectors, the aforementioned
box overapproximation used by Althoff and Dolan [4] is ob-
tained. Hence, it is a special case of the presented method.

Since a priori there is no knowledge about the zonotope
generators, the selected directions should be evenly distribut-
ed over the space of possible directions or evenly distributed
over one halfspace of Rn considering the symmetry of the
zonotope. While optimization-based direction generation
methods iteratively improve their solution, explicit methods
have the advantage of directly generating good directions.
In 2 dimensions, l evenly distributed directions d1, . . . , dl
are

di =

(
cos

(
iπ

l

)
, sin

(
iπ

l

))T
. (7)

In 3 dimensions, the Fibonacci lattice can be used, as de-
scribed by González [13]. The directions d1, . . . , dl are gen-
erated via

di = (sin(lati) cos(loni), sin(lati) sin(loni), cos(lati))
T , (8)
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Figure 6: Example of overapproximations (solid)
and underapproximations (dotted) of a zonotope
(dashed).

where the angles are

lati = arcsin

(
2(i− 1)

2l − 1

)
and loni = π(i− 1)(

√
5− 1)

As far as we know, there is no applicable explicit method in
higher dimensions, hence in this case we use an optimization-
based direction generation method. Since we are generating
evenly distributed directions in a preprocessing step and use
the same set for every inclusion check over time, the com-
putational load of the direction generation is independent of
the number of inclusion checks.

To generate good directions by optimization, a simple
method by Frehse et al. [9] is used. First, m directions
are randomly generated. Then, a direction d is randomly
generated and the nearest direction is replaced by d if the
distribution of the other directions with d is more uniform.
This can be done as long as a termination condition on the
uniformity is not fulfilled.

Example 2 (Ellipse). In Fig. 6, an 2D example is
presented. The considered zonotope Z = z(0, 〈g1, . . . , g20〉)
has 20 generators

gi =

(
3 sin

(
πi

20

)
, cos

(
πi

20

))T
and is very close to an ellipse. The overapproximations are
generated via Eq. (7). While the box overapproximation is
very coarse, the configurable approximation consisting of 4
respectively 6 directions that approximate the zonotope more
tightly. With more or less directions the accuracy and com-
putational time can be tuned. Note that with l directions the
used overapproximation is a 2l-polytope.

In Fig. 6 one can see that the overapproximation is not
very tight if different dimensions have different scales. There-
fore we normalize the directions according to the axis-aligned
bounding box of the zonotope to produce a tighter over-
approximation. Let W = diag(v1, . . . , vn) be the diagonal
matrix consisting of the box size of each dimension of the
bounding box. Then a direction d is normalized to

d′ := W−1d. (9)

Example 3. Considering the normalization with W =
diag(3, 1) for the ellipse of Example 2, the approximation
is tighter as depicted in Fig. 7.

(a) 4 directions (b) 6 directions

Figure 7: Example of overapproximations (solid)
and underapproximations (dotted) of a zonotope
(dashed) with normalized directions.

With Eq. (9) and (5) the inclusion check for a overapprox-
imation Z, a set of directions D, and a set of points M
with maximum error ε, can be implemented. If a counter-
example is found, it will be returned. Otherwise, false will
be returned. For a practical example and comparison of the
introduced method, see Sec. 6.3.

4.3 Quality of the zonotope overapproxima-
tion

Since overapproximations of zonotopes are used for the
inclusion check, the non-inclusion of some points cannot be
seen. Therefore, we want to quantify the error introduced
by the overapproximation, e. g. to decide if more directions
are needed. Althoff et al. [5] introduced a relative qual-

ity measure Θ := n

√
vol(W ·Zo)
vol(W ·Z)

for the overapproximation Zo

of a n-dimensional zonotope Z. The volume vol in Rn is
defined as the Lebesgue measure and the matrix W is a nor-
malization matrix. Since the exact volume of the zonotope
Z cannot be computed easily, the quality measure is not di-
rectly applicable here. Therefore we present a method to
bound the overapproximation error.

Every support function ρZ(d) comes with an extremal
point

pd := c+

m∑
i=1

sign(dT · gi)gi

of the zonotope and the convex hull of these points forms an
underapproximation of the zonotope, as shown in [12]. Thus,
this can be used to get a bound for the approximation error.

Proposition 6. The measure Θ∗ := n

√
vol(W ·Zo)
vol(W ·Zu)

with

Zu := convexhull({pd | d ∈ D}) is an upper bound for the
relative error and vol(W · Zo) ≤ Θn

∗vol(W · Z) holds.

Since the approximating polytopes have less facets than the
original zonotope, it is faster to compute the volumes.

Example 4. In the 2-dimensional Example 2 the rela-
tive size of the configurable approximation can be bounded by
Θ∗ = 1.161 respectively Θ∗ = 1.098, whereas with normal-
ization in Example 3 the bounds are Θ∗ = 1.079 respectively
Θ∗ = 1.036.

5. INPUT SELECTION AND COVERAGE
In the previous section we describe how to check confor-

mance for a given input. However, we have not yet dis-
cussed how to select the inputs. This is an important step,
because when inputs are selected such that they nearly gen-
erate the same output, the conformance check might miss
behaviours which are non-conformant. Hence, we are in-
terested in selecting the inputs that produce different out-
puts. Furthermore, we are interested in a small number of
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Figure 8: Example of the covered state space (gray)
for different inputs.

test cases, because simulation results of a complex system
and real measurements are costly to obtain. Therefore we
present a method to reduce the number of test cases from a
generated finite test set.

Since we are focusing on non-deterministic models for Sa
in this paper, we assume that the reachable sets have a vol-
ume greater than zero. Otherwise, one has to consider only
the spanned dimensions. Due to non-determinism, these di-
mensions are time-invariant and can be selected offline.

To speed up the process, we introduce a method to pre-
select input trajectories without computing the output of
both systems and without conformance checking. In liter-
ature, different methods for input sampling have been in-
troduced, such as Monte Carlo sampling. Another method
presented by Dang [7] generates input samples based on
rapidly-exploring random trees such that the reachable space
is approximately covered. However, not all of the generated
inputs can be performed on the original model, because this
is too costly. Assuming a finite set of test cases U1 is gener-
ated by the aforementioned methods, we present a method
to select an input subset U2. The method compares differ-
ent inputs by comparing the reachsets of Sa under the in-
puts. Therefore, input trajectories whose output can be also
achieved by another input trajectory with non-determinism
can be removed. The assumption is that inputs reaching
the same states on system Sa are less interesting for confor-
mance testing than other inputs that reach new states for
Sa.

Hence, we are interested in an input set that covers the
reachable set of the system Sa. Although a priori the overall
reachable set is not known, we are able to use the reachable
sets Reacht(Sa, u(.)) to define a coverage measure and select
a relevant subset U2 of an input set U1.

Definition 6 (Coverage measure). Let a system S
and an input set U be given. Then the covered state space is

Reach(S,U) =
⋃

u(.)∈U

⋃
t≥0

Reacht(S, u(.))

and a coverage measure is vol(W · Reach(S,U)), where W
is a normalization matrix similar to the one in Eq. (9).

Since exact reachable set comparison and volume compu-
tation is typically not possible for nonlinear dynamics and
complex geometric sets, we evaluate it in an overapproxima-
tive way, denoted by Reacho. This can be used as a heuristic
to iteratively pick the input that increases the state space
coverage the most. For example in Fig. 8 the right input

Reach(Sr, u(.)) Reach(Sa, u(.))

Reacho(Sr, u(.)) Reacho(Sa, u(.))

Figure 9: Comparison of the overapproximation
does not lead to a non-spurious statement of the
reachable sets.

covers a bigger part of the state space than the left one and
thus should be selected. The covered space of the selected
inputs is compared to the initial covered space by the input
set U1.

Definition 7 (Relative coverage). Let two sets of
inputs U1 and U2 with U2 ⊆ U1 for a system S be given.
Then the relative covered state space is

rcov(S,U1, U2) =
vol2
vol1

,

where the vol i are computed as the volumes of Reach(S,Ui)
as defined in Def. 6.

A greedy input selection algorithm can be implemented by
iteratively choosing the input which increases the coverage
measure the most. With a given parameter ε for the relative
coverage needed, we can adapt the trade-off between reach-
ing the whole covered state space of U1 and the size of the
input set U2. If the dimensions have different scales, a nor-
malization for the volume computation could be applied via
W to get a better representation of small scale dimensions.

If we compare the overapproximation for two input tra-
jectories, we cannot formally argue about inclusions. As de-
picted in Fig. 9, the overapprox. Reacho(Sr, u(.)) of system
Sr is enclosed by the overapproximation Reacho(Sa, u(.)),
although the covered state space Reach(Sr, u(.)) is not con-
tained in Reach(Sa, u(.)). To prove that Reach(Sr, u(.)) is
contained in Reach(Sa, u(.)) we would need an underapprox-
imation. Since, as far as the authors know, tools that com-
pute tight underapproximations do not exist yet, especially
for nonlinear dynamics, Reacho is used as a heuristic only
and does not give formal bounds. Often, the overapproxima-
tion is relatively close to the exact reachable set and there-
fore the heuristic is also close to the theoretically intended
measure.

6. EXPERIMENTS
In this section the presented methods are evaluated on an

example from the domain of autonomous driving. We first
describe which models we use, how the inputs are selected,
and then how the directions are chosen for conformance test-
ing. Finally, we show and discuss the numerical results.

6.1 Models
We consider the setup and the two models used by Al-

thoff and Dolan [4] with the friction coefficient µ = 0.9. The
systems Sr and Sa are models of an autonomous car that fol-
lows a planned trajectory. The model Sa is a 6-dimensional
continuous bicycle model which models: The 2-dimensional
position of the center of mass x and y, the heading angle ψ,
the yaw rate ψ̇, the velocity v, and the slip angle β. The
model Sr published by Allen et al. [2, Appendix A] is a more



complex model with 28 continuous variables and bounded
actuators, thus it has some simple hybrid behaviour. The
output of Sr is the projection of its states onto the state
space of Sa and thus 6-dimensional. The non-determinism
of both systems models sensor inaccuracies, such as distur-
bances in the position perception.

Since the bicycle model has simplified dynamics and es-
pecially simplifies the estimation of slip angle β and the
friction influence on v, additional non-determinism of the
bicycle model flow is introduced for β and v

β̇ ∈ Fβ(.) + [−dβ , dβ ], v̇ ∈ Fv(.) + [−2dv, 0],

where Fβ(.) and Fv(.) are the differential equations of β and
v without non-determinism and dβ , dv are the parametric
bounds of the non-determinism.

The input space of the models consists of trajectories of
the x- and y-position, the heading angle, the yaw rate, and
the velocity (x, y, ψ, ψ̇, v) with initial state (0, 0, 0, 0, 15) and
evolutions bounded by

‖(ax, ay)T ‖2 < 7[m/s2] and ‖(ȧx, ȧy)T ‖2 < 50[m/s3]

where a. is the x- respectively y-acceleration of the vehicle.
Furthermore, we fix the velocity to 15[m/s] for simplicity of
presentation.

6.2 Input selection
The input space is randomly sampled by input trajecto-

ries, where the lateral acceleration is constant for 0.2 seconds
respectively approaches the choosen acceleration with max-
imum acceleration rate. Therefore, we get a set of inputs U1

with 5000 driving maneuvers of 2 seconds length.
Since vehicle dynamics are invariant with respect to po-

sition x, y and heading angle ψ, we do not consider these
state variables for the coverage measure and thus project
the reachable set to the other state variables. The method
described in Sec. 5 is used to choose the set of inputs U2 with
ε = 0.96. The resulting four input trajectories are compared
to other sets of inputs that are random selections of the same
size. Since the coverage computation and the input selection
took only slightly more time compared to one full inclusion
check, it successfully speeded up the conformance test.

6.3 Inclusion check
We discretized the time into around 3500 points. For ev-

ery point in time, the RRT-algorithm generated 70 samples
from the reachable set of Sr and the zonotope overapprox-
imation of the reachable set of Sa is generated. The inclu-
sion check with normalized directions is done as described
in Sec. 4 using 4 different direction selection methods: (i)
Axis-aligned bounding boxes, (ii) overapproximations on ev-
ery 2D projection on two state dimensions, (iii) overapprox-
imations on every 3D projection on three state dimensions,
(iv) overapproximation with evenly distributed directions in
6D. For the 2D and 3D projections we consider all possible
projections and select the directions according to Eq. (7) and
Eq. (8) in Sec. 4. The evenly distributed directions in 6D are
obtained by the optimization method, described in Sec. 4.
Consider that we use the same amount of directions for all
methods, except for the box check, as shown in Table 1.

6.4 Results
The results for the four directions selections and 257 sam-

pled values for each parameter dβ and dv of the abstract

boxes 2D proj. 3D proj. evenly in 6D
6 15 · 40 20 · 30 600

Table 1: Number of directions used for each method.
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Figure 10: Inclusion check for different parameter
combinations. Dark gray: Sr 6�R Sa proven, light
gray: no counter-example found.

system Sa are visualized for one input trajectory in Fig. 10.
Parameter combinations are colored dark gray if the con-
formance test found a counter-example. As one can see,
our direction choices lead to more parameter combinations,
where Sr 6�R Sa can be proven. Clearly, the choice of the
directions directly influences the falsification result.

The dark gray area in Fig. 10 can be used to compare the
falsification results of different set of inputs. Therefore we
use the ratio of the dark gray area to the whole considered
area as a falsification measure. A high falsification measure
states that the method is able to falsify many parameter
combinations, which is good for a falsification method. We
compare the ratio for our selected set of inputs against sev-
eral randomly chosen ones. The set of inputs U2 gives a
good falsification result for all four methods, see Fig. 11.
However, there is one input set that gives a better result
than our selected set of inputs. This cannot be shown by
the already existing bounding box check, but with our new
method. Since there are no formal guarantees that our algo-
rithm picks the best set of inputs, some inputs can lead to
better results depending on the dynamics of the real model
Sr that are not used for selection. Note that in our case we
get similar results for evenly distributed directions in 6D,
2D and 3D projections. Possibly, this is due to the consid-
ered systems dynamics and the relation of the state variables
therein. Depending on the resulting shape of the reachable
set, it can be more accurate to check projections rather than
the exact set giving a fixed number of directions. Neverthe-
less, in this particular example there is significantly more
falsification possible with our new approach.

7. RELATED WORK
While we focus on reachset conformance in this paper, we

also relate it to trace conformance (cf. Sec. 3). Therefore
we briefly discuss trace conformance for a comprehensive
overview. There are various conformance relations for differ-
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Figure 11: Falsification measure for different input
sets.

ent types of models. The IO conformance (IOCO) is a formal
approach to conformance testing of purely discrete models
(labelled transition systems) by Tretmans [22]. IOCO has
been extended to timed systems with subtle differences, see
work by Schmaltz et al. for an overview [20]. Note, in the
overview [20] the same wording ”reachable set” is used, al-
though input and output actions are considered together as
transitions, leading to a different meaning. IOCO was also
extended to hybrid systems conformance by van Osch [23]
based on hybrid transition systems. A similar notion of hy-
brid conformance based on hybrid automata is described
by Dang [7]. Approximate simulation relations are used by
Tabuada [21] to verify models based on abstractions. Abbas
et al. [1] use (τ, ε)-conformance, where the traces of the two
systems only have to be close to each other. They prove
that if their conformance relation Sr �(τ,ε) Sa holds, only
a transformed version of the properties of Sa holds on Sr.
A comparison between Hybrid Input-Output Conformance,
Approximate Simulation, and (τ, ε)-conformance is done by
Khakpour and Mousavi [16]. All of the above mentioned
conformance relations are basically trace conformance rela-
tions.

There are different strategies in literature for overapprox-
imating a zonotope with a simplified representation. Gi-
rard et al. [10] and Althoff et al. [5] present methods to
reduce the number of generators of a zonotope. While the
reduction to a small number of generators helps to scale the
inclusion check, there is a significant penalty in accuracy
of the inclusion check as the simplified zonotope is close to
the box approximation. Girard [12] use zonotope approxi-
mations to check if the zonotope intersects with a guard of
a hybrid automaton. Guibas et al. [14] describe an exact
inclusion check for zonotopes that is limited to 3 dimen-
sions only. The inclusion check presented in this paper is
based on support function that are used e. g. in SpaceEx for
reachable set computations [9]. While SpaceEx could also
be leveraged for our approach, it is restricted to affine hybrid
system models. Similarly, C2E2 [8] could be possibly lever-
aged for conformance testing, however it requires to anno-
tate the model with certificates called discrepancy functions.
If these certificates are given, Mitra provide a conformance
checking procedure for continuous systems without inputs
that particularly focus on security [19]. In this work we con-
sider CORA [3] for the reachable set computation for the
following reasons: (i) it supports non-linear hybrid systems,
(ii) it allows us to easily incorporate our new reachset con-
formance, (iii) it provides a useful zonotope representation
for reachable sets and (iv) allows us to compare our results
to previous conformance testing on the autonomous vehicle

models by Althoff and Dolan [4]. Kanade et al. [15] have
done a reachable set underapproximation of Simulink mod-
els restricted to linear transformations. However, since their
method takes a trace and builds a reachset around it, it does
not consider different discrete behaviour. Generally, for veri-
fication purposes we would also need set-based underapprox-
imation techniques for non-linear hybrid systems, that are
still missing. Backward reachability for example is not us-
able because of ill-conditioning, as outlined by Mitchell [18].

For test generation of discrete systems there are several
methods for test generation, such as transition coverage for
finite automata. However, these methods do not work well
for hybrid systems because they do not consider any con-
tinuous flow. A test generation method is proposed by
van Osch [23] that has a non-deterministic selection process.
Since it has no selection heuristic, it does not use knowledge
about the system in contrast to our method. A RRT-based
test generation process was introduced by Branicki et al. [6].
Dang [7] further developed the approach by using a statisti-
cal measure called star discrepancy to guide the simulations
to unreached parts of the state space. However, there are
typically too many inputs in the resulting input set to apply
them all on a complex model.

8. CONCLUSIONS
We introduce the formal definition of reachset conformance

and prove the transference of safety properties. Since the
reachset conformance is weaker than trace conformance it
can be used to relate more systems and therefore properties
transfer between more systems. We present a formal reach-
set conformance testing, which is based on reachable set
computations and overapproximations with support func-
tions and considers the error of simulation runs or real mea-
surements. The trade-off between accuracy and computa-
tional load can be tuned by an appropriate choice of the
directions for the overapproximations. We introduce an in-
put selection algorithm to reduce the size of an input set,
generated by existing sampling methods. It uses a coverage
measure based on the reachable sets of the abstract system.
The example shows that the selected inputs are reasonable
and that the conformance testing method can falsify more
relations than the state of the art.
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