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Abstract. Signal Temporal Logic (STL) is a formalism for reasoning
about temporal properties of continuous-time traces of hybrid systems.
Previous work on this subject mostly focuses on robust satisfaction of
an STL formula for a particular trace. In contrast, we present a method
solving the problem of formally verifying an STL formula for continu-
ous and hybrid system models, which exhibit uncountably many traces.
We consider an abstraction of a model as an evolution of reachable sets.
Through leveraging the representation of the abstraction, the continuous-
time verification problem is reduced to a discrete-time problem. For the
given abstraction, the reduction to discrete-time and our decision pro-
cedure are sound and complete for finitely represented reach sequences
and sampled time STL formulas. Our method does not rely on a special
representation of reachable sets and thus any reachability analysis tool
can be used to generate the reachable sets. The benefit of the method is
illustrated on an example from the context of automated driving.

Keywords: Model Checking, Reachability Analysis, Hybrid Systems,
Temporal Logic, Continuous Time.

1 Introduction

In recent years, the functionality and complexity of products, production pro-
cesses, and software has been increasing. Furthermore, the interaction between
the physical parts of a system (mechanics, thermodynamics, sensors, actuators,
and others) and its computational elements is becoming tighter and is orga-
nized over large networks, which has resulted in so-called cyber-physical systems
[21, 14]. Due to their advanced capabilities, newly developed cyber-physical sys-
tems often fulfill safety-critical tasks that were previously only entrusted to hu-
mans; see, e. g., automated road vehicles, surgical robots, automatic operation of
smart grids, and collaborative human-robot manufacturing [22, 18]. The afore-
mentioned trends drastically increase the demand for formal verification methods
of hybrid (mixed discrete/continuous) systems.

Hybrid systems contain the interplay of discrete and continuous dynamics
and therefore are inherently difficult to verify formally [18, 23]. As a result, most
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Fig. 1. Structure of the proposed model checking method. Bold parts are novel.

hybrid system researchers have focused on solving reach-problems and reach-
avoid-problems: for all possible initial states and all possible disturbances, the
system has to avoid forbidden regions while reaching a goal set [6, 13]. There are
several tools for reach-avoid problems, which compute sets of reachable states
over time and check for intersection of these sets with forbidden regions [2, 12].
More complicated formal specifications based on temporal logics, such as compu-
tation tree logic (CTL), linear temporal logic (LTL), or µ-calculus, have mostly
been applied to the verification of purely discrete systems or timed automata
[9, 7, 4]. For hybrid systems, a continuous-time and real-valued version of such
temporal logics, called Signal Temporal Logic (STL), has been proposed as a
formal specification language [16]. However, STL has mainly not been used for
verification of hybrid systems, but for checking single traces only, e. g., for run-
time monitoring and for test generation [15, 26, 27, 17, 1]. Therefore, there is a
demand for formal verification techniques which are able to verify a temporal
(STL) property for all (infinitely many) possible traces of a hybrid system.

In this work, we propose a new idea to verify specifications in STL for a
hybrid system. Given a hybrid system S and an STL property ϕ, we propose
the following steps to formally verify ϕ on S, as shown in Fig. 1:

1. A new reachset temporal logic (RTL) is defined (Sec. 3). The semantics of
RTL is directly defined on the reach sequence, which corresponds to an
infinite set of traces. A reach sequence is a function mapping time to the set
of states reachable from a set of initial states and uncertain inputs. Therefore,
with RTL, we are able to reason about infinitely many traces with a finite
representation, in contrast to STL, which cannot be used to directly verify
an infinite set of traces by simply evaluating the STL formula.

2. A transformation from sampled time STL to RTL is defined (Sec. 4). We
prove that this transformation is sound and complete with respect to finitely
represented reach sequences and give a sound transformation from general
STL to sampled time STL. Therefore, we are able to translate the STL verifi-
cation problem on traces to an RTL verification problem on reach sequences.

3. A model checking algorithm is introduced to formally verify an STL property
on a reach sequence using the transformation from STL to RTL and the
semantics of RTL (Sec. 5).
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Our theory does not rely on a special representation of reach sequences. Since
there exist many reachability analysis tools, such as Cora [2], SpaceEx [12],
and C2E2 [10], which can compute reach sequences, our approach is broadly
applicable. We show the benefits of our model checking method on an example
from the domain of automated driving (Sec. 6).

Note that we are working with overapproximations of exact reach sequences,
because reachability analysis for hybrid systems is undecidable in general [20].
There are already some model checking techniques for temporal properties re-
lated to LTL: in order to be able to verify an uncountable set of possible traces,
one can translate a temporal logic called Hybrid LTL (HyLTL) to a (Büchi) mon-
itor automaton [8]. After parallel composition of the monitor automaton with
the hybrid system to be verified, the verification problem reduces to finding a
loop in the reach sequence. A problem of the HyLTL model checking approach
is that to the best of our knowledge, there is no proof for the soundness of the
verification result for the proposed method using overapproximative methods
and bounded time horizons, which are common for reachability analysis tools
due to undecidability. Another drawback of the HyLTL approach is that parallel
composition drastically complicates the hybrid automaton and the reachability
analysis so that the composition typically becomes so large that it is infeasible to
analyze. With our method, temporal properties can be verified without changing
the hybrid automaton, see the example in Sec. 6.

There are several works that also present approaches for model checking
of hybrid systems that restrict to discrete time traces [24, 11]. However, these
works typically give no formal guarantees for the satisfaction on the continuous
time traces, either because they sample the time, or one has to make additional
assumptions about the behavior between the sampling points. In contrast, we
formally reason about the continuous time traces.

2 Preliminaries

Linked to our model checking method are hybrid systems and Signal Temporal
Logic, which are shortly introduced in the following.

2.1 Hybrid systems

Our methods are defined on a sequence of reachable sets of states and thus are
invariant to the modeling formalism that describes the evolution of a hybrid sys-
tem. However, in order to describe how hybrid traces and reach sequences are
generated, without loss of generality we use hybrid automata as a well-established
modeling formalism [19]. In the following, we introduce hybrid automata in a
non-formal way. Because the dynamics of real systems are typically not known
exactly, we propose including non-deterministic behavior. Components of a hy-
brid automaton are visualized in Fig. 2 together with a possible reach sequence.
Informally, the semantics of a hybrid automaton is as follows: The combined dis-
crete and continuous trace ξ(t) = (v(t), x(t)) starts from (v0, x0) and x(t) ∈ Rn
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Fig. 2. Illustration of the evolution of a reachable set of a hybrid automaton.

changes according to a differential inclusion ẋ(t) ∈ H(v(t), x(t), u(t)) [25], where
H(v, x, u) is a set of values based on the discrete state v(t) ∈ {v1, v2, . . . , vp},
the continuous state x(t), and the input u(t) ∈ Rm, such that the differential in-
clusion models many possible solutions as opposed to ordinary differential equa-
tions. If the continuous state is within a guard set, the corresponding transition
to a new discrete state can be taken. It has to be taken if the state would leave
an invariant, which is the region in which the differential inclusion of the current
discrete state is defined. After the discrete transition is taken (in zero time), the
continuous state is updated according to a jump function, which models possi-
ble instantaneous changes of the continuous state. For ease of presentation, we
assume that a hybrid automaton is non-Zeno and non-blocking.

A trace ξ : R≥0 → Rn of the hybrid automaton S is of the form

ξ(t) =

 ξ0(t), for t ∈ [0, t1)
ξ1(t), for t ∈ [t1, t2)
. . .

where ξi : [ti, ti+1) → Rn are the evolutions between discrete transitions. The
set of all traces of a system S is denoted by Traces(S). In contrast to discrete
systems, one cannot generate a tree of possible traces for a system with con-
tinuous state variables, since its number of traces is uncountably large. Thus,
algorithms for computing reach sequences of systems involving continuous states
do not preserve traces anymore, but only store the set of values for points in
time and time intervals. A function R : R≥0 → P(Rn) mapping to the power set
P(Rn) is called a reach sequence of S, iff

∀t ∈ R≥0 : {ξ(t) | ξ ∈ Traces(S)} ⊆ R(t) (1)

holds. The reach sequence is called exact, iff (1) holds with ’⊆’ replaced by ’=’.
An evaluation R(t) for one point in time t is called a reachable set. Typically,
other papers use the terminology reachable set only. However, in our work the
distinction between reach sequence and reachable set is important for rigorous
formulation and understandability. Due to undecidability, exact reachable sets
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typically cannot be obtained for hybrid systems. The set of traces corresponding
to R is defined as

C(R) = {ξ | ∀t ≥ 0 : ξ(t) ∈ R(t)}
and contains the set of traces Traces(S) and potentially additional traces (even
if R is exact), as visualized in Fig. 3.

Remark 1. To reduce this conservatism, reachable sets can be split resulting in
a tree structure of reach sequence segments. For instance, Cora [2] uses reach-
able set splitting for accuracy reasons resulting in multiple branches with reach
sequences that progress independently. Every path of the tree from the root to a
leaf represents one reach sequence. While we focus on one reach sequence in this
paper, the results can also be applied to the more general case by considering
all reach sequences that can be generated from the tree.

Reachability analysis tools such as Cora can compute (overapproximative)
reachable sets Ri for points at time ti and reachable sets Ri for time intervals
[ti, ti+1]. We call reachable sequences of the form

R = (t0, R0) ((t0, t1), R0) (t1, R1) ((t1, t2), R1) . . . ((tm, tm+1), Rm), (2)

finitely represented reach sequences, where Ri and Ri are sets of states, t0 = 0,
tm+1 =∞, and define

R(t) = Ri, iff t = ti and R(t) = Ri, iff t ∈ (ti, ti+1). (3)

The considered time structure with alternating points and open intervals is sim-
ilar to the one for timed automata, see [5].

2.2 Signal Temporal Logic (STL)

Values of traces are real numbers that vary over time. Hence, STL is a temporal
logic to describe properties of continuous-timed and real-valued traces. We briefly
introduce STL following Maler et al. [16]. An STL formula consists of atomic
predicates (such as x > 3), which are composed using logical and temporal
operators. The syntax of an STL formula over a finite set of atomic predicates
p ∈ AP is

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U[a,b]ϕ2.
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The trace satisfaction semantics of an STL formula ϕ for a trace ξ is defined
recursively on ϕ:

ξ |=T p ⇐⇒ πp(ξ(0)) = true

ξ |=T ¬ϕ ⇐⇒ ¬(ξ |=T ϕ)

ξ |=T ϕ1 ∨ ϕ2 ⇐⇒ (ξ |=T ϕ1) ∨ (ξ |=T ϕ2)

ξ |=T ϕ1 U[a,b]ϕ2 ⇐⇒ ∃t ∈ [a, b] : 〈ξ〉t |=T ϕ2 and ∀t′ ∈ [0, t) : 〈ξ〉t′ |=T ϕ1

using a predicate evaluation function πp and the suffix notation 〈ξ〉a(t) = ξ(t+a),
which shifts the trace in time. For instance, the until -operator p U[a,b]q states
that p has to hold for all times until q holds for one point in time. Other common
temporal operators can be derived from these operators, such as the finally-
operator F[a,b]ϕ := true U[a,b]ϕ and the globally-operator G[a,b]ϕ := ¬F[a,b]¬ϕ.
For brevity of notation, we also introduce the continuous next-operator

ξ |=T Xaϕ ⇔ 〈ξ〉a |=T ϕ ⇔ ξ |=T true U[a,a]ϕ.

An STL formula in which no temporal operators are present is called a non-
temporal formula in the following. Inspired by LTL, we define the statisfaction
of an STL formula on a set of traces M as

M |=T ϕ ⇔ ∀ξ ∈M : ξ |=T ϕ.

Formally, the STL verification task for a hybrid system S is to check whether
Traces(S) |=T ϕ holds. Since a verification method has to reason about un-
countably many traces, the problem is often replaced by falsification in practice,
searching for a trace ξ with ξ 6|=T ϕ. However, falsification cannot prove that ϕ
holds. Note that Traces(S) 6|=T ϕ does not imply Traces(S) |=T ¬ϕ, because of
the ∀-quantifier over the traces.

3 Reachset Temporal Logic (RTL)

Evaluation of an STL formula cannot be directly done for an infinite set of traces.
Therefore, we introduce a new temporal logic that is defined on reach sequences
instead of traces (such as STL), which we refer to as Reachset Temporal Logic
(RTL). By transforming an STL formula into an RTL formula, we can leverage
RTL for model checking the STL formula on a hybrid system, as visualized in
Fig. 1. The syntax and semantics of RTL are defined so that STL formulas
can be transferred and expressed on reach sequences and have therefore some
commonalities with STL, but also important differences.

Definition 1 (RTL syntax). An RTL formula has the syntax

ψ := A% | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Xaψ | ψ1 U[a,b] ψ2 | ψ1 R[a,b] ψ2

where % is a propositional formula % := p | %1 ∨ %2 | ¬% over a finite set AP of
predicates p ∈ AP.
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Note that since we want to work with overapproximations of exact reachable
sets, we have the negation operator only for non-temporal formulas, which is the
reason for the syntactic split into ψ and %.

Definition 2 (RTL semantics). For a propositional formula % and a state r
the semantics is

r |=P p ⇔ πp(r)

r |=P ¬% ⇔ r 6|=P %

r |=P %1 ∨ %2 ⇔ (r |=P %1) ∨ (r |=P %2) .

For a reach sequence R and a formula ψ, the semantics is defined as

R |=R A% ⇔ ∀r ∈ R(0) : r |=P % (4)

R |=R ψ1 ∧ ψ2 ⇔ (R |=R ψ1) ∧ (R |=R ψ2) (5)

R |=R ψ1 ∨ ψ2 ⇔ (R |=R ψ1) ∨ (R |=R ψ2) (6)

R |=R Xaψ ⇔ 〈R〉a |=R ψ (7)

R |=R ψ1 U[a,b]ψ2 ⇔ ∃t ∈ [a, b] : (〈R〉t |=R ψ2) ∧ (∀i ∈ [0, t) : 〈R〉i |=R ψ1) (8)

R |=R ψ1R[a,b]ψ2 ⇔ ∀t ∈ [a, b] : (〈R〉t |=R ψ2) ∨ (∃i ∈ [0, t) : 〈R〉i |=R ψ1) (9)

where 〈R〉a(t) := R(t+a) is the shift operator and a ∈ R≥0, b ∈ R≥0 with a ≤ b.
Two RTL formulas ψ1, ψ2 are equivalent, denoted as ψ1 ≡ ψ2, iff the satisfaction
is the same for all possible reach sequences. The operators F and G are defined
similarly to STL:

F[a,b]ψ := true U[a,b]ψ (finally) and G[a,b]ψ := falseR[a,b]ψ (globally)

To give an example, we consider the formula F[0,1]A%. A reach sequence R has
to satisfy that % holds for all states in one R(t) between time 0 and 1. Expressed
on the set of traces C(R) corresponding to R, this implies that all traces satisfy
% for one common point in time, compared to the requirement F[0,1]% for all
traces:

R |=R F[0,1]A% ⇔ ∃t ∈ [0, 1] : C(R) |=T F[t,t]% ⇒ C(R) |=T F[0,1]%.

Since a set of traces satisfies an STL formula if each trace satisfies the formula,
the traces are “checked” independently of each other, i.e. it is not possible to
reason about a variable point t ∈ [a, b] in time at which something holds for all
traces in a set. Therefore, this cannot be expressed by STL. In contrast, RTL is
able to express common satisfaction of predicates.

4 Transformation from STL to RTL

Differences of STL and RTL described in the previous section have some impor-
tant implications for the transformation between these temporal logics. In this
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section we present a transformation Υ mapping an STL formula to an RTL for-
mula. We first give some properties of a sound and complete transformation and
then present a transformation for sampled time formulas and finitely represented
reach sequences (Sec. 4.1). We further show that the results can be extended by
transforming general STL formulas to sampled time formulas (Sec. 4.2). The
methods will be used later to model check STL formulas, as shown in Fig. 1.

With a mapping Υ from STL to RTL we are able to transfer the verification
task on the traces of a reach sequence C(R) |=T ϕ into a reach sequence verifica-
tion task R |=R Υ (ϕ). Since we do not want to lose expressiveness, we demand
from the transformation Υ that

R |=R Υ (ϕ) ⇒ C(R) |=T ϕ and C(R) |=T ϕ ⇒ R |=R Υ (ϕ)

holds, which we call soundness and completeness, respectively, for the reach se-
quence abstraction. If soundness and completeness is given for Υ , the semantical
domain can be changed without changing the verification result. The following
lemma gives some properties of a sound and complete Υ .

Lemma 1. Let the STL formulas ϕi and the non-temporal formula % be given.
A sound and complete transformation Υ has the following properties:

Υ (%) ≡ A% non-temporal transformation (10)

Υ (ϕ1 ∧ ϕ2) ≡ Υ (ϕ1) ∧ Υ (ϕ2) ∧-distributivity. (11)

Furthermore, the ∨-distributivity

Υ (ϕ1 ∨ ϕ2) ≡ Υ (ϕ1) ∨ Υ (ϕ2) ∨-distributivity (12)

does also hold, if tsupp(ϕ1) ∩ tsupp(ϕ2) = ∅ for

tsupp(ϕ) := {t | ∃ξ, ξ′ : R→ Rn, (ξ |=T ϕ)∧(ξ′ 6|=T ϕ)∧(∀t′ 6= t : ξ(t′) = ξ′(t′))},

which are the points in time where a change in the trace can affect whether ϕ is
true or not.

Proof. For non-temporal properties %, (10) follows from

C(R) |=T % ⇔ ∀ξ ∈ C(R) : ξ |=T % ⇔ ∀r ∈ R(0) : r |=P % ⇔ R |=R A%.

From soundness and completeness of Υ and the RTL semantics follows

R |=R Υ (ϕ1 ∧ ϕ2)⇔ C(R) |=T ϕ1 ∧ ϕ2 (13)

C(R) |=T ϕ1 ∧ ϕ2 ⇔ ∀ξ ∈ C(R) : ξ |=T ϕ1 ∧ ϕ2 (14)

⇔ ∀ξ ∈ C(R) : ξ |=T ϕ1 ∧ ∀ξ ∈ C(R) : ξ |=T ϕ2

C(R) |=T ϕ1 ∧ C(R) |=T ϕ2 ⇔ R |=R Υ (ϕ1) ∧R |=R Υ (ϕ2) (15)

⇔ R |=R Υ (ϕ1) ∧ Υ (ϕ2)

which proves (11). The equivalences (13) and (15) hold also for ∨. Let us assume
C(R) : ξ |=T ϕ1 ∨ ϕ2 holds, but not C(R) : ξ |=T ϕ1 ∨ C(R) : ξ |=T ϕ2. Then,
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there exist ξ1, ξ2 with ξ1 6|=T ϕ1 and ξ2 6|=T ϕ2. Because of the empty time
support intersection and the special structure of C(R), we can construct ξ with
ξ(t) = ξ1(t) for t ∈ tsupp(ϕ1) and ξ(t) = ξ2(t) otherwise. Since ξ ∈ C(R) and
ξ 6|=T ϕ1, ξ 6|=T ϕ2, this is a contradiction and therefore (12) holds, because the
other direction can also be easily shown. ut

Based on the properties from Lemma 1, one can see the subtle differences
between a well-defined complete and a non-complete transformation. Let us con-
sider the STL formula ϕ := (%0 ∧ X1%1) ∨ X1%0, which could be transformed to
ψ := (A%0 ∧ X1A%1) ∨ X1A%0 by simply adding the A-operator to the non-
temporal subformulas of the STL formula ϕ. However, if we first rewrite ϕ
to the equivalent formula (%0 ∨ X1%0) ∧ X1(%0 ∨ %1) and transform it, we get
ψ′ := (A%0 ∨ X1A%0) ∧ X1A(%0 ∨ %1) ≡ (A%0 ∧ X1A(%0 ∨ %1)) ∨ X1A%0. The
formula ψ′ does not force all the traces to satisfy %1 at time 1, if one trace does
not satisfy %0 at time 1. Since ψ′ also implies ϕ, it is a sound transformation of
ϕ which is less restrictive than ψ. As one can see from this example, a sound
and complete transformation cannot simply be constructed by structural induc-
tion over the parts of an STL formula, even if no nested temporal operators are
used. Different parts of a formula are able to interact with each other if they are
composed with the ∨-operator. In the following, we build upon Lemma 1 and
give a sound and complete transformation function for sampled time formulas.

4.1 Sound and complete transformation for sampled time formulas

Operators can appear arbitrarily nested in STL formulas. Given a fixed c > 0,
we call the subclass of STL which restricts formulas to

ϕ := % | ¬ϕ | ϕ1 ∨ ϕ2 | Xcϕ | F(0,c)% | G(0,c)%, % := p | ¬% | %1 ∨ %2

sampled time STL with timestep c. For example p∨F(0,c)p∨Xc

(
p ∨ F(0,c)p ∨ Xcp

)
can be seen as a sampled time version of the STL formula F[0,2c]p. Since standard
equivalences hold on STL formulas, such as ¬Xcϕ ≡ Xc¬ϕ, ¬F(0,c)ϕ ≡ G(0,c)¬ϕ,
and Xc (ϕ1 ∨ ϕ2) ≡ Xcϕ1 ∨ Xcϕ2, each sampled time formula has an equivalent
sampled time formula in conjunctive normal form

∧
i

∨
j X j

c (ϕij ∨ %ij) with ϕij

of the form
∨

k F(0,c)%k ∨
∨

l G(0,c)%l, non-temporal formulas %ij , and the X -
operator in series X j

c := Xj·c. Based on the conjunctive normal form, we are
able to introduce a sound and complete transformation Υ considering finitely
represented reach sequences and given that c divides all time intervals of the
reach sequence. Since finitely represented reach sequences can be produced by
Cora [2] and SpaceEx [12] for instance, this is of practical relevance.

Lemma 2. Let a sampled time formula be given in conjunctive normal form.
Then, the transformation Υ from STL to RTL defined via

Υ

∧
i

∨
j

X j
c (ϕij ∨ %ij)

 :=
∧
i

∨
j

X j
c (Υ (ϕij) ∨ A%ij) (16)
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Υ

( ∨
k∈K

F(0,c)%k ∨
∨
l∈L

G(0,c)%l
)

:= X c
2

(
A%′ ∨

∨
l∈L

A (%l ∨ %′)
)
, (17)

with %′ :=
∨
k∈K

%k

is sound and complete for finitely represented reach sequences R = (t0, R0)
((t0, t1), R0) (t1, R1) . . . ((tm, tm+1), Rm), which are c-divisible, where c-divi-
sibility holds if and only if ti ∈ Nc := {0, c, 2c, . . .} holds for all i.

Proof. Soundness and completeness can be proven by structural induction. Since
we define the transformation such that Υ (ϕ1 ∧ϕ2) ≡ Υ (ϕ1)∧ Υ (ϕ) holds, it can
be shown similarly as in Lemma 1 that it is sufficient to show soundness and
completeness for

∨
j X j

c (ϕij ∨ %ij), which works similarly, because different time

branches have different time supports tsupp(X j
c (ϕij∨%ij)) ⊆ [j, j+1). Therefore

it is sufficient to show soundness and completeness for (17). For brevity reasons,
we do not give the proof for general formulas, but prove that the two terms

C(R) |=T G(0,c)%1 ∨ G(0,c)%2 ∨ F(0,c)%3 (18)

R |=R X c
2
A(%1 ∨ %3) ∨ X c

2
A(%2 ∨ %3) (19)

are equivalent. Let us assume that (19) holds and therefore without loss of gen-
erality R |=R X c

2
A(%1 ∨ %3) holds. Since R is a finitely represented reach se-

quence which changes values only at points in time divisible by c, also R |=R

G(0,c)A(%1∨%3) and therefore C(R) |=T G(0,c)(%1∨%3) holds, which implies (18).
On the other hand, let us assume (19) does not hold. Therefore

R 6|=R X c
2
A(%1 ∨ %3) ∧R 6|=R X c

2
A(%2 ∨ %3)

⇒∃r1 ∈ R
( c

2

)
: r1 |=p ¬%1 ∧ ¬%3 ∧ ∃r2 ∈ R

( c
2

)
: r2 |=p ¬%2 ∧ ¬%3

holds. Hence, Eq. (18) does not hold, because the trace

ξ(t) :=

 r1, t ∈
(
0, c2
)

r2, t ∈
[
c
2 , c
)

any r ∈ R(t), otherwise

is contained in C(R) but does not satisfy the formula in (18). ut
Lemma 2 proves that the RTL formula ψ := (A%0 ∧X1A(%0 ∨ %1))∨X1A%0 is a
sound and complete transformation of the formula (%0∧X1%1)∨X1%0 considered
in the previous section. As we have seen above, the formula F[0,2c]p has an
equivalent sampled time notation. Therefore, it can be transformed to ψ′ :=
Ap∨X c

2
Ap∨X 2

c
2
Ap∨X 3

c
2
Ap∨X 4

c
2
Ap using Lemma 2. Since we do not have any

temporal operators but the shift operator in ψ and ψ′, the formulas can easily be
checked on a reach sequence. This is the basis for our model checking approach
in Sec. 5. Note that c

2 can be seen as a compatible sample time that jumps from
one point in time kc to the next open interval (kc, (k + 1)c) or from an open
interval (kc, (k + 1)c) to the next point in time (k + 1)c respectively, as shown
in Fig. 4.



11

0 c 2c(0, c) (c, 2c)

. . .time

X c
2

X c
2

X c
2

X c
2

Fig. 4. The next operator X c
2

points to the next interval or point.

4.2 Transformation of general STL to sampled time STL

Rewriting a general STL formula as an sampled time formula enables us to
use the results of the previous section for general STL formulas. The rewriting
is sound and therefore, we are able to reason about the satisfaction of an STL
formula on reach sequences. The main idea is to leverage the finite representation
of a given STL formula ϕ for rewriting and use rules of the form ξ |=T ϕ⇐ ξ |=T

ϕ′ to rewrite ϕ to a sampled time version ϕ′ in a sound manner. If we have such
rules, they can also be applied to C(R).

Lemma 3. Let ϕ be an STL formula which can be written as f(ϕ1, . . . , ϕn),
where f is a function composing ϕi by ∧, ∨, and Xc. Let ξ |=T ϕi ⇐ ξ |=T ϕ′i
for all i and ξ. Then

C(R) |=T ϕ⇐ C(R) |=T ϕ′

holds with ϕ′ = f(ϕ′1, . . . , ϕ
′
n).

Proof. Let us assume ξ |=T ϕ′1 ∧ ϕ′2, which is equivalent to ξ |=T ϕ′1 ∧ ξ |=T ϕ′2,
holds for all ξ. From the rewriting rules it follows that ξ |=T ϕ1 ∧ ξ |=T ϕ2 and
therefore ξ |=T ϕ1 ∧ ϕ2 holds also. The proof follows from

C(R) |=T ϕ1 ∧ ϕ2 ⇔ ∀ξ ∈ C(R) : ξ |=T ϕ1 ∧ ϕ2

⇐ ∀ξ ∈ C(R) : ξ |=T ϕ′1 ∧ ϕ′2 ⇔ C(R) |=T ϕ′1 ∧ ϕ′2
by structural induction over ∧, ∨, and Xc. ut
Finally, we need a set of rewriting rules that are sufficient to rewrite general STL
formulas as sampled time ones.

Lemma 4. Let an STL formula ϕ be given, which is c-divisible, where c-divi-
sibility holds if c divides all bounds of temporal operators of ϕ. Without loss
of generality, we assume that ϕ is in negation normal form. Hence, ϕ can be
written as f(ϕ1, . . . , ϕn), where f is a function composing ϕi by ∧, ∨, and Xc

and the outmost operator of each ϕi is a temporal operator or ϕi is non-temporal.
Then, for any temporal ϕi there is a rewriting in Table 1 or one of the following
equivalences using subformulas ϕ̂i

ϕ̂1 U[0,0]ϕ̂2 ≡ ϕ̂2, ϕ̂1 R[0,0]ϕ̂2 ≡ ϕ̂2, FIX1ϕ̂1 ≡ X1FI ϕ̂1, GIX1ϕ̂1 ≡ X1GI ϕ̂1

such that ϕ can be rewritten to rw(ϕ) = f(ϕ′1, . . . , ϕ
′
n) in a sound manner.

The formula ϕ can be rewritten to a sampled time version with timestep c by
iteratively using the rewriting ϕ 7→ rw(ϕ) 7→ rw2(ϕ) 7→ . . . until no rewriting
rule matches anymore.
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Table 1. For all ξ the formula ξ |=T ϕi ⇐ ξ |=T ϕ′i holds for each pair ϕi, ϕ
′
i in the

table. For readability reasons, we use I = (0, c) and assume c = 1.

ϕi ϕ′i

ϕ1 U[i,j]ϕ2 ϕ1 ∧ GIϕ1 ∧ X1

(
ϕ1 U[i−1,j−1]ϕ2

)
ϕ1 U[0,j]ϕ2 ϕ2 ∨

(
ϕ1 ∧ GIϕ1 ∧

(
FIϕ2 ∨ X1

(
ϕ1 U[0,j−1]ϕ2

)))
ϕ1 R[i,j]ϕ2 ϕ1 ∨ FIϕ1 ∨ X1

(
ϕ1 R[i−1,j−1]ϕ2

)
ϕ1 R[0,j]ϕ2 ϕ2 ∧

(
ϕ1 ∨

(
GIϕ2 ∧

(
FIϕ1 ∨ X1

(
ϕ1 R[0,j−1]ϕ2

))))
GI(ϕ1 ∧ ϕ2) GIϕ1 ∧ GIϕ2

GI(ϕ1 ∨ ϕ2) GIϕ1 ∨ GIϕ2

FI(ϕ1 ∧ ϕ2) (GIϕ1 ∧ FIϕ2) ∨ (FIϕ1 ∧ GIϕ2)
FI(ϕ1 ∨ ϕ2) FIϕ1 ∨ FIϕ2

FI(ϕ1 U[i,j]ϕ2) GIϕ1 ∧ X1

(
ϕ1 ∧ GIϕ1 ∧ FI(ϕ1 U[i−1,j−1]ϕ2)

)
FI(ϕ1 U[0,j]ϕ2) FIϕ2 ∨

(
GIϕ1 ∧ X1

(
ϕ2 ∨

(
ϕ1 ∧ GIϕ1 ∧ FI(ϕ1 U[0,j−1]ϕ2)

)))
GI(ϕ1 U[i,j]ϕ2) GIϕ1 ∧ X1

(
ϕ1 ∧ GIϕ1 ∧ GI(ϕ1 U[i−1,j−1]ϕ2)

)
GI(ϕ1 U[0,j]ϕ2) GIϕ2 ∨

(
GIϕ1 ∧ X1

(
ϕ2 ∨

(
ϕ1 ∧ GIϕ1 ∧ GI(ϕ1 U[0,j−1]ϕ2)

)))
FI(ϕ1 R[i,j]ϕ2) FIϕ1 ∨ X1

(
ϕ1 ∨ FIϕ1 ∨ FI(ϕ1 R[i−1,j−1]ϕ2)

)
FI(ϕ1 R[0,j]ϕ2) FI(ϕ1 ∧ ϕ2) ∨

(
GIϕ2 ∧ X1

(
ϕ2 ∧

(
ϕ1 ∨

(
GIϕ2 ∧ FI ϕ1 R[0,j−1]ϕ2

))))
GI(ϕ1 R[i,j]ϕ2) GIϕ1 ∨ X1

(
ϕ1 ∨ GI(ϕ1 R[i−1,j−1]ϕ2)

)
GI(ϕ1 R[0,j]ϕ2) GI(ϕ2) ∧

(
GIϕ1 ∨ X1

(
ϕ2 ∧

(
ϕ1 ∨

(
GIϕ2 ∧ GI(ϕ1 R[0,j−1]ϕ2)

))))

Proof. Since we assume c-divisibility and negation normal form, each temporal
operator of the subformula is a U-operator or an R-operator and one of the
first 4 rewriting rules of Table 1 can be applied. After the first rewriting step,
there are potentially formulas nested in GI or FI . For every possible operator
there is exactly one rewriting rule. With Lemma 3, it is sufficient to prove the
soundness of the rewriting rules in Table 1. Let us consider c = 1 and the
formula ϕ1 U[0,j]ϕ2, which is true if ϕ2 holds, ∃t ∈ (0, 1) : G[0,t)ϕ1 ∧ Xtϕ2

holds, or G[0,1)ϕ1 ∧ X1(ϕ1 U[0,j−1]ϕ2) holds. By overapproximating ∃t ∈ (0, 1) :
G[0,t)ϕ1 ∧ Xtϕ2 with G[0,1)ϕ1 ∧ F(0,1)ϕ2 we obtain the rewritten formula. The
other formulas can be proven similarly. ut

If needed, temporal formula such as p U[0,0.9]q can als be rewritten to p U[0,1]q
in a sound manner, if c = 1 should be enforced. However, this is typically not
needed since one can choose alternatives such as c = 0.9 or c = 0.1 which also
depends on the reach sequence. As an example, the formula ϕ := p U[0,2]q with
atomic propositions p and q can be rewritten as follows:

ϕ→ ϕ2 ∨
(
ϕ1 ∧ GIϕ1 ∧

(
FIϕ2 ∨ X1

(
ϕ1 U[0,1]ϕ2

)))
→ ϕ2 ∨ (ϕ1 ∧ GIϕ1 ∧ (FIϕ2 ∨ X1 (ϕ2 ∨ (ϕ1 ∧ GIϕ1 ∧ (FIϕ2 ∨ X1ϕ2))))) .

Now that we have solved the problem of transforming an STL formula to
an RTL formula defined on the reach sequence, we present a model checking
algorithm in the next section.
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time

state reach sequence

x ≤ 5

true false

Fig. 5. Predicate evaluation for several points in time t: R |=R XtA(x ≤ 5).

5 STL Model Checking

Our model checking approach for STL formulas is presented in the following.
The foundation of the approach follows from Lemma 2 to 4 and is summarized
in the following theorem.

Theorem 1. Let ϕ be an STL formula, R be a reach sequence of a hybrid au-
tomaton S, and R and ϕ be c-divisible. The formula ϕ can be transformed to an
RTL formula ψ =

∧
i

∨
j X

j
c
2

∨
kA%ijk with non-temporal properties %ijk, where

C(R) |=T ϕ ⇐ R |=R

∧
i

∨
j

X j
c
2

∨
k

A%ijk

holds and therefore, the transformation is sound. If ϕ is equivalent to a sampled
time STL formula, the transformation is complete. Hence, R |=R ψ implies
Traces(S) |=T ϕ, which proves ϕ for the hybrid automaton S.

It remains to show how
∧

i

∨
j X

j
c
2

∨
kA%ijk can be evaluated on a reach sequence

R. This can be reduced to the problem R |=R X j
c
2
A%ijk. The satisfaction result

is obtained by evaluating all such subformulas and then computing the Boolean
value of the remaining logical formula.

Our RTL syntax and semantics, as well as the transformation from STL to
RTL, are independent of the representation of the reachable sets R(t) and the
predicates used. However, to implement a model checking algorithm, we have to
define a representation and a set of predicates we rely on. Therefore, we assume
that the reachable sets are represented by (sets of) polytopes as in SpaceEx [12]
and Cora [2]. Given a set of vectors c1, . . . , ck and values d1, . . . , dk, a polytope is

defined as the set poly(c1, . . . , ck, d1, . . . , dk) =
⋂k

i=1{x ∈ Rn | cTi x ≤ di}, which
is the intersection of halfspaces. We consider the set AP of atomic predicates
of the form aTx ∼ b, where a ∈ Rn, b ∈ R, and ∼ ∈ {<,≤, >,≥}, which are
also halfspace restrictions. For instance, the evaluation of A(x ≤ 5) for a reach
sequence is visualized in Fig. 5. Note that the formula is only satisfied if all states
x satisfy x ≤ 5.

Given a formula of the typeA%, the logical part % can be transformed into dis-
junctive normal form % =

∨
i

∧
j(a

T
ijx ∼ bij) with ∼∈ {<,≤}. Because

∧
j(a

T
ijx ∼

bij) corresponds to the polytope region poly i = poly(ai1, . . . , bi1, . . .), the check
R |=R XtA% can be performed by the polytope inclusion check R(t) ⊆ ⋃ poly i,
which can be implemented using standard polytope libraries.
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Fig. 6: Automated driving example for a reach sequence.

6 Example

In the following, we provide an example for our model checking method from the
domain of automated driving. For automated driving, it is important to verify
safety properties such as the absence of collisions. While driving, this can be
done by periodically checking that a collision is not possible for a bounded time
of the planned trajectory using the reach sequence [3]. However, there are also
other safety relevant temporal properties which should be verified. Based on the
results in this paper, the verification of these properties can be easily integrated
in the existing verification scheme.

For example, when a vehicle is traversing a crossing, it should not block
the crossing and should maintain a certain velocity until it reaches the other
side. This can be expressed on the traces as an STL property similar to ϕ :=
v ≥ 10 U[0,2]x ≥ 10, where v is the velocity and x is the distance covered. We
use Cora [2] and the vehicle model of Althoff and Dolan [3] to compute the
reachable sequence of the vehicle as visualized in Fig. 6. To verify ϕ with the
reach sequence, we transform ϕ to a sampled time RTL formula. An exemplary
transformation result for ϕ is

Aq∨(A(p∨q)∧X c
2
Ap∧(X c

2
Aq∨X 2

c
2
Aq∨(X 2

c
2
A(p∨q)∧X 3

c
2
Ap∧(X 3

c
2
Aq∨X 4

c
2
Aq))))

for c = 1, p = v ≥ 10, and q = x ≥ 10. In this example, reachability analysis,
which is the basis for verification of both safety and temporal properties, takes
3.8 seconds. Checking that the resulting reach sequence satisfies the RTL formula
takes only 0.15 additional seconds. With Thm. 1 we can conclude that the STL
formula ϕ holds for all possible evolutions of the system.

7 Conclusion

We introduce a model checking technique for STL formulas, which leverages
reachable sets computed by reachability analysis tools. This is done by: (i) Defin-
ing the Reachset Temporal Logic (RTL), whose semantics is defined on reachable
sets instead of traces, on which previous temporal logics are defined (e.g. STL);

Fig. 6. Automated driving example for a reach sequence.

6 Example

In the following, we provide an example for our model checking method from the
domain of automated driving. For automated driving, it is important to verify
safety properties such as the absence of collisions. While driving, this can be
done by periodically checking that a collision is not possible for a bounded time
of the planned trajectory using the reach sequence [3]. However, there are also
other safety relevant temporal properties which should be verified. Based on the
results in this paper, the verification of these properties can be easily integrated
in the existing verification scheme.

For example, when a vehicle is traversing a crossing, it should not block
the crossing and should maintain a certain velocity until it reaches the other
side. This can be expressed on the traces as an STL property similar to ϕ :=
v ≥ 10 U[0,2]x ≥ 10, where v is the velocity and x is the distance covered. We
use Cora [2] and the vehicle model of Althoff and Dolan [3] to compute the
reachable sequence of the vehicle as visualized in Fig. 6. To verify ϕ with the
reach sequence, we transform ϕ to a sampled time RTL formula. An exemplary
transformation result for ϕ is

Aq∨(A(p∨q)∧X c
2
Ap∧(X c

2
Aq∨X 2

c
2
Aq∨(X 2

c
2
A(p∨q)∧X 3

c
2
Ap∧(X 3

c
2
Aq∨X 4

c
2
Aq))))

for c = 1, p = v ≥ 10, and q = x ≥ 10. In this example, reachability analysis,
which is the basis for verification of both safety and temporal properties, takes
3.8 seconds. Checking that the resulting reach sequence satisfies the RTL formula
takes only 0.15 additional seconds. With Thm. 1 we can conclude that the STL
formula ϕ holds for all possible evolutions of the system.

7 Conclusion

We introduce a model checking technique for STL formulas, which leverages
reachable sets computed by reachability analysis tools. This is done by: (i) Defin-
ing the Reachset Temporal Logic (RTL), whose semantics is defined on reachable
sets instead of traces, on which previous temporal logics are defined (e.g. STL);
(ii) introducing a sound and complete transformation from sampled time STL to
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RTL for finitely represented reach sequences; (iii) introducing a rewriting scheme
for general STL formula to sampled time STL formula; and (iv) introducing a
model checking method for RTL formulas obtained by the transformation. The
approach is especially useful for non-deterministic models that naturally exhibit
uncountably many traces due to necessary abstractions from original dynamics.
Our model checking technique is independent of the way reach sequences are
obtained and represented. Therefore, all reachability analysis tools can bene-
fit from our approach by extending their reasoning from non-temporal (safety)
properties to temporal properties. This is demonstrated by an example from
automated driving, where the online verification of the absence of collisions is
extended to online verification of temporal properties.

Future work could intensify the interconnection of the reachability analysis
and the verification part to develop the method further. Additionally, the se-
mantics of RTL can be extended in the sense of robust semantics as used by
Metric Temporal Logic [11].
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