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Abstract— Robots acting in populated environments must be
capable of safe but also time efficient navigation. Trying to
completely avoid regions resulting from worst case predictions
of the obstacle dynamics may leave no free space for a robot to
move, especially in environments with high dynamic. This work
presents an algorithm for a "soft” risk mapping of dynamic
objects leaving the complete space free of static objects for
path planning. Markov Chains are used to model the dynamics
of moving persons and predict their potential future locations.
These occlusion estimations are mapped into risk regions which
serve to plan a path through potentially obstructed space
searching for the trade-off between detour and time delay.
The offline computation of the Markov Chain model keeps
the computational effort low, making the approach suitable for e

online applications. Fig. 1. The Autonomous City Explorer (ACE) robotic platform.

I. INTRODUCTION the presented approach is embedded, followed by a detailed
description of the risk map computation and how these can

A major goal in current mobile robotics research is tgye ysed for replanning. Section IV gives experimental tesul
bring robots into natural human-populated environmentsg|iowed by a conclusion in Section V.

This imposes great challenges on human-robot interaction
capabilities. Action in human environments and interactio Il. RELATED WORK
with humans is one of the striving goals of the Autonomous The capability to distinguish between the static envi-
City Explorer (ACE) project [1]. The objective of the profec ronment and moving persons requires a people tracking.
is to create a robot (Fig. 1) which explores an unstructuredecognition of people has been widely studied using vision
and populated urban environment, given neither map knowdystems, e.g. [2], [3], [4]. While stereo vision systems like
edge nor being equipped with GPS. Instead it is primarily3], [4] provide an expedient way to retrieve depth informa-
gathering information through interaction with people.eOntion from a camera scene, visual systems are facing problems
fundamental task within this scope is a sophisticated @avigwhen being confronted with varying lightning conditions.
tion in densely populated environments. Consequently they are not the best choice for outdoor scenar
Such scenario requires safe navigation amongst peoples. An alternative way to perceive and track people is using
However, too passive and conservative motion may not wotkiser range finders as in [5] and [6], having the advantage
in densely populated places. To be able to move deftlyf robustness to sunlight. Furthermore, the gathered depth
and goal-oriented within populated areas, the environatentinformation suffers usually less noise and covers distance
dynamics has to be predicted and taken into account durifigr beyond reliable visual depth reconstruction.
path planning. This requires first to perceive dynamic dsjec  In addition to people tracking, a major challenge of
second to predict their future motions and third to plan @aavigation within populated environments is considerimg t
sophisticated path based on this knowledge. The focus pérceived people during path planning. While safety can be
this paper is primarily on the second step, in presenting ansured by using a low level obstacle avoidance like [7] pat
algorithm for a "soft” mapping of predicted dynamics intoplanning focusing on smooth continuous motion demands an
risk areas. Instead of "hard” avoidance of obstacle areasfficient handling of the environmental dynamics.
the perceptual reasoning system provides a mean to planA lot of research is engaged in the path finding problem of
through potentially obstructed space searching for théetra robots navigating in dynamic environments. In [8] the Multi
off between detour and time delay. partite Rapidly-exploring Random Tree (MP-RRT) algorithm
The remainder of the paper is structured as follows: Thior efficient path planning in dynamic environments is in-
next section provides an overview about related work. Setroduced. The single-query character of RRTs is extended
tion Ill starts with an outline of the overall system in whichby subtree re-use and planning around moving obstacles
with unknown dynamics. A combination of probabilistic path
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in situations where an agent may have no full information (LaserRangeFin@r (Robot Platform)

about the dynamics of the environment. Besides the path LaserSean OdometryData
length, further cost metrics such as traversal risk and,time )
stealth or visibility are mentioned. Dynamic obstacles are SLAM
modeled as space-time volumes using a deterministic or \: OccupancyGrid
worst case approach. In [11] Cell-based PRMs (CPRMs) ( People Tracker; gya?lirglgn;
are presented, which focus on efficient replanning espgcial PersonSiates
in large environments. In [12] the velocity obstacle (VO) is v
introduced, being the conical velocity space derived frbm t ( MC Model ) C HL Planner )
set of colliding relative velocities between robot and nmoyvi R T I

' ) . eachableSet Global Path
object. Under the assumption of constant velocities, any +
relative velocity within the VO is causing a collision. Th©V Occupancy Grid
. . S s . (static part)
is extended in [13] by a probabilistic version (PVO), where
the perception system is modeled probabilistically wHile t Adjusted Path

obstacle model itself remains deterministic.

Modeling of dynamic obstacles is also extensively covered
in the field of computer graphics. In [14] a neighborhoodor replanning. MCs, a probabilistic version of FSMs, are
graph is used for collision detection in a crowd of virtualin [20] and [21] already successfully applied to verify safe
humans. The collision avoidance is based on linear trajgctolocomotion of cognitive cars and are here used to model
extrapolation and local speed adaptation for each virtuéihe dynamics of real humans. Using risk regions instead of
human. In [15], Finite State Machines (FSM) are used tbard dynamic obstacle avoidance provides a soft risk measur
model virtual humans. While dealing with virtual humanswhile leaving the complete space free of static objects for
provides to use deterministic dynamics of the personsgthepath planning. Provided that a reliable low-level collisio
approaches usually do not cover all circumstances facingaxoidance prevents real collisions, the worst-case is & tim
robot in the real world. Consequently they are often leadingelay resulting in a situation where the robot has to stop.
to inaccurate results when applied there. In the next section is described how these reachable sets

The above mentioned approaches have in common, thare derived from raw laser range data and then mapped
they aim for collision free path planning, i.e. hard avoidan into risk regions. Furthermore a cost metric is presented to
of potentially obstructed space. This can be a necessity ifetermine the trade-off between a detour and a time delay
many scenarios, thinking e.g. about applications with highuring path planning.
velocities like autonomous cars [16] where the acceptable
collision rate drops down to zero. On the other hand, trying Ill. APPROACH
to completely avoid intersections with any potential oblsta  This section starts with an outline of the overall system
trajectory may leave no feasible path at all, especialljinit followed by a description of its submodules, where the focus
densely populated environments. is on the risk map computation and how these can be used

In [17] a probabilistic navigation function (PNF) is pre-for replanning.
sented, using a probabilistic risk map for path plannindiwit _ )

E* [18]. The risk map is derived from a co-occurrence’™ Algorithm Overview

estimation of dynamic obstacle and robot, which is based on Several subtasks are necessary to perceive dynamics in the
worst-case assumptions assuming that the object can chamegwironment, predict its future changes and plan the most
its speed (within a bounded interval) and direction of travepromising path with respect to it. Fig. 2 gives an overview
In [19] motion patterns of people are learned to predictf the entire system in which the risk mapping is embedded.
their future behaviors. In a pre-processing phase trajesto

are derived from laser range data and clustered by usinglLaser range and odometry data serve as input to create and
expectation maximization. The outcome then serves to leaupdate an occupancy grid by applying grid-based Simulta-
a Hidden Markov Model (HMM) for each person, which laterneous Localization and Mapping (SLAM).

is used to predict the most likely trajectories of the tratke The people tracker matches the occupancy grid with the
persons. This technique can perform very well for knowmaser scans to extract moving persons and provide an estimat
environments and is able to keep track of persons even aftatheir current states consisting of positions and velesit
they left the sensory range, at least for some time. However, A high level (HL) path planner removes the objects
a required pre-learning and a finite set of preferably welssociated with the person states from the occupancy grid.
distinguishable trajectories make this approach notegple Then the remaining static part of the occupancy grid is
in unknown environments with arbitrary trajectory runs.  used to build a visibility graph on which an A* search is

Focused especially on unknown and densely populatgeerformed, resulting in an optimal static global path [22].
environments, this work presents an approach using MarkovIn parallel, a Markov Chain (MC) model predicts the
Chain (MC) models to predict probabilistic reachable setprobabilistic reachable sets for each person using the stat
of persons, which are then used to compute a risk mastimations retrieved from the people tracker, as destribe

Fig. 2. Outline of the proposed approach.



below. The reachable sets provide the probabilities of the
person dynamics being in a certain state within a certain
time interval.

A low level (LL) path planner transforms the probabilistic
reachable sets from the MC model into risk maps, which
provide the probability that the corresponding person will
occupy a certain grid cell in a certain time interval. Then a
greedy path search is applied using a cost function incorpo-
rating static path costs and the risk maps to determine the
time-minimizing compromise between path length and travel
speed. Fig. 3. Occupancy grid with visibility graph (solid cyan dis) and static

path (dashed red lines), which is blown up by the width of tieot (green).

B. SLAM and People Tracker I . . . .

Within this static grid, obstacles are clustered into rect-
~ The SLAM module and the People Tracker have beegqylar boxes on which C-Space projection is performed
implemented as described in [6]. For SLAM, a Raoyy piowing them up by the robot width, shown as blue
Blackwellized particle filter and an Iterative Closest Ro'nrectangles in Fig. 3. The vertices of these rectangles serve
approach is used in combination with odometry information,s nodes to build a visibility graph and determine a global
The people tracker combines conditiqngl particle filters [5path by applying classical A* following [22]. This path is
with SLAM for enhanced data association. Scan matching,aranteed to avoid static objects in an optimal manner and

of the current with previous measurements is performed {Qy pe adjusted considering the dynamic parts as described
perceive moving persons and provide for each perceived ihe following.

person an estimate of its current state vector
P=(X¥ Vo W), XYVWVeER, (1) D. Human Markov Chain Model

wherex andy are thex- andy— position andvy andvy are

the velocities inx andy direction in global coordinates.

In order to obtain time varying and probabilistic occu-
pancy grids (risk maps) of humans surrounding the robot,
C. High Level Path Planning the continuous dynamics of humans is abstracted to Markov

The high level path planner is used to extract the S,[a,[%hams. Two different models describing the dynamics of

. mans are considered. The first model, referred to as
parts of the occupancy grid and plan a path from the curren )
i ) X o . ~velocity model assumes that the humans move at constant
robot location to a given goalpoint within it. The goalpoint

is retrieved through the behavior selection described jn [GSpeed\/ with heading angle8. The resulting dynamic model

Depending on the current situation, the robot decides VdTIethfor the x- andy-position is

to explore the environment, approach a person, drive to a x=cogB)v, y=sinB)v. 2
specific location or improve SLAM via loop closing. The tracker data is used to initializg0) = |(vy, )| and

To reach the next goalpoint, the robot has to navigate ous(0) = Z(vx, v).
doors in unknown, dynamic, and unstructured environment. The second model, referred to asceleration model
Therefore frequent and complete replanning is requireis defined as a hybrid system. Hybrid systems combine
Methods like Voronoi Diagrams or Potential Fields are rathecontinuous and discrete dynamics such that the system
inappropriate for this purpose, since they either mightltes state is a combination of continuous and discrete states
in huge detours by trying to keep the robot as far away frorj23]. Discrete states are often referred to as locations or
obstacles as possible or they suffer from high computaltionmodes. The hybrid model of the humans has three modes:
costs. Therefore a method suitable for outdoor scenarijs [2standstill accelerationand maximum velocityThe system
is applied, using a visibility graph on which A*-search isevolves in modestandstill if the velocity v is zero and in
performed. Fig. 3 shows an occupancy grid with visibilitymodemaximum velocityf v has reached maximum velocity
graph and static path, derived online with the ACE robot. vy, which can be freely chosen. Otherwise, the mode

In a first step, all frontiers and obstacles within theaccelerationis active which also considers deceleration if
occupancy grid are determined. Frontiers are connectéok acceleration has negative sign. The dynamics of the mode
unexplored cells having each at least one free neighborimgandstillis x= 0, y= 0 and of the modenaximum velocitis
cell, while obstacles are defined as connected occupiesl cel = cog3)Vmax ¥ = Sin()vmax For theaccelerationmode,
In a next step the positio(x,y) of each perceived person the interval of possible acceleration valies [a,3] (a,ac R)
mis transformed into cell coordinateg = (m,n),, (0<m< s introduced, such that the continuous dynamics of (2) is
Wog; 0 <N < hog; M N, Wog,hog € N§), wherewog andhog  extended by _
are the number of columns and rows of the occupancy grid v=a, aclad, ©)
respectively. Then each obstadefor which holdsc; € o  where the intervala € [a,a can be freely chosen. The
is removed from the grid by setting the value of all cellsabstraction from continuous dynamics to Markov chains is
Co € 0; to free space, leaving only the static obstacles faperformed as presented in [20], [21]. Before applying this
the HL path planning. scheme, the state space and input space of (2) and (3) are
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Fig. 4. Rectangularly discretized state space (left) andhrable set starting
from a cell of the discretized state space (right).
gridded into rectangular cells of equal size, see Fig. 4 ffor a ~®
exemplary two dimensional state space. o
The cells of the discretized state space are dergtemd N 3 X —
the ones of the input spaag. The lengthp, of the cellsz, Initial cell z Initial cell z

in the dimension of the:- and y-position are chosen to be Fo 5 E | hable set for= [0.1] (iefty and i

. . . ig. 5. xemplary reachable set fore= [0,r] (left) and corresponding
a r_latu.ral r_n.ultlple of the _ceII sizp. of the occupancy grid. probabilistic reachable set (right).
This simplifies the matching of cellg, of the reachable sets tarting f 5 The riaht side sh th q
to corresponding occupancy grid cellsThe discretization starting fromXo = 7. The right side shows the correspond-

of the velocityvin (3) and the inputs can be chosen arbitrar))ng probabilistic reachable set from the same initial state

The discretization allows the abstraction of continuou btal(r;edkbyt:]he colmpu;etﬂ transnrl]or:j prol?abtlﬁ:tcaﬁ([%r])_. h
space to discrete space, where each cell represents atelisc @eb t?':'ter ¢ e coh(_)r Oth te reliac ed cells, the higher Is the
state and a region of the continuous space. The discrdfe2Panility of reaching that cefl. . .
state is denoted € N and the discrete inpuj € N*. The lBeS|des the computation of th.? transition - matrix
probability that the discrete statehas a certain value is ®((0.1]), the special case of a transition mateb(r) for

denotedp; = P(q=i), whereP() is the operator returning the the tlmte '?[ﬁ'mt :t; |E_|<_:otmputedhaglalog?ufslbems t‘.’jl”OWS to
probability of an event ang is referred to as the probability compute the probabilistic reachable set for both, time {soin

vector. The probability vector for the time stieg- 1 (k € N* and time intervals. This is done as the reachable set for time

with time incrementAt — r) is denotedp((k+ 1)r) and intervals is based on initial cells at the time pdiat 0 such
the one for a time intervat € [kr,(k+ 1)r] is denoted that the probability vector for the time interval is based on

the probability vector for a time point:
p(lkr, (k+1)r]). (k+1)r) = dL(r)pi(kr)
In a next step, the conditional probability that the system Ps = Dsill)pi (5)
starting from state =i with inputg=1, is in states within ps([kr, (k+1)r]) = ([0, r]) pi(kr)

the time intervalt € [0,r] is computed. These conditional \te that the matrix multiplications in (5) are the only o

prob_abiliti(?s P(d =slg=i,§=1te[0r]) are stored in  ompytations that are necessary to obtain the probadbilist
matrices®g; wheres is the row andi the column number. | oachable sets of the humans.

The conditional probabilities are obtained by computing th e giscrete input is chosen such that it includes the
reachable set of the continuous system. The exact reachaBg-:-rson stateé® received from the tracker. In case of the

setR*(r) of a systemx = f(x) 4 v(t) where the uncertain in- \e|ocity modelthe chosen inputrepresents the cetl tvhich

put is taken from a bounded s&t) € V CR" attimet =r € jncjudes the heading ang@and the velocity ([8,V]" € 2).

R is defined as the set of states, that can be reached startijgine velocity is a state variable in taeceleration modeb;

from a set of initial state under all possible uncertain js chosen in this case such that it includes the heading angle
inputs: R(r) = {x|x(t) is a solution ofx'= f(x) +V(t),t = only An exemplary probabilistic reachable set for the time
r,X(0) € Xo,v € V}. Overapproximations of reachable setSnieryg) caset(c [1s,1.55) using theacceleration modeis

are denotedR(r) > R°(r) and the overapproximated set forsjg\gn in Fig. 6 (left), with initial stat&y and velocity vector

the time intervak € [O,r] is defined as the union of aR(t) V() = (X(0),y(0))T. To have a finite set of time intervals for
within t € [0,r]: R((0,r]) := Urejo, R(D)- Reachablelsets that \ne ractical implementation, a maximal temporal predicti
are computed from an initial s = z are denote® ((0.r])  horizon T with k e {0,1,....,(T —1)} is introduced, where
(indexed by the starting cell as well as the input cell). Under js 4 natural multiple of . Figr. 6 (right) shows all resulting
the assumption, that trajectories are equally distribubéin o5 chaple sets foF — 3r. How these reachable sets are used

R}([O_,r]), the probability of reaching the discrete statés 1, herform the probabilistic mapping of the tracked persons
obtained geometrically by computing the intersection @ thig jescribed in the following.

reachable seR ([0,r]) with other cellsz:
| V((R}([O,r])ﬂzs) 4 E. Low level Replanning

si((0.1]) = V(R}([O,r])) “) To enable safe and efficient navigation in crowded places,
The operator V) returns the volume of a geometric objectthe static global path from the high level planning has to be
and the set® ([0,r]) are computed as presented in [24]. Anadjusted by considering the dynamics of the persons. In this
illustration of this approach is given in Fig. 4 on the right.subsection a cost function applicable for a time minimizing
This procedure is repeated in an offline computation for appath search is deduced. Focusing on a short-term adjustment
possible combinations of cellss,|. The left side in Fig. of the global plan, the next waypoint of the latter is used
5 shows a numerical example of an arbitrary reachable sa$ intermediate goalpoirdy, for local replanning. First a



A(W)) and B/ = A(C-C;) Setting the velocity vector,
T k=2:tef2n3] k=2 T o e g . vy i

1 o) - of personrt into relatllo.n with the velocity vectgw’r of the
Y- - robot, v;; can be split into a parallel paw; = |vj| and an

: %L. > k=0 orthogonal par, = |[V]|, where

: VT T with TV VL

; g =V +VI, with V[V, VI L V. (6)

T Under the assumption that the people are avoiding the robot

. i ) as well, it does not have to move backwards out of the
Fig. 6. Exemplary probabilistic reachable sets (accel@mamodel) for . h b . ibl d
the following parameter setr = 0.5s, x(0) € [~0.25m,0.25m], y(0) ¢ =~ W&y So in case the robot meets perspnts possible spee
[~0.25m,0.25m], v(0) € [1.62,2.42] andB(0) € [0, Z]. Reachable set for V' is bounded by G v < mm(vhv"f) for the duration of

k =2 (left) and all reachable sets far= SL(nght). z\,in(WnJrWr) until the person moved at IeastSQNnerr)
Vi - to the side. Such a deceleration leads — under assumption of

constant velocities — to the delay cost

// - A — i T
».W’L//] _ Wrp+W max(mln (V“VH) ’O)

v o, Dl = 1- 7
T Y " (7)
Person . . . .

B for meeting persont when being in celt;. However, it has
e ) to be taken into account thB{j applies only with probability
Robot ' « S’ 7 '

1
m m
=- T where
Fig. 7. Velocity obstacle. A VIJC ( r) ’

potential field is computed, which provides the residuahpat - <Pc)2 ” (1) ®)
costsW to cgp. In parallel the reachable sets for each person = Pz ZHU v

T are computed and a velocity obstacle model is used to d(c,c)

derive the delay cost®. A weighted sum ofw and D Ir = {[kr,(k+1)r]| — € [kr,(k+1)r[} :
leads to the combined cos which are used for greedy

replanning. The prp.babilityuC" (uIF={0jc¢ p™}) is the entry of the
1) Computation of the residual path costs VBince the Probability vectorp™ from (5) corresponding to cett and

growing uncertainty for larger prediction intervals resul I 1S the time interval in which the robot would pass cell
in flatter distributions of the reachable sets, the preaficti "€ rght boundary of the conditional interval is excluded

horizon T is chosen depending on the model dynamics tgere to ensure an explicit assignment of cells to intervals.
allow predictions within a reasonable time window. Given is a normalization factor to encounter cluttered environine

and the desired velocity of the robot, the local replanning Pc @ndp; are the respective cell resolutions of the occupancy

is limited to the aread;, which is robot-centered and of grid and the reachable sets aads the set of cells visible
quadratic Siz€2Tv;) x (2:I'vr). to personm. In that only the part of the reachable sets is

A wavefront algorithm as described in [25] is used t€ncountered, that lies in free space and is in direct line of
compute a local-minima-free potential field, providing the>'dNt O persornt.

residual path costeV = {We|c € Ay} whereW, is the path 3) Computation of the costs CFor the path replanning
cost from cellc to Ggp. To provide a temporal metric the (e path costV and the delay cost® have to be both

. - d(Gg) considered. The combined cost
cost for moving from cellc; to cell ¢j is VrJ , Where mn
d(ci,¢j) = ||ci,cj||, € R is the Euclidean distance of the Ce=aWe+(1—a)y ACD¢ 9)
respective cell centers. Furthermaig,, = 0 is the unique of traversing cellc results from a weighted sum of its path
global minimum. costW and its overall delay codd. wherea €]0,1] is a

2) Computation of the delay costs Dfhe probability weighting factor providing different replanning strategi A
vector py([kr, (k+1)r]) is computed for alk and each person small a corresponds to a low risk strategy, resulting in a
rraccording to (5). The delay coBff in cell c occuring from  path primarily avoiding people while a large corresponds
personr, is given by the temporal delay resulting whento a strategy preferring short path length and accepting
the robot is forced to slow down or wait until the persorhigher collision risks. The lower interval boundary hasrbee
moved out of the wayD is the set{DJ|ce Ay, te M} excluded, sincex = 0 leads toC; = 0 in all cells which
wherefll is the set of perceived persons. To compDfethe do not intersect with the reachable sets of dynamic objects
velocity obstacle approach shown in Fig. 7 is used. Takingnd consequently results in a violation of the constraint fo
the respective obstacle width,; and robot widthw; into C= {C¢|c€ A} to have a single global minimum.
account and further assuming both to have circular shape, aTo adjust the global path, a simple greedy searclCads
potential collision occurs in case the robot moves frgno  used for replanning. Sinc€ can have local minima within
¢, while the obstacle moves fromy, to ¢}, whered(c;,,c;) =  risk regions, hill-climbing is enabled by limiting the selr
0.5(wy +w;). For this computation constant velocities aregfrom cell ¢; to the set of neighboring cells, for which
assumed, i.ev; = v; andV); = vy, while the heading3;= W, <W;. In the next section, some experimental results for




TABLE |
MODEL PARAMETERS

Robot: v =27

Resolutions: pc = 0.15m
pz=0.6m
At=05s, T=3s

Dynamic model: ve[0T,2.47]

Av=0.87T (3 sectors)
AB =T (10 sectors)

only acceleration model ac[-103,1.03
Aa= 21T (3 sectors) Fig. 8. Scene with one person for three time steps in cluttene@onment
Simulated Persons (ground truth): v =17 (C-Space), derived online with the ACE robeaicteleration modégl
Replanning:
short distance path (cyan) a=1 . Velocity Acceleration
fast path (blue) a=10"
low risk path (green) a=1018 model a=1 Medg
a=1"°
TABLE II G\ |
—1-18 oal
REPLANNING DURATION (AVERAGED OVER 100RUNS) RObOt\ a=1 o
Persons
No. of Velocity model Acceleration model " % with v
Persons uto max uto max
1 45mst4ms  50ms | 100mst4ms 109ms -t <— Free space il
2 85mst4ms  108ms | 198nst4ms 214ms Risk
3 117ms+5ms 127ms | 308nst6ms 322ms region
. . . . . . . Unexplored
various situations are given, showing risk maps and resplti space

path for different values ofr.
Fig. 9. Scene with three persons in free space: comparisealo€ityand
IV. EXPERIMENTAL RESULTS acceleration modefor different values ofa.

The described algorithm has been fully implemente:
in C++ as part of the ACE project [1]. Fig. 8 shows
results derived online with the ACE robot. Given that
real data suffers from various sources of uncertainty, tr
remaining results (Fig. 9 and Fig. 10) have been de
rived using the Stage simulator of the Player Project (se
http://playerstage.sourceforge.petThus, ground truth for
the person stateB could be used, giving the results an en-
forced stand-alone character. To achieve comparabilitief Fig. 10. Scene with three pers%ns in cluttered environmenthiee time

. . _steps écceleration modela = 107°).
scenes, a constamt was used only for replanning, meaning
the robot did not move during the shown simulations. Table Comparing in Fig. 9 thevelocity model(left) with the
| contains the parameters used for the simulations. acceleration modelright), shows broader and flatter risk

Fig. 9 shows the risk regions for theelocity and ac- regions for the latter case. This can be traced back to the
celeration modelfor a scene with three persons in freeextended model dynamics, which consider also the possibil-
space. Replanning with constawt and constaniAt leads ity of a turn around in case of a deceleration. This becomes

to an uniform spatial interval propagation around the rpbovery clear when considering the low risk paths foe 105,
observable in the slight ring structure of the risk regidiig. ~ For thevelocity modethe risk regions of the upper and the
9 shows furthermore the resulting paths for replanning witmiddle person do not intersect, leading to a feasible low ris

three values ofr, revealing how the value af is influencing path passing between them. The risk regions derived with the

the magnitude of deviation from the shortest path. The pati@celeration modetio intersect. Therefore the low risk path
for a =1 are disregarding the delay codis completely, deviates in the beginning to the top, until the hill-climgin
resulting in paths with shortest length. The triangularpgha behavior forces it to pass in front of the upper person.
results from the cell-wise replanning. Replanning with= Fig. 10 points out the effect of thg-normalization. Here
1018 indicates the opposite case where the path at/stse  for the upper person heading towards the wall at the tep (
almost neglected and the delay coBtsare given a strong ti At =ty), only the parts of the reachable sets lying below
weight, resulting in low risk paths trying to avoid the riskthe wall are considered. This leads to higher risk potesiiral
regions as far as possible. The paths with= 10> are front of the wall compared to the risk regions corresponding
searching for a trade-off between goal-orientation ank risthe other two persons.

minimization. The small order of magnitude @farises from The softness attribute of the approach is especially per-

the broad and therefore flat risk distributions and furthanen ceivable att = t3, when considering the person heading
from the y-normalization, which considers the mapping ofto the right through the upper door. In this situation, hard

onez cell to here 16 correspondingcells. obstacle avoidance or space-time volumes might block the



door resulting in no feasible path at all, while the presente [3]
approach is still capable to find a valid path.
All results were derived on a AMD Athlon 64 X2 Dual

4

Core 3800+ with 2GHz and 2GB RAM. The average and[ ]
maximal replanning durations for the scenario of Fig. 10
are shown in Table Il. The complexity to compMéscales g
linear with the size(2Tv)? of Aj. The complexity to
compute D scales linear with the number of persofis 6]
where the complexity to comput&? scales quadratic with
the number of acceleration sectargu = 1 for the velocity
mode). Thus the complexity to compute the co§&tgesults
in O((2T v )2+ Mu2). 7

V. CONCLUSION 8]

An approach for a risk mapping of moving persons is
presented which leaves the complete space free of statlél
objects for path planning. The dynamics of people are
modeled offline with Markov Chains, which are used onling10]
to predict reachable sets of tracked persons and provide an
estimate of their potential future locations. These ede®a ;1
are then combined with a velocity obstacle approach to
determine the delay cosB, resulting in case of a potential
co-occurence of robot and respective person. A weighted SL}IlT%]
of delay costdD and path cost8V serves to adjust a global
static plan by considering the environmental dynamics. TH&3l
weighting factora provides the soft trade-off between detour
and time delay for replanning.

The results show the capability of the approach to finé4l
a valid path through potentially obstructed space in dgnsel
populated environments. Furthermore the suitability for o [15]
line applications could be shown. Although the approach is
here applied to people, it can be easily extended to othgg;
dynamic objects.

Future work may concentrate on extended MC models
considering also interactions of dynamic objects with the e [17]
vironment. Further interesting developments especialtih w
focus on fast replanning are to combine the delay cbsts 18]
with anytime path planning solutions such as AD*. Anothe[
important concern is that object occlusion often causes the
data association of the tracker to fail, resulting in inaate (19]
state estimations of the persons. More reliability in this
respect would considerably increase the robustness of tf26]
presented approach.
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