Sampling feature points for contour tracking with graphics hardware

Erwin Roth, Giorgio Panin, Alois Knoll

Technische Universitdt Miinchen, Fakultit fiir Informatik
Boltzmannstrasse 3, 85748 Garching bei Miinchen, Germany
Email: eroth@mytum.de, {panin,knoll}@in.tum.de

Abstract

We present in this paper a GPU-accelerated al-
gorithm for sampling contour points and normals
from a generic CAD model of a 3D object, in
order to aid contour-based real-time tracking al-
gorithms. The procedure achieves fast computa-
tion rates for generic meshes consisting of polyhe-
dral, non-convex as well as smooth surfaces. This
method is part of a general purpose, multi-camera
and multi-target framework, supporting rigid and
articulated objects, in order to achieve a high degree
of generality for different tracking scenarios.

1 Introduction

Contour-based tracking is a class of methodologies
that make use of contour models from an object
in order to estimate its position and orientation in
space. This information is obtained by projecting
the wireframe model at a given pose hypothesis
onto the current image, and identifying the visible
feature edges [12] suitable for tracking: these can
be defined as a subset of the visible object contours
at a given viewpoint, that can be reliably identified
because located on a significant color or shading
discontinuity; for example, silhouette and flat sur-
face boundaries, sharp internal edges of polyhedra,
and texture edges.

From the visible feature edges at a given view-
point, a set of sample points and screen normals is
usually selected and matched with the image data,
by means of a likelihood function that can be de-
fined in several possible ways [6, 10, 9].

All of these algorithms require real-time pro-
cessing capabilities in order to achieve robustness
against object motion, for complex models con-
sisting of possibly thousands of polygons, as well
as multi-target scenarios. Moreover, especially for
non-convex models, they usually must be formu-

lated in a multi-camera setting [4], which can solve
the inherent localization ambiguities arising from a
single view of the object’s silhouette.

However, visibility computation and edge sam-
pling can result in a very expensive procedure, if
performed on the CPU with standard computational
geometry tools [11, 16], whereas on modern graph-
ics cards this procedure may be tremendously accel-
erated, thanks to the hardware-accelerated polygon
rendering and depth testing capabilities.

Several requirements can be identified concern-
ing the algorithm for sampling visible edges in an
object tracking context.

First of all, the method should be able to handle
generic CAD wireframe data for non-convex mod-
els, preferably without requiring wireframe pre-
processing or simplification, in order to keep pre-
cision of pose estimation.

For real-time applications, the overall computa-
tional time should also be fast (within 5ms) and
model-independent.

The algorithm should further be able to distin-
guish between edge types, which may require a dif-
ferent handling related to the tracking method or
imaging properties: most notably boundary, con-
tour, crease, marked and silhouette edges [12].

Concerning pose estimation, it is also important
to get a uniform sampling of contour points in im-
age space. This allows a better conditioning of
the optimization algorithm, and exploits in the best
way the information obtained from image-detected
edges.

Moreover, in order to keep uniform computa-
tional requirements, as well as a uniform estima-
tion precision across different object postures, the
method should support a dynamic sampling inter-
val in order to achieve a more or less constant num-
ber of sample points, independent on the projected
object size.

For many purposes, image sample points should

VMV 2008

0. Deussen, D. Keim, D. Saupe (Editors)

also keep the information about the original points
in model space, from which they are projected.

Concerning overlapping, parallel edges that be-
long to the surface horizon (i.e. with normal vec-
tor almost orthogonal to the viewing ray) or parallel
edges which are very close in image space with re-
spect to the pixel resolution, the method should be
able to suppress them automatically.

A crucial requirement for multi-target scenarios,
within a unified framework like the one described
in [13], is the ability to detect and handle mutual
occlusions, eventually varying the sampling density
on a per-target base, up to the sensor’s physical res-
olution limit for occluded or clipped objects.

Finally, a very important requirement for track-
ing articulated structures [3, 5] is the support of
differentiated contour point sampling from different
object parts.

In the computer graphics literature, there are sev-
eral works [8] dealing with the problem of effi-
ciently identifying and rendering feature edges, in
order to obtain non-photorealistic rendering (NPR)
for cartoons and artistic drawings.

Following the ideas proposed by the above men-
tioned works, we developed a GPU-accelerated al-
gorithm that copes with the above mentioned re-
quirements, while achieving the required speed for
real-time tracking tasks.

The paper is organized as follows: Section 2 de-
scribes the general multi-camera setting and matrix
notation; Section 3 gives an overview of the algo-
rithm, and Sections 4 and 5 describe more in detail
the off-line and on-line programming steps for both
vertex and fragment shaders; experimental results
and computational times are given in Section 6, and
Section 7 concludes the paper and proposes future
developments.

2 Camera views and pose parameters

Our target scenario consists of multiple, calibrated
cameras for tracking the pose of an object in 3D
space, with respect to a world reference frame (Fig.
D).

In a general setting, the current (4 x 4) transfor-
mation matrix 5 T' between world and object is ob-
tained by a prediction step from the previous frame
estimate, and is updated by the tracking algorithm
according to the measurement likelihood.

Figure 1: Coordinate frames for the multi-camera
mapping

Depending on the required class of transforma-
tions (similarity, affine, articulated etc.), we can ex-
press the homogeneous (4 x 4) transformation ma-
trix 3 7" in terms of a corresponding minimal set of
pose parameters p

O T(p) = & T6T (p))

where the incremental matrix d7" is function of the
pose parameters, and & T is a reference transform,
estimated from the previous frame.

For each camera C), the following information
is supposed to be provided off-line, via a standard
calibration procedure: the intrinsic (3 x 4) projec-
tion matrices ch, and the extrinsic transforma-
tions cV*V] T between world and camera frames.

Therefore, we define a warp function, that maps
object points to image pixels

y = W(z,p,Cj))

which is computed in homogeneous coordinates as

-1
7 = Ko, (87) ETwE 0
AN
i
Y3 Y3

Many pose estimation procedures [6] are based
on nonlinear LSE cost functions, which also require
first-order derivatives of W in p = 0, given by

Jy _ 1 [wiays — wisyy
8 e B I C)
Di | p=o Y3 Wi,2Y3 — Wi,3Yo
w, = K, (ZYT) wpd (0T)
J apl,

Uncalibrated, monocular 2D tracking tasks can
be dealt with, by letting K = [I 0] and defining
the 2D transformation (similarity, affine, etc.) and
Jacobians accordingly.

3 Overview of the sampling algorithm

The main target of our work consists in sampling
good features for tracking from the object model,
under a given pose and camera view.

Figure 2: Sampling visible feature points and nor-
mals from a wireframe CAD model.

Starting from a polygonal mesh model (Fig. 2),
we first identify the visible feature edges at pose
wr.

e crease: sharp edges between front-facing

polygons of very different orientation

e boundary: boundary edges of flat surfaces

e silhouette: boundary lines, located on the sur-

face horizon

Figure 3: Edge from vg to v, with adjacent vertex
information

Afterwards, feature points h; are uniformly sam-
pled (right side of Fig. 2) in image space, also pro-
viding screen normals n;, as well as Jacobians %hi .

For this purpose, we developed a GPU-based
procedure inspired by [12], that efficiently makes
use of vertex and fragment shaders in order both to
compute visible edges, and to subsample them uni-
formly in image space, also providing their location
in 3D object space (which is required for computing
Jacobians).

The algorithm is implemented platform
independently ~ with OpenGL 2.1.2, and
makes use of the OpenGL shading language

GLSL 120 (http://www.opengl.org/
documentation/glsl/) for implementing
vertex and fragment shader programs. Fur-
thermore, it requires that the graphics adapter
driver supports the vendor-independent OpenGL
extensions GL_EXT _texture_integer [1] and
GL_ARB_occlusion_query [2].

4 Offline processing steps

The overall procedure can be split into offline and
online computational steps (Fig. 4). Offline pro-
cedures are executed only once, before the tracking
sequence starts, and are independent on the object
pose parameters.

The first offline step builds a list of unique edges
for each object (an articulated object can consist
of multiple parts) from the CAD wireframe model,
which is stored in an XML COLLADA (http://
www.collada.org) file format. This list con-
tains the geometry data of the two vertices vo and
v1 in object space, along with the edge tangent vec-
tor from vo to v1, and a reference to all polygons
which share the edge; additionally, the face normals
of the referring polygons are also stored.

Henceforth we will refer to the object-specific list
index as shape ID, and to the edge position within
the list as unique edge index. Furthermore, the
unique edge count per object is stored (or, in case of
an articulated object, the sum over all body parts).

In a second step, we encode the above mentioned
data into an edge mesh, similar to the one described
in [12]. This is obtained by iterating over all unique
edges of each object, and storing the respective ad-
jacency information as per-vertex attributes (Fig.
3): object space coordinates of vo, v1, v2 and vs;
normals of adjacent polygons A and B (or just A
for a boundary edge) na, np; the unique edge in-
dex; per-edge vertex array indices (0 for vg and 1
for vy).

The latter information is important (see Sec. 5.2),
since in the edge mesh each line is actually encoded
with identical vertex attributes, apart from the ver-
tex array index, so that it must be called twice (first
with index 0, then 1), in order to obtain a real line
primitive for OpenGL. The edge mesh of each ob-
ject is then compiled into a line primitive display
list.

A third step consists in creating and compiling
the standard polygon display list for each object

(and their respective parts). The two list types are
assigned to the respective objects by using the shape
ID.

Finally, for the last offline step, the OpenGL
framebuffer and shader programs are prepared as
required for the subsequent online operations of the
rendering pipeline.

In order to perform the off-screen texture render-
ing, a framebuffer object is instantiated, with three
integer-valued textures and a depth buffer texture.
All textures have same size as the output image,
for which we do in a later step the visible feature
matching.

5 Online processing steps

Five runs of the OpenGL rendering pipeline are
required by our algorithm, each one with differ-
ent vertex and fragment shaders, as described here-
inafter. In the following, we will denote a specific
instance of an object to be tracked as a target, con-
sisting of a single or multiple parts, the latter in case
of an articulated object.

Online processing starts from the world pose pa-
rameters for all targets, by setting a projection ma-
trix for each camera, all target-specific model-view
matrices, and clearing all color textures and the
depth buffer.

5.1 First shader run

Object meshes are drawn as filled polygons into the
depth and color buffer (Fig. 5a), with depth test
enabled, where the fill colors encode the respec-
tive target ID; polygonal faces also receive a small
depth offset during rendering, in order to ensure that
all visible edges of the next rendering step pass the
depth test (avoiding the stitching phenomenon).

In order to get the highest depth buffer resolution,
far and near clipping planes are set as the distance
of the farthest and nearest target in camera space
respectively, by taking into account the respective
bounding sphere radii. For articulated models, the
overall radius must be re-computed at every pose
update.

Off-line

1. Generate a list of unique edges per object from the
CAD wireframe model, with adjacency data

2. Build edge meshes from the unique edge lists and
compile it as OpenGL display lists

3. Generate and compile an OpenGL polygon display
list for each object (and object part)

4. Compute the minimum bounding sphere for all ob-
ject meshes

5. Initialize the OpenGL framebuffer contexts

On-line Update projection and model view matri-
ces for all targets and cameras, and execute the fol-

lowing shader runs:
1. First run: draw all targets as filled polygons
2. Second run: select feature edges for tracking; use the
edge mesh list in order to draw selected edges onto
the texture produced by the first run, with depth test
enabled; count the number of visible edge pixels per
target
3. Third run: compute the potential number of visi-
ble sample points per unique edge (optionally: filter
non-silhouette edges)
4. Fourth run: sum up the sample point numbers for
multiple unique edges of the previous run
5. Fifth run: for each target, adjust the sampling den-
sity per edge, in order to reach the desired number
of sample points per target; create for each visible
sample point a fragment in the output texture vec-
tor (optionally: suppress visible sample points from
nearby edges with similar orientation)
. Copy visible sample point data back to the CPU
7. On the CPU: recover sample point locations in ob-
ject space, by using the interpolation coefficient, and
optionally compute screen Jacobians

=)}

Figure 4: The overall contour sampling algorithm.

5.2 Second shader run

In the second shader run, the edge mesh display list
(from off-line step 2) is called, and the output is
stored as an integer texture (Fig. 5b). In particu-
lar, each edge is drawn with a thickness value larger
than one pixel, in order to be able to successfully
subsample it during the next run.

Depth testing is also enabled, using the depth
buffer data created during the first run. Most com-
putations here are done inside the vertex shader.

First, a test is performed in order to select fea-
ture edges, satisfying at least one of the following
properties. When the silhouette is required, only
boundary and contour edges are considered as fea-

ture edges.
Contour [n 4 -view<0] XOR [np-view<0]
Ridge [namp<—cosOr] AND [(vg—v2)-n4<0]
Valley [namp<—cosfy] AND [(v3—v3)-n4>0]
Boundary w3=vg

®)

In this equation, n4 and np are the unit polygon
normals, view is the camera-to-object ray, fr and
Oy are the ridge and valley angle thresholds (Fig.
3).

Only feature edges are furtherly processed by the
vertex and fragment shader, while the others are
discarded, by putting the respective vertices onto a
clipping plane.

Afterwards, the two vertices (vo and v1) are pro-
jected onto the screen, by using the model view and
projection matrices.

The most front-facing of the two adjacent poly-
gons that share the edge is selected, according to
the scalar product between normal and view vec-
tor. Then, the edge screen normal related to this
polygon is computed, and its direction angle, with
respect to the horizontal axis, is stored as a single
integer value.

The choice of the normal direction is done in
order to get uniformly (inward or outward) point-
ing normals, an approach which is advantageous for
region-based matching algorithms using the silhou-
ette contour (e.g. the CCD method [14]).

During the subsequent rasterization process of
the OpenGL rendering pipeline, the distance of the
current edge pixel in image space from the edge
vertex vo, is interpolated and encoded inside frag-
ments, where the interpolation coefficient is quan-
tized, according to the bit size of the output color
channel.

Subsequently, the fragment shader accesses the
above interpolated value, and writes the following
output per fragment:

e normalized distance of projected edge pixel

from vo

e target ID

e unique edge index

e edge screen normal direction

Finally, each fragment undergoes the depth
buffer testing of the last pipeline stage, so that
mutual- and self-occlusions between objects are
handled.

The number of visible edge fragments per target
which pass the depth test is computed, by using the
OpenGL extension GL_ARB_occlusion_query. The
resulting values are returned to the CPU, and used
as input for shader run three and five. Since our
algorithm should support multiple instances of the
same shape, we also pass a dynamically generated
target ID as an additional vertex attribute, besides
the pre-compiled edge mesh list.

5.3 Third shader run

At this level, we compute the number of potentially
visible sample points per edge, for each target. Also
in this run, most of the processing is performed by
the vertex shader, which again uses the edge mesh.

Each unique edge of this mesh is mapped to a
fragment in the output texture, so that the over-
all number of unique edges is only limited by the
texture resolution. The resulting fragment data for
multiple targets are organized as one long vector,
wrapped into multiple lines of the output texture
(Fig. 5d).

The one-to-one fragment to pixel mapping is
achieved in a standard way, by using an orthogonal
projection model in place of the real perspective.
In this run, only feature edges selected by (5) are
furtherly processed, while the others receive a zero
counter.

Subsequently, we check whether the edge lies
completely or partially outside the viewing frustum,
by projecting vp and vy onto the image and com-
paring their coordinates with the clipping planes: if
both vertices were clipped, we set the value to zero.
For partially clipped edges, their clipped length is
also computed.

The output fragment position is obtained by
adding a target-related offset to the unique edge in-
dex.

Individual edge points are here subsampled tfrom
the large amount obtained in the previous run (Fig.
5c); the resulting number of points will be encoded
in the output fragment color (Fig. 5d).

In order to obtain a point count close to the
desired number per target, we compute a target-
specific uniform sampling distance, in image space.

This requires a careful computation, since the
distance depends on several factors: the desired
number of points per target, the visible edge frag-
ments per target (from the previous run), the hori-
zontal and vertical resolution of the texture, the ren-

dered line thickness, the unclipped length, and its
orientation (since the pixel discretization of a seg-
ment is also orientation-dependent).

The sampling distance provides finally the num-
ber of potentially visible points per edge, which are
looked-up in the input texture, and added if the cor-
responding pixel is found.

Feature edges longer than one pixel, but shorter
than the sampling distance, will receive at least one
sample point. As a consequence, the desired num-
ber of points per target must always be higher than
the amount of visible edges, at any given pose.

5.4 Fourth shader run

In the fourth run, the sample point data of the previ-
ous run are compressed, by summing up the coun-
ters for multiple edges (Fig. Se). This is done in
order to minimize expensive texture accesses, dur-
ing the subsequent run.

The compressed output is designed in order to
occupy a single row in the output texture. This is
obtained by adjusting the sum interval, according to
the overall number of unique edges and the texture
width.

The next run will use these data in order to com-
pute the drawing offset for each edge, as well as the
overall number of estimated points per target.

The main challenge in the fourth run lies in the
fact that we cannot simply iterate over all edges of
the previous texture, but we also have to take care of
the target boundaries. Moreover, an accumulation
over the edges of a target cannot be parallelized in a
single shader run, and represents therefore a bottle-
neck for GPU computations that should be avoided.

5.5 Fifth shader run

The goal of the fifth run is to create a tightly packed
vector of sample point data to be returned to the
CPU (Fig. 5f,g), since large data transfers from the
GPU have a severe performance impact.

The number of sample points per target should
be as close as possible to the desired sample point
value, yet never exceed this limit, independently of
the projected area of the targets.

As optional user requirement, sample points of
edges with similar orientation in a close neighbor-
hood should be suppressed.

€12 €11
=24 =0

€i1
=X

d) ¥
€1 €1 €13 €14 €15 €15 € €13
=11 =14 =0 =17 =0 =5 =6 =0

€i2

=X

EI’"

z(el,j)
=1k

PACH
j=k+1,k*1

=42 =35

g)

R I L I
1,1,1 11m | 1,21

p P

t,1,1 to,m

p p p
12

,m | L04i,1

1,0m

Figure 5: Shader textures: a) 1°* run; b) 2"¢ run;
¢) 3™ run edge sampling; d) 3" run output; e) 4**
run output; f) 5" run adjusted sampling; g) 5 run
result; e; ; = potential edge sample points; ¢ = target
ID; 7 = unique edge index; & = edge accumulation inter-
val (k = 5;k * | # n); m = edge-specific visible point
counter; n = unique edge count per target; o = visible
feature edge count; pt o m = sample point data for the
respective position;

5.5.1 Vertex shader

This shader uses data generated by runs two, three
and four. The first steps, in particular, are identical

to the ones of the previous run.

Afterwards, the potentially visible point number
per edge is obtained from the corresponding texture
pixel of run three (Fig. 5d). Processing is continued
only for edges with at least one sample point.

We compute the horizontal offset of the first
point, by accumulating the visible points for all
edges belonging to this target with an increasing in-
dex. Subsequently, the overall sample points for
this target are updated, by summing up the edge
counters.

An initial sampling distance per target is com-
puted as in shader run three; the overall samples are
then compared with the desired value, and the dis-
tance adjusted on basis of the resulting ratio (plus a
safety factor), as well as the corresponding horizon-
tal offset in the output texture.

As in run three, we sample along the current edge
in the texture generated of the second run, according
to the above adjusted sampling distance (Fig. 5f),
and count the successful hits. At the same time, we
encode the hits profile into a bit array, with a bit set
to 1 for successful samplings. This information is
passed on to the fragment shader, in order to avoid
expensive texture lookups.

The number of hits is also used for repositioning
the edge mesh vertices vo and v1, in order to form a
horizontal line (vector) in the output texture, which
consists of exactly as many fragments as successful
samples. This counter is also used as the upper limit
for a varying variable, whose interpolated value (af-
ter rasterization) is used by the fragment shader, in
order to identify the bit array value to work on.

The horizontal offset of the left line vertex vg is
given by the previously computed horizontal offset,
while its vertical offset is instead defined by the tar-
get ID number.

5.5.2 Fragment shader

The offset of the current fragment within the hor-
izontal line is defined by the rasterization process.
For each fragment, the following sample point data
are encoded into the color channels:

e normalized distance of successful sample

point from vg (in image space)
e unique edge index
e direction of the screen normal

By using the corresponding sample point offset,
we can retrieve the edge data from the texture of

run two. This offset is computed by the respective
bit array index value, and the sampling distance cal-
culated in the vertex shader.

An additional user option allows to suppress
sample points which are close to other edges of the
same target with similar orientation, but closer to
the camera.

If this option is disabled, the fragment shader per-
forms only a single task, which consists of returning
the data of the specific sample point of the current
edge. Otherwise, the following steps are addition-
ally executed before writing the output data.

Starting from the image coordinates of the cur-
rent sample point, we search along both sides of the
edge normal, up to a user defined distance, for other
edges belonging to the same target, with similar ori-
entation but a smaller depth value.

If a point which meets the above conditions
is found, we suppress the current fragment out-
put. This depth comparison requires also the depth
buffer, which has been generated in the first run.

5.6 Data transfer and CPU-related com-
putations

At this level, we copy the output of the last shader
run back to the CPU, and store the sample point data
into a hierarchical storage structure, ordered both by
target and unique edge indices. The edge-wise orga-
nization of sample points is beneficial, for example
in case of edge-based outlier removal methods like
RANSAC [7].

Based on the vertical offset of the output data,
we identify the target ID related to each sample
point, and consequently the corresponding target
mesh data.

From these data, we compute the object space
coordinates of the point, by using the unique edge
index, the edge tangent vector and the normalized
distance of the sample point from vo.

Finally, we can apply the warp function (2) to
project it again on image space (which actually is a
redundant step), as well as to get the Jacobians aa';" .
If required, the image space normal is also decoded
and stored.

6 Experimental results

This Section presents experimental results, show-
ing the algorithm’s flexibility and performance, as

well as its behavior under special conditions like
mutual object occlusions. The following tests were
executed both under Windows XP and Linux OS,
although in the following we present the results for
Linux OS only.

Our test machine has been equipped with an In-
tel Core 2 Duo CPU, running at 2.13 GHz, with 2
GB RAM, and a NVIDIA 8600GT graphics adapter
with 512 MB RAM. A Linux OS has been installed,
together with the NVIDIA graphics driver version
169.12, supporting OpenGL version 2.1.2.

The timing results presented in the following, re-
flect the average time in milliseconds required by
the algorithm to execute all of the online processing
steps (see, Fig. 4). All test runs include computa-
tion of Jacobians for a 6-dof rigid body pose repre-
sentation.

The optional suppression of nearby edges is
disabled. All measurements, besides the ones
shown in Table 2 were executed with a mech-
part CAD model (http://www—-c.inria.fr/
gamma/download/download.php) (see Fig.
2) converted to the COLLADA format, with 358 tri-
angles and 537 unique edges.

Table 1 shows performance results for different
number of sample points per target, at an image res-
olution of 1024x768 pixel.

100 200 400 1000
146 156 1.74 2.19

Sample point count 50
Avg. time [ms] 1.40

Table 1: Sample point count comparison

Table 2 presents results for different object model
sizes. The first column shows the timing for a sim-
ple cubic object, while the remaining ones use the
mech-part object model, or subdivided versions of
it. Image space resolution was set to 640x480 and
the sample point threshold was set to 400. The cur-
rent algorithm implementation is not optimized for
meshes with less than 100 unique edges and a single
target only.

12 358 1432 5728 22912
18 537 2148 8592 34368
1.32° 210 5.73 15.04

Triangle count
Unique edge count
Avg. time [ms] 1.05

Table 2: Results for different model sizes

The algorithm can handle object meshes of high
complexity, as show in Fig. 6.

Table 3 presents results for an increasing num-
ber of simultaneous targets within the same scene.
To simplify testing, we used the same object model
for all targets, although our algorithm is not lim-
ited to this case. Tests were executed with an image
resolution of 1024x768, and a desired sample point
number of 200 points per target.

Target count 1 2 5 10 50
Avg. time [ms] 1.56 2.16 3.70 6.37 27.09

Table 3: Results for multiple targets

In Table 4, results are shown for different reso-
lutions, again with a single target and 200 sample
points.

Image size-x 320 640 800 1024 1280 1600
Image size-y 240 480 600 768 1024 1200

Avg. time [ms] 0.92 1.13 129 156 202 2.57

Table 4: Results for different image sizes

Table 5 shows furthermore the behavior of the
algorithm in a multi-camera setup using a single
GPU. Tests were executed under the same condi-
tions as before.

Camera count 1 2 3
Avg. time [ms] 1.56 3.15 4.68

Table 5: Multiple cameras comparison

Fig. 7a and Fig. 7b show the object pose, with
occlusion-dependent dynamic sampling, that tries
to keep the number of points per target as close as
possible to the desired value, by adjusting dynami-
cally the sampling distance. Fig. 7c shows the same
scene as Fig. 7a, with only silhouette edges.

Additionally, Fig. 7d shows an example of active
suppression of nearby edges with similar orienta-
tion.

Finally, Fig. 9 and Fig. 8 show edge sampling
results for articulated 2D and 3D models.

Figure 6: Silhouette contour sampling and normal computation for objects with complex meshes; a) Bi-

plane airplane; b) Quadcopter; ¢) Formula 1 car

I

i

i

= ’{--NN---MN--&‘M-;

}

§ T—

i g

i

———
e

#

Figure 7: a,b) Pose and occlusion dependent vis-
ibility checking and sampling; c) sampling of sil-
houette edges only; d) sampling with activated sup-
pression of vicinity edges

Figure 9: Edge sampling and normal computation
for an articulated 2D hand model

Results of the algorithm’s application to real-
time 3D tracking tasks, involving different contour-
based likelihood functions, can be found in [15].

Figure 8: Visibility checking and sampling for an
articulated object in 3D for a multi-camera setup
(computation of front and side view): sampling of
all feature edges (top row), sampling of silhouette
feature edges only (bottom row)

7 Conclusions

We developed a novel GPU-accelerated visibility
computing and feature edge sampling algorithm,
which is capable to support real-time tracking appli-
cations of multiple, rigid or articulated 3D objects
from generic CAD data. Future developments in-
clude the computation of image Jacobians directly
on the GPU, and the integration of this algorithm
with feature matching and likelihood computation
directly on the graphics card.

References

(1]

(2]

(3]

(4]

(3]

(6]

[7

—

(8]

(9]

[10]

[11]

[12]

Pat Brown and Michael Gold.
EXT_texture_integer (OpenGL Extension
Registry).

Ross Cunniff, Matt Craighead, Daniel Gins-
burg, Kevin Lefebvre, Bill Licea-Kane,
and Nick Triantos. ARB_occlusion_query
(OpenGL Extension Registry).

Teo de Campos. 3D Visual Tracking of Artic-
ulated Objects and Hands. PhD thesis, Uni-
versity of Oxford, 2006.

Tom Drummond and Roberto Cipolla. Real-
time tracking of multiple articulated structures
in multiple views. In ECCV (2), pages 20-36,
2000.

Tom Drummond and Roberto Cipolla. Real-
time tracking of highly articulated structures
in the presence of noisy measurements. In
ICCV, pages 315-320, 2001.

Tom Drummond and Roberto Cipolla. Real-
time visual tracking of complex structures.
IEEE Trans. Pattern Anal. Mach. Intell.,
24(7):932-946, 2002.

Martin A. Fischler and Robert C. Bolles. Ran-
dom sample consensus: a paradigm for model
fitting with applications to image analysis
and automated cartography. Commun. ACM,
24(6):381-395, 1981.

Bruce Gooch. Theory and practice of non-
photorealistic graphics: Algorithms, methods,
and production system. SIGGRAPH 2003
Course notes 10. course organized by M. C.
Sousa.

Robert Hanek and Michael Beetz. The con-
tracting curve density algorithm: Fitting para-
metric curve models to images using local
self-adapting separation criteria. Int. J. Com-
put. Vision, 59(3):233-258, 2004.

Chris Harris. Tracking with rigid models. In
Active Vision, pages 59-73, Cambridge, MA,
USA, 1993. MIT Press.

Aaron Hertzmann and Denis Zorin. Illustrat-
ing Smooth Surfaces. pages 517-526, New
York, 2000.

Morgan McGuire and John F. Hughes.
Hardware-determined feature edges. In NPAR
"04: Proceedings of the 3rd international sym-
posium on Non-photorealistic animation and
rendering, pages 35—47, New York, NY, USA,

[13]

(14]

(15]

[16]

2004. ACM.

G. Panin, C. Lenz, S. Nair, E. Roth, M. Wo-
jtezyk, T. Friedlhuber, and A. Knoll. A unify-
ing software architecture for model-based vi-
sual tracking. In IS&T/SPIE 20th Annual Sym-
posium of Electronic Imaging, San Jose, CA,
2008.

Giorgio Panin, Alexander Ladikos, and Alois
Knoll. An efficient and robust real-time con-
tour tracking system. In ICVS ’06: Proceed-
ings of the Fourth IEEE International Confer-
ence on Computer Vision Systems, page 44,
New York, USA, 2006.

Giorgio Panin, Erwin Roth, and Alois Knoll.
Robust contour-based object tracking integrat-
ing color and edge likelihoods. In Proceedings
of Vision, Modeling, and Visualization, 2008.
M. S. Paterson and F. F. Yao. Binary partitions
with applications to hidden surface removal
and solid modelling. In SCG ’89: Proc. of
the fifth annual symposium on Computational
geometry, pages 23-32, New York, NY, USA,
1989. ACM Press.

