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Abstract. In most real-world information processing problems, data is
not a free resource; its acquisition is rather time-consuming and/or ex-
pensive. We investigate how these two factors can be included in super-
vised classification tasks by deriving classification as a sequential decision
process and making it accessible to Reinforcement Learning. Our method
performs a sequential feature selection that learns which features are
most informative at each timestep, choosing the next feature depending
on the already selected features and the internal belief of the classifier.
Experiments on a handwritten digits classification task show significant
reduction in required data for correct classification, while a medical di-
abetes prediction task illustrates variable feature cost minimization as a
further property of our algorithm.

Keywords: reinforcement learning, feature selection, classification

1 Introduction

In recent times, an enormous increase in data has been observed, without a cor-
responding growth of the information contained within them. In other words,
the redundancy of data continuously increases. An example of such effects can
be found in medical imaging. Diagnostic methods can be improved by increasing
the amount of MRI, CT, EMG, and other imaging data yet the amount of un-
derlying information does not increase. Even worse, the redundancy of such data
seems to negatively impact the performance of associated classification methods.
Indeed, common engineering practices employ data-driven methods (including
dimensionality reduction, nonlinear PCA, etc.) to reduce data redundancy.

On the other hand, obtaining qualitatively good data gets increasingly ex-
pensive. Again, medical data serves as a good example: not only do the costs of
the above-mentioned medical imaging techniques explode—MRT scans are per-
formed at the end user price of several thousands of US dollars per hour—but
also diagnostics tests are getting increasingly intricate and therefore costly, to
the point that a selection of the right diagnostic methods while maintaining the
level of diagnostic certainty is of high value.

Also, from a computer scientist’s perspective, the amount of processable data
grows faster than processor speed. According to various studies®, recent years

3 E.g., Gartner’s survey at http://www.gartner.com/it/page.jsp?id=1460213.



showed an annual 40-60% increase of commercial storage needs and a 40+-fold
increase is expected in the next decade. Though this may, just like the integration
density of processors, follow Moore’s law, the increase of computer speed is well
below that.

In short, an improved approach feature selection (FS) is needed, which not
only optimally spans the input space, but optimizes with respect to data con-
sumption. All of these arguments clearly demonstrate the advantage of carefully
selecting relevant portions of data. Going beyond traditional FS methods, in this
paper we lay out and demonstrate an approach of selecting features in sequence,
making the decision which feature to select next dependent on previously selected
features and the current internal state of the supervised method that it interacts
with. In particular, our sequential feature selection (SFS) will embed Reinforce-
ment Learning (RL) into classification tasks, with the objective to reduce data
consumption and associated costs of features during classification. The question
we address in this paper is: “Where do I have to look next, in order to keep data
consumption and expenses low while maintaining high classification results?”

Feature selection with RL has been addressed previously [5], yet the novelty
of our approach lies in its sequential decision process. Our work is based on
and inspired by existing research, combining aspects of online FS [17,11] and
attentional control policy learning [1,14]. A similar concept, Online Streaming
FS [17] has features streaming in one at a time, where the control mechanism
can accept or reject the feature. While we adopt the idea of sequential feature
selection, our scenario differs in that it allows access to all features with the
subgoal of minimizing data consumption. A similar approach to ours is outlined
in [10], where RL is used to create an ordered list of image segments based on
their importance for a face recognition task. However, their decision process is
not dependent on the internal state of the classifier, which brings their method
closer to conventional FS.

Our framework is mapped out in Section 2. After introducing the general
idea, we formally define sequential classifiers and rephrase the problem as a
Partially Observable Markov Decision Process (POMDP). In addition, a novel
action selection mechanism without replacement is introduced. Section 3 then
demonstrates our approach, both on problems with redundant (handwritten digit
classification) and costly (diabetes classification) data and discusses the results.

2 Framework

2.1 General Idea

In machine learning, solving a classification problem means to map an input x
to one of a finite set of class labels C. Classification algorithms are trained on
labelled training samples I = {(z%,¢'),..., (2", c")}, while the quality of such a
learned algorithm is determined by the generalization error on a separate test set.
We regard features as disjunct portions (scalars or vectors) of the input pattern
x, with feature labels f; € F and feature values f;(x) for feature f;. One key



ingredient for good classification results is feature selection (also called feature
subset selection): filtering out irrelevant, noisy, misleading or redundant features.
F'S is therefore a combinatorial optimization problem that tries to identify those
features which will minimize the generalization error. In particular, FS tries to
reduce the amount of useless or redundant data to process.

We want to take this concept even further and focus on minimizing data
consumption, as outlined in the introduction. For this purpose, however, FS is
not ideal. Firstly, the F'S process on its own commonly assumes free access to
the full dataset, which defeats the purpose of minimizing data access in most
real-world scenarios. But more significantly, FS determines for any input the
same subset of features that should be used for a subsequent classification. We
argue that this limitation is not only unnecessary, but in fact disadvantageous
in terms of minimizing data consumption.

We believe that by turning classification into a sequential decision process,
we can further significantly reduce the amount of data to process, as F'S and
classification then become a closely intertwined process: deciding which feature
to select next depends on the previously-selected features and the behaviour of
the classifier on them. This will be achieved by using a fully trained classifier
as an environment for an RL agent, that learns which feature to access next,
receiving reward on successful classification of the partially uncovered input
pattern.

2.2 Sequential Classification

A first step towards our goal is to re-formulate classification as a Partially Ob-
servable Markov Decision Process* (POMDP), making the problem sequential
and thus accessible to Reinforcement Learning algorithms. We additionally re-
quire the following notation: ordered sequences are denoted by (-), unordered
sets are denoted by {-}, appending an element e to a sequence s is written as
s o e. Related to power sets, we define a power sequence powerseq(M) of a set
M to be the set of all permutations of all elements of the power set of M, in-
cluding the empty sequence (). As an example, for M = {1,2}, the resulting
powerseq(M) = {(), (1), (2),(1,2), (2,1)}. During an episode, the feature history
h: € powerseq(F) is the sequence of all previously selected features in an episode
up to and including the current feature at time ¢. Costs associated with access-
ing a feature f are represented as negative scalars ry € Rory <0. We further
introduce a non-negative global reward r* € R,r™ > 0 for correctly classifying
an input.

Classifiers in general are denoted with the symbol K. We define a sequen-
tial classifier K to be a functional mapping from the power sequence of feature

values to a set of classes, i.e., K : powerseq ({f(x)}feF) — C. An additional
requirement is to process the sequence one input a time in an online fashion,
4 A partially observable MDP is a MDP with limited access to its states, i.e., the agent

does not receive the full state information but only an incomplete observation based
on the current state.



rather than classifying the whole sequence at once, and to output a class label
after each input. Therefore, K requires some sort of memory. Recurrent Neural
Networks (RNN) [7] are known to have implicit memory that can store infor-
mation about inputs seen in the past. If the classifier does not possess such a
memory, it can be provided explicitly: at timestep ¢, instead of presenting only
the t-th feature value f;(z) to the classifier, the whole sequence (f1(z), ..., fi(z))
up to time t is presented instead.

As it turns out, the above approach of providing explicit memory is not
limited to sequential classifiers. Any classifier, that can handle missing values
[13] can be converted to a sequential classifier. For a given input = and a set Fy
of selected features, F; C F, the values of the features not chosen, i.e., F\ Fy,
are defined as missing. Each episode starts with a vector of only missing values
(¢, ,...), where ¢ can be the mean over all values in the dataset, or simply
consist of all zeros. At each timestep, the current feature gradually uncovers
the original pattern x more. As an example, assuming scalar features f1, fy
and fs were selected from an input pattern x € RS, the input to the classifier
K would then be: (fi(x),, ¢, fa(x), ¢, fo(x)). This method allows us to use
existing, pretrained non-sequential classifiers as well, that will remain unchanged
and only act as an environment in which the SFS agent learns.

As we deal with a partially observable MDP, we need to extract an observa-
tion from the classifier, that summarizes the past into a stationary belief. Most
classifiers base their class decision on some internal belief state. A Feed For-
ward Network (FFN) for example often uses a softmax output representation,
returning a probability p; in [0,1] for each of the classes with Zgl p; = 1. And
if this is not the case (e.g., for purely discriminative functions like a Support
Vector Machine), a straightforward belief representation of the current class is
a k-dimensional vector with a 1-of-k coding.

To finally map the original problem of classification under the objective to
minimize data consumption to a POMDP, we define each of the elements of
the 6-tuple (S, A, O, P, 2, R), which describes a POMDP, as follows: the state
s € S at timestep ¢ comprises the current input z, the classifier K , and the
previous feature history h;_1, so that s; = (x, K, hy;—1). This triple suffices to
fully describe the decision process at any point in time. Actions a; € A are
chosen from the set of features F\h;_1, i.e., previously chosen features are not
available. Section 2.3 describes, how this can be implemented practically. The
observation is represented by the classifier’s internal belief of the class after seeing
the values of all features in h;_1, written as o, = b(x, K, hi—1) = b(s;). In the
experiments section, we will demonstrate examples with FFN, RNN and Naive
Bayes classifiers. Each of these architectures allows us to use the aforementioned
softmax belief over the classes as belief state for the POMDP. The probabilities
p; for each class serve as an observation to the agent: o = b(z, K, hi—1) =
(P1,p2; - - ,p|C\)~

Assuming a fixed x and a deterministic, pretrained classifier K , the state and
observation transition probabilities P and {2 collapse and can be described by
a deterministic transition function T, resulting in next state s;11 = Ty (8¢, a¢) =



(z, K, hi_10a;) and next observation oy 1 = b(s;41). Lastly, the reward function
R¢, returns the reward r; at timestep t for transitioning from state s; to sy;41
with action a;. Given c¢ as the correct class label, it is defined as:

o {w tra K ((hr(@)gerar) = ¢ )

o, else

2.3 Action Selection without Replacement

In this specific task we must ensure that an action (a feature) is only chosen at
most once per episode, i.e., the set of available actions at each given decision step
is dependent on the history h; of all previously selected actions in an episode.
Note that this does not violate the Markov assumption of the underlying MDP,
because no information about available actions flows back into the state and
therefore the decision does not depend on the feature history.

Value-based RL offers an elegant solution to this problem. By manually
changing all action-values Q(o, at) to —oo after choosing action a;, we can guar-
antee that all actions not previously chosen in the current episode will have
a larger value and be preferred over a;. A compatible exploration strategy for
this action selection without replacement is Boltzmann exploration. Here, the
probability of choosing an action is proportional to its value under the given

observation:
eQ(Ot ,at)/T

plalor) = S @l (2)
a

where 7 is a temperature parameter that is slowly reduced during learning for
greedier selection towards the end. Thus, when selecting action a1, all actions
in h; have a probability of e7> = 0 of being chosen again. At the end of an
episode, the original QQ-values are restored.

2.4 Solving the POMDP

Having defined the original task of classification with minimal data consumption
as a POMDP and solved the problem of action selection without replacement,
we can revert to existing solutions for this class of problems. Since the transition
function is unknown to the agent, it needs to learn from experience, and a second
complication is the continuous observation space. For regular MDPs, a method
well-suited to tackle both of these issues is Fitted Q-Iteration (FQI) [3]. The
sequential classifier K then takes care of the PO part of the POMDP, yielding
a static belief over the sequential input stream.

FQI uses a batch-trained function approximator (FA) as action-value func-
tion. Various types of non-linear function approximators have been successfully
used with FQI, e.g., Neural Networks [12], Gaussian Processes [2], and others [9].
In this paper, we will use Locally Weighted Projection Regression (LWPR) [15]
as the value function approximator of choice, as it is a fast robust online method
that can handle large amounts of data.



Algorithm 1 Sequential Feature Selection (SFS)

Require: labelled inputs I, agent A, sequential classifier K

1: repeat

2 choose (z,¢) € I randomly

3 ho < (¢) _

4: 01 < b(ac,K, ho)

5: for t =1 to |F| do

6: at < A(Ot)

7 ht < hi—10 at

: Ot+1 (—b(IE,K,ht)

9: if K ((hT(a:))0<T<t> = c then
10: re (rt+r)
11: break
12: else
13: Tt 4 Tq,
14: end if
15: end for
16: train A with (o1,a1,71,...,7¢, 0t41)

17: until convergence

The details of the algorithm are presented in Listing 1. The history is always
initialized with the missing value ¢ (line 3). This gives the system the chance to
pick the first feature before seeing any real data. The SFS agent is trained after
every episode (line 16), which ends either with correct classification (line 9-11)
or when the whole input pattern was uncovered (line 15), i.e., all features were
accessed.

3 Experiments and Discussion

We evaluate the proposed method on two different datasets: the MNIST hand-
written digits classification task, and a medical dataset for diabetes prediction.
Each experiment was repeated 25 times, the plots below show single runs (gray)
and the mean value over all runs (black).

3.1 Handwritten MINIST digit classification

In this experiment we looked at the well-known MNIST handwritten digit clas-
sification task [8], consisting of 60,000 training and 10,000 validation examples.
Each pattern is an image of 28 x 28 pixels of gray values in [0,1], the task is to map
each image to one of the digits 0-9. We split every image into 16 non-overlapping
7x 7 patches, each patch representing a feature.

We present results for an FFN as a non-sequential classifier and an RNN with
Long Short Term Memory (LSTM) cells [6] as a sequential classifier with implicit
memory. The FFN was chosen because it is a well-understood simple method,
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Fig. 1. Results of MNIST with FFN (left two plots) and RNN (right two plots). For
each classifier, mean episode length and mean return over training episodes are shown.

widely used for classification. The RNN was chosen to investigate, how naturally
sequential classifiers work with SFS. Throughout this experiment, rewards were
set to rT =1.0 and r,, = —0.1 Vk.

The FFN has one hidden layer with sigmoid activation, the architecture
is 784-300-10. The output layer uses softmax activation with a 1-of-n coding.
Pretraining of the classifier was executed online with a learning rate a = 0.1
on the full training dataset. After 30 epochs of presenting all 60,000 digits to
the network, the error rate on the test dataset is 1.18%, slightly better than
reported in [8]. However, this result is secondary, as the network acts merely
as an environment for the SFS agent. During SFS training, each episode uses
a random sample from the test dataset. Figure 1 (left two plots) shows the
development of episode lengths and returns during training of the SF'S agent. The
average number of features required to correctly classify dropped from initially
7.65 (random order) to 3.06 (trained SFS). The rate of incorrectly classified
images was 0.77%.

The architecture of the RNN classifier is 49-50-10 with LSTM cells in the
hidden layer. The output activation function is softmax with a 1-of-n coding.
The RNN was pretrained with Backpropagation Through Time (BPTT) (see,
e.g., [16]), with a learning rate of @ = 0.01 and a random order of features.
The results are illustrated in Figure 1 (right two plots). The average number of
required features decreases from 4.91 features (random order) to 1.99 (trained
SFS). The rate of incorrectly classified images was 1.71%.

3.2 Diabetes Dataset with Naive Bayes Classification

For the second experiment, we chose a more practical example from the medical
field, the Pima Indians Diabetes data set [4]. We also decided on a Naive Bayes
classification, to demonstrate the flexibility of the proposed method in terms of
classifiers. The data set consists of 768 samples with 8 features (real-valued and
integer) and two target classes (diabetes, no diabetes). Pretraining with a Naive
Bayes classifier resulted in 73% correct prediction. There are two interesting as-
pects in this dataset. Firstly, it contains missing values, which should be handled
well as we already use missing values to turn classification into a sequential pro-
cess. Secondly, the features represent very different attributes of the (all female)



Table 1. Assigned feature costs for diabetes dataset.
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Fig. 2. Results of the PIMA diabetes dataset with Naive Bayes classification. Left two
figures: episode lengths and mean returns for uniform feature costs. Right two figures:
episode lengths and mean returns for feature costs according to Table 1.

patients. Some are simple questions (e.g., age, number of times pregnant), others
are more complex medical tests (e.g., plasma glucose concentration after 2h in
an oral glucose tolerance test). While the MNIST experiment used uniform costs
r;, for all features fy, this experiment demonstrates another property of SF'S: the
feature costs can be weighted, representing cheaper and more expensive features.
To investigate the difference between uniform and variable feature costs, two sets
of experiments were conducted: The first uses uniform costs v, = —0.1Vk, with
a final number of required features of 3.7 on average. The second variant uses
variable, estimated costs® shown in Table 1. Number of features increased from
4.99 to 5.66 on average, while the average return increased from -218 to -141.
Figure 2 shows the results of both variants graphically.

3.3 Discussion

The MNIST experiment with FFN classifier demonstrates a significant reduc-
tion of data consumption in two ways. Firstly, by making the decision process
sequential, which enables the classifier to make decisions before all features have
been looked at. This step alone reduces the average number of required features
from all 16 features down to 7.65 (a reduction to 48%), and indicates that there
is in fact a lot of redundancy in the MNIST images. Secondly, consumption is
reduced further by learning the dependency of current belief and next feature,

® These costs represent a rough estimate of the time in minutes it takes to acquire
the feature on a real patient. The estimates are based on oral communication with
a local GP.



instead of accessing them in random order. After training the SFS agent, data
consumption decreases to 3.06 on average, 19% of the full data.

It is important to note that the stated error rates (1.18% for static and 0.77%
for sequential classification) cannot be compared directly, because of the very
different nature of the sequential approach. Sequential classification replaces the
conventional error rates as performance measure based on the binary success of
each sample (classified / not classified) with a scalar value (how many features
until classified). In order to compare both classification methods, we would have
to additionally learn when to stop the decision process, without using the class
label. This could be achieved with a confidence threshold (e.g., if max(belief)
reaches a certain value) or by explicitly learning when to stop with either su-
pervised or RL methods. In this paper, we focussed on the RL feature selection
process with existing classifiers rather than the performance of sequential clas-
sifiers. This issue will be addressed in a future publication.

Another aspect we investigated was the use of RNNs as naturally sequential
classifiers. Where static classifiers still need to look at a full input (at least in
terms of dimension, even though most of the pattern is filled with missing values),
RNNs can make use of their intrinsic memory and achieve similar results with
significantly fewer nodes in input and hidden layer and therefore even less data
processing. They also converge with lower variance and reduce data consumption
to a mere 12% on the MNIST task.

Finally, the Pima diabetes data set illustrates the use of variable feature
costs, a variant that is naturally supported in our framework. The left two plots in
Figure 2 show the development of episode length (i.e., number of selected features
until correct classification) and mean return of the uniform cost experiment. As
expected, episode lengths decrease with increasing returns, as the only objective
for the agent is: select those features first, that lead to correct classification.
However, if the reward scheme is changed (right two plots in Figure 2), we
witness a growth of episode lengths in most of the 25 trials and on average.
Still, all trials increase their returns (rightmost plot), which indicates that the
agent does indeed learn and improve its performance. Comparing the final return
average of -141 and the worst final return of -160 to the individual costs of Table
1, it becomes clear that in all runs, only one of the three most expensive features
(number 2, 5 and 7) was selected. This behavior was caused by the different
objective: minimize the overall costs associated with the features. In other words,
it is okay to select many features, as long as they are cheap.

4 Conclusion

We have derived classification as a POMDP and thus made it accessible to RL
methods. The application we focussed on was minimization of data consumption,
by training an RL agent to pick features first that lead to quick classification. We
presented results for different classifiers (both static and sequential) on vision
and medical tasks. Our approach reduces the number of necessary features to
access to a fraction of the full input, down to 12% with RNN classifiers. We also



demonstrated that SFS is able to deal with weighted feature costs, a property
that exists in plenty of real-world applications. A new action selection method
was introduced that draws actions without replacement. It should prove useful
in other ordering tasks as well, such as scheduling problems. Lastly, we would
like to point out that our approach is not limited to classification but easily
extends to regression or other supervised tasks.
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