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Abstract

We present a novel method for vision-based recovery of three-dimensional structures
through simultaneous model reconstruction and camera position tracking from monoc-
ular images. Our approach does not rely on robust feature detecting schemes (such as
SIFT, Good Features to Track etc.), but works directly on intensity values in the cap-
tured images. Thus, it is well-suited for reconstruction of surfaces that exhibit only little
texture due to partial homogeneity of the surfaces.

1 Introduction
Tracking and reconstruction of surfaces from video data is a problem that has been subject
of extensive research work, and a number of methods exist for this problem. Many of the
established methods, however, rely on presence of salient image features, such as SIFT [10]
features, Good Features to Track [22], FAST corner detection [19] and so on. In some
settings, however, the objects one is dealing with do not exhibit much structure, which makes
it very hard to find robust, dense feature sets using traditional methods. In such situations, it
pays off to use intensity-based methods, which is what we have investigated.

Originally, our idea was to generalize an approach developed by Ramey et al. [18] for
efficient tracking of the disparity map in stereo video streams. Their method is quite general
in that it can be used in conjunction with arbitrary parametric models of disparity maps,
and it is especially efficient if the model is linear in parameters. In their test setups, they
have used a B-Spline surface to represent the disparity map. We wanted to generalize their
approach in the sense that the cameras do not need to be mounted on a stereo rig, but instead
they are allowed to move independently from each other.

As an intermediate step towards this goal, we developed the method presented in this pa-
per, which allows simultaneous model reconstruction and camera localization from monoc-
ular images in static scenes. In comparison to the two-camera scenario described above, this
is equivalent to a situation where two cameras are present, but only one of them is moving,
and the observed scene is static.
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Our Algorithm

Camera Images from different Positions

Figure 1: Schematic overview of the main idea of our algorithm.

Some examples of real-time dense reconstruction methods are described in papers by
Palaanen et al. [15], Pan et al. [16], and in the recent work by Newcombe and Davison [13].
All of these methods have in common, however, that they rely on some kind of feature
detecting scheme, which is what we want to avoid here.

A number of offline methods for model-based bundle-adjustment have been described
with applications to face modeling [4, 21]. Our method is different in that it tries to build the
model during run-time, starting out with a very crude initial model (a plane) and refining the
model in each step.

A part of the problem of surface reconstruction from image intensities is the surface
modeling and reconstruction methodology itself. A thorough treatment of that problem has
been done recently [1, 2], and results have been established using feature-based methods.
Finally, Salzmann et al. have developed a method [20] for the closely related problem of
monocular surface deformation recovery for weakly textured surfaces.

Ramey’s tracking method [18] that inspired our development basically employs the Gauss-
Newton minimization algorithm for tracking. The generalization that we have performed
leads to an optimization problem that corresponds to intensity-based bundle-adjustment that
is restricted to two frames. Thus, our solution shares some characteristics with typical
bundle-adjustment algorithms. An in-depth survey of the original bundle-adjustment method
is given in the book by Hartley and Zisserman [8]. The paper by Triggs et al. [23] provides
a good overview of bundle adjustment variants and related methods. There is also a more
recent paper evaluating the status of real-time bundle adjustment methods [3].

We are interested in recovering the surface of a 3D object on-line from a stream of
monocular camera images. The surface we want to reconstruct must be static. Furthermore,
since we are also tracking the object of interest, it is required that during the video sequence,
sight of the object is not lost. Occlusions or self-occlusions are, until now, not accounted for.
However, such problems have already been examined by other researchers, e.g. [5, 17], and
we expect it to be possible to incorporate similar techniques into our solution.

The basic concept of the algorithm is visualized in Figure 1. It can be summarized as
follows: In traditional bundle adjustment, coordinates of 3D points that are associated with
feature points are recovered from a set of 2D feature position measurements. This approach
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Figure 2: Left, middle: Surface under two different camera positions. Right: Warping of
surface coordinates from left to right image.

will obviously work only if a feature detecting scheme can be used at all. It has the advantage
that the images can be taken from very different camera positions. In our case, we do not
assume that robust feature extraction is possible, and thus we do not work with 2D positions,
but with image intensities. This is only feasible if the camera positions of subsequent images
are not too far away from each other.

In the next section, we give a detailed explanation of the method we have developed.
Results have been obtained from real world data sets as well as synthetic data sets, and are
presented in Section 3.

2 Method

2.1 Overview

There are many possibilities for representing a model of a scene, with the most straightfor-
ward one being a point cloud. This is a very general representation that is actually used
in the traditional bundle adjustment algorithm, where it works well under the assumption
that points can be reliably identified. Unfortunately, this assumption can not be used for
intensity-based methods, since identifying a point based on its intensity is obviously bound
to fail. This disqualifies the point cloud model for our purposes.

The usual approach taken to address this problem is the introduction of additional con-
straints in form of a parametric surface model of type S : Rk×R2→R3, on which the points
lie. Mathematically speaking, S maps a set of k parameters together with surface coordinates
u,v to three-dimensional spatial coordinates. Such a model is especially suitable for repre-
sentation of scenarios that can be described with a small parameter set. Compared to the
point cloud representation, it constitutes a loss of generality, but this is a compromise that
seems to be necessary to make.

Inspired by the method of Ramey et al. [18], we do not directly model the scene as a 3D
surface. Instead, we choose the model to be a depth map of some object of interest for some
reference image of the video stream. A 3D surface model can easily be retrieved from that
representation, as will be shown later.

Observing a static, three-dimensional smooth surface S under two different camera posi-
tions will essentially yield two images that are related to each other via a “warping” function.
If, for two snapshots of a scene, we exactly know the corresponding extrinsic camera param-
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eters and we have a perfect mathematical description of the surface that we are observing,
we can, for each surface pixel in one image, determine the position of that pixel in the other
image. In other words, we can formulate a function of type R2→ R2 that transforms pixel
coordinates from one image to another, and we would expect the corresponding image values
to be equal. Figure 2 shows an example for the warping function.

Because we require the surface to be completely visible at all times, it would not make
sense to try to establish a depth map for the whole image, points could very easily be lost
immediately after initialization as a result of minor camera movements. Instead, if we focus
on only a certain region of interest within the image, it is easier for the user to assure that
that region is always visible. Thus, before starting the actual reconstruction process, we have
the user choose such an area within a reference image.

2.2 Mathematical Model

We do not take into account all pixels in the region of interest because the optimization
process is quite costly. Instead, we only focus on a number of reference pixels that are
selected according to a weak criterium that will be described later. These pixels are picked
from a user-defined region of interest in a reference image and tracked through the entire
image sequence.

As we have mentioned earlier, we are modeling the depth map of the region of interest
that has been chosen by the user. That depth map is then a function Sd(u,v) mapping a
k-dimensional parameter vector d together with image coordinates (u,v) ∈ R2 to a depth
value λ ∈ R at the specified coordinate. Given intrinsic camera parameters, this depth map
can actually be interpreted as a 3D surface. Before we start to derive the image warping
function, we want to give an overview of definitions and notations. In the following, images
are numbered consecutively, and the numbering starts with n = 0. Then, let

• dn denote the k-dimensional vector of parameters of the model describing the depth
map.

• Sd(u,v) denote a function of type Rk×R2→ R that maps model parameters together
with image pixel coordinates to 1D pixel depth values.

• pn = (tn,qn) denote the extrinsic camera parameters corresponding to image n, con-
sisting of translation vector tn ∈ R3 and rotation quaternion qn ∈ R4.

• T (t,q,p) : R3×R4×R3→ R3 is a transformation mapping 3D spatial coordinates p
to 3D coordinates in the camera frame described by a translation vector t and a rotation
quaternion q.

• π(p) be the projection of a 3D point p to 2D image coordinates, according to the
internal camera calibration parameters of the camera used.

• In(x,y) be the image function of image n, containing all pixel values. I0 is hence the
reference image function.

• (u1,v1), . . . ,(um,vm) denote the pixel coordinates of the m reference pixels, chosen
from the ROI in the reference image.
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For the monocular camera, we assume a pinhole model with projection function

π(p) =
(

p1 fx

p3
+ cx,

p2 fy

p3
+ cy

)T

(1)

where fx, fy are focal lengths in terms of pixel dimensions, cx,cy describe the location of
the camera center, and (p1,p2,p3)

T is a vector of Cartesian point coordinates. In case of
significant radial distortions, the images can be rectified before usage.

If we associate the camera frame in image 0 with the reference frame, each pixel of the
region of interest corresponds to a ray originating from the camera position (which coincides
with the origin) that intersects the object surface at a certain depth. The pixel color then
corresponds (ignoring possible specularities) to the color of the surface texture at that posi-
tion. The ray corresponding to pixel coordinates (u,v) can then be parameterized by depth
λ , yielding a function ru,v(λ ):

ru,v(λ ) = λ ·
(

u− cx

fx
,

v− cy

fy
,1
)T

. (2)

It is obvious then that the composite function ru,v(Sd(u,v)) is a description of the three-
dimensional model shape. If that model is observed from a different camera position pn,
yielding a different image with index n, we need to rotate and translate the 3D coordinates
produced by above function. This can be achieved by using the formula T (pn,ru,v(Sd(u,v)).

If we knew the perfect model parameters d and exact camera parameters pn for image n,
we would expect the relationship In(π(T (pn,ru,v(Sd(u,v))) = I0(u,v) to hold for all model
surface coordinates (u,v).

Thus, we assume that the correct camera position and the correct model parameters to-
gether minimize some difference measure c (e.g. least squares) on intensity values, which
can be formulated as

c(In(π(T (pn,ru,v(Sd(u,v)))))− I0(u,v)). (3)

As has been mentioned before, the optimization process necessary for determining camera
and model parameters is quite computationally intensive. Thus, we will not include all possi-
ble pixel (u,v) coordinates in the optimization process, but only the coordinates of m chosen
reference points. The corresponding objective function o(d,pn) can then be defined as

o(d,pn) =
m

∑
i=1

(c(In(π(T (pt ,rui,vi(Sd(ui,vi)))− I0(ui,vi)))
2 (4)

Our problem of finding a warping function from the template image I0 to the current image In
could then be stated as the problem of minimizing the error function with respect to camera
and depth map parameters.

There are two minor issues that we should also address: Because quaternions are used to
represent the rotation of the camera frame, we need to constrain the corresponding parame-
ters qn to represent a unit quaternion, and thus, a unit vector. This can trivially be formulated
as a constraint h1(qn) = 0 with h1(qn) = |qn|2−1. Furthermore, it is well-known that recon-
struction from monocular images can only be done up to scale. However, it is desirable then
at least to enforce a constant scale during the reconstruction process. This can be achieved
with the formulation of a constraint h2(dn) = 0 with h2(dn) = Sdn(u1,v1)− l for some con-
stant l.
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Since through optimizing above function, we implicitly try to track point positions through
intensity values, our approach will have difficulties tracking points in areas with completely
homogeneous intensity. Thus, wherever possible, the reference points are chosen from the
ROI in such a way that they lie at pixel positions where the image derivative is non-zero.

Furthermore, reference points should be distributed in the region of interest such that
the parameters determining the depth map are well constrained. For a B-Spline depth map
model, one will, e.g., need at least a number of reference points that is equal to the number
of control points used.

2.3 Optimization Method
It is clear that, to actually recover the model parameters from the scene, we need some
method to minimize the cost function described above. Since we are dealing with a con-
strained problem, an adequate method for optimization is Sequential Quadratic Programming
(SQP). For a more detailed description of the method, the reader is referred to [14].

The basic idea is as follows: Let f : Rk→ R be the scalar function to be minimized, and
let h : Rk→Rl be a function that describes a constraint of the form h(x) = 0 on solutions. It
is well-known that for such problems, the so-called Karush-Kuhn-Tucker (KKT) conditions
must hold for any value x∗ that is a minimum. These conditions can be formulated in equation
form as: (

∇L (x,λ )
h(x)

)
=

(
0
0

)
with L (x,λ ) = f (x)+λ

T h(x). (5)

The term λ ∈Rl is the Lagrange multiplier associated with the minimum. This is, in general,
a nonlinear system of equations. The Lagrange-Newton-Method can be applied to these
equations, and we can compute an update ∆x to x and a new Lagrange multiplier λ+ by
solving the equation system(

∇2
xxL (x,λ ) ∇xh(x)
∇xh(x)T 0

)(
∆x
λ+

)
=−

(
∇x f (x)

h(x)

)
. (6)

Ultimately, we need to compute the Hessians ∇2
xxL as well as the transposed Jacobian

∇xh of h. Since f is, in our case, a quite complex composition of multi-dimensional func-
tions, it is not straightforward to compute the full precision Hessian. Instead, it is common
practice to use the Gauss-Newton approximation of the Hessian, as detailed below.

In our case, the objective function f is the composition c ◦ g of a scalar cost function c
with some multi-dimensional comparison function g. The cost function could, e.g., be the
least-squares cost g(x) = xT x, but since we also want our optimization to be robust against
outliers, we will use something more robust, like the Pseudo-Huber [8, p. 619] cost function.
In any case, the Hessian approximation that we are going to use is:

∇
2
xx(c◦g)(x)≈ (∇xg)(x) · (∇2

xxc)( f (x)) · (∇xg)T (x)

A technique introduced for the popular method of Levenberg-Marquardt optimization [9, 12]
is addition of a damping term λ I to the Hessian. This allows the method to interpolate
between Gauss-Newton and gradient descent steps, and greatly enhances the robustness of
the method. This idea has been applied with success to the SQP method, e.g., in the work by
Gong and Xu [6].

The Jacobians of f and h are computed using mainly Automatic Differentiation [7].
The only exception for this is the image function, which is interpolated and derivatives are
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Figure 3: Left: Sample from artificial sequence, Right: Comparison by Normalized Cross-
Correlation of surface parameters.

computed by hand. All of the involved matrices exhibit a high degree of sparsity. After
computation of the Jacobian is finished, the approximate Hessian can be evaluated and the
QP system is solved repeatedly using a sparse LDLT Cholesky transformation on the whole
system. Our SQP algorithm has been implemented using the efficient Eigen 1 linear algebra
library. As has been indicated above, we have used the Pseudo-Huber cost function in all of
our experiments.

2.4 Dealing with Large Displacements
After we had implemented the optimization process as described above, it was evaluated
on some image sequences. We found out that it works well on image sequences where
camera movement is sufficiently smooth and no large pixel displacements occur between
subsequent frames. However, problems occured when that was not the case. This was to
be expected, since the algorithm operates on intensity values and will have trouble aligning
with the correct values again if they are too far away.

The typical way to deal with this would be a pyramidal approach: One could start with
the optimization on a coarse scale, and then move up to finer scales. This idea could prob-
ably be incorporated into our optimization approach. However, the idea has also been used
by Lucas and Kanade [11] for their optical flow algorithm, which is well-established and
implementations of which are readily available.

Thus, instead of incorporating the pyramidal approach directly into our method, we for
now chose to implement a two-step technique: The first step when optimizing the model and
aligning it to a new image would be to compute the optical flow between the previous image
and the current image and perform optimization based solely on the 2D pixel coordinates of
the reference points. The point position estimates derived from the optical flow algorithm
shall in the following be denoted by (u′i,v

′
i). The objective function that we use for that opti-

mization is just a simplified version of the cost function for the intensity based optimization,
namely

m

∑
i=1

c′((u′i,v
′
i)−π(T (pn,rui,vi(Sd(ui,vi))))) (7)

1http://eigen.tuxfamily.org
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This is basically the original objective function, with the mapping from 2D coordinates to
image intensities removed and with a different cost function c′ instead of c. The cost func-
tion we used was the robust Pseudo-Huber cost function [8, p. 619]. The optimization is
performed only with respect to camera parameters, since outliers in optical flow are quite
common and tend to significantly disturb surface parameters in a full optimization step.

In the next step, we apply the original intensity based optimization process to realign
the points to the reference intensity values and further optimize the surface parameters. This
essentially prevents drifting away from the original point intensity values, which could easily
occur over time if only optical-flow based optimization was used.

2.5 Algorithm Summary

We conclude the presentation of our simultaneous reconstruction and localization method
with a step-by-step description of our algorithm:

1. Have the user choose a ROI from the first image of a video stream.

2. Initialize the system with a run of coordinate-based optimization of camera and surface
parameters based on optical flow data from the first two frames, and refine the fit by
employing intensity-based optimization.

3. Acquire a new frame.

4. Perform one step of optical-flow based optimization to find the camera parameters for
the new frame.

5. Refine fit using intensity-based optimization.

6. Go back to step 3.

3 Results
We have tested our algorithm on a set of artificial rendered image sequences, as well as on
sequences of real scenes. The artificial data set was useful for generating images with known
ground truth, while the sequences of real images have been used to show that the approach
also works in the “real world.” As depth map model, we have used B-Spline surfaces of
varying order and complexity.

Our first tests were on artificial images generated by a renderer. Here, we show results for
one of the used sequences. Figure 3 shows an example image from the sequence composed
of renderings of a surface with a very difficult to track texture. Because we wanted to get
a rough idea of how well traditional approaches would work on that sequence, we ran a
SIFT feature detector on some of the images. The feature detection process resulted in about
20 features, depending on the actual image. Even when assuming that all features can be
reliably identified through the whole sequence, and that no false feature matchings occur,
this is by far not enough to fully describe the complexity of the actual surface. The surface
is a quadratic spline surface determined by 25 control points (5 in each direction).

The right image of Figure 3 visualizes the reconstruction quality achieved by our algo-
rithm as compared to the ground truth of the artificial sequence. It shows the difference
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Figure 4: Reconstruction with real camera data. Left: Template image, ROI indicated by
green rectangle. Right: Reconstruction result.

(measured by normalized cross correlation, since the reconstruction is only up to scale) be-
tween the surface parameters determined by our algorithm and the ground truth used by the
renderer. The reconstruction can be seen to be pretty accurate, maintaining a NCC factor of
over 0.96 during the entire reconstruction period.

The artificial sequences have been used because it is rather difficult in a real-world sce-
nario to determine the ground truth. Still, it is important to show that our approach also
works on actual data generated from a camera. Hence, we have tested our method an scene
that was showing a piece of white cloth draped over a cup. You can see one image of the
recorded sequence in Figure 4 as well as a rendering of the resulting 3D model.

Due to the piece of cloth being quite wrinkled, we were actually expecting more difficul-
ties in reconstructing the real-world scene. However, we have seen that a spline surface with
only 8×8 control points was already enough to model the scene.

As for running times: Our algorithm has been tried on a system with a 1.86 GHz dual
core CPU. Using only one of the two CPU cores, framerates of about 10 frames per second
were achieved. The performance is promising, and we expect it to be possible to further
improve performance, e.g., by utilizing GPU hardware.

4 Conclusion
The basis for further research has been established with our monocular model recovery and
validation algorithm. There are many possible extensions and improvements to this tech-
nique.

First of all, while the reference-point based reconstruction works surprisingly well, it
would probably constitute a major improvement if we were able to capture, in addition to
point intensity values, some characteristics of the surface texture surrounding a reference
point, thus introducing a patch-based correlation function. We would expect this to improve
the stability and convergence speed of the optimization method considerably.

Furthermore, we did not address the issue of changing illumination conditions. We would
like to be able to deal with changes in brightness, but also with specularities, which would,
in the current approach, both cause severe problems. However, some techniques for dealing
with problems of that kind have already been developed, e.g., normalized cross-correlation
matching for brightness-invariant matching. It should be possible to integrate them into our
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method.
We would also like to extend the approach such that deformable surfaces can be recon-

structed and tracked. For tackling this problem, we intend to use a setup of two independently
moving cameras. Based on such an idea, we would like to introduce a method for determin-
ing deformation parameters, allowing us also to predict and simulate deformations. We see
applications for such a technique mainly in medical imaging.
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