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Abstract—In this paper, we present an approach to gener-
ate sparse object models for keypoint-based 6D object pose
estimation. Keypoint-based object models usually consist of
thousands of keypoints. Our approach generates sparse models
by identifying and removing keypoints that are not relevant
to the object localization. It applies data association to detect
duplicate keypoints and applies statistical analysis to identify
keypoints that have not been detected reliably during model
generation. Our approach furthermore ensures that keypoints
are well distributed across the volume of the object model.
We evaluated our approach using a SIFT-based 6D object
localization system on the basis of real world datasets. In
our experiments, we achieved a reduction of the model sizes
to approximately 1% of the original model size without a
substantial loss of localization performance.

I. INTRODUCTION

One of the fundamental tasks of any intelligent robot is to

detect objects in the environment. This ability is crucial, for

example, when a robotic household assistant performs tasks

such as cleaning a room, fetching objects, or storing away

groceries.

A popular method to detect objects and to estimate object

poses is to extract local features from a sensor measurement

and to match them to object models in a pre-trained database.

From successful matches, a rigid transform is computed that

corresponds to a 6D object pose estimate (defined as a 3D

position and orientation).

In this paper, we focus on generating sparse object models

for pose estimation from visual keypoints. Visual keypoints

are defined as locations on the object surface that can be

identified by a local visual feature descriptor, for example,

SIFT [11], SURF [3], or ORB [13]. Throughout the paper, we

assume that triples of matched keypoints are used to estimate

object poses.

Previous approaches store up to 14,000 keypoints per

object model [6]. When triples of visual keypoints are used to

locate box-shaped objects, the theoretical minimum number

of keypoints is 3*6=18 points (one triple per face). This

minimum, however, is unrealistic since it assumes that each

keypoint can be perfectly detected in every measurement. In

real world scenarios, detection will not be perfect because of

changing lighting conditions, sensor noise, object occlusion,

or slight deformations and variations of the objects. Yet there

is a difference of three orders of magnitude between previous

models and the theoretical minimum.

The runtime of keypoint-based object recognition depends

on the total number of keypoints in the object model
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Fig. 1. Left: original object keypoints. Right: sparse object model.
Bounding boxes have been added manually for illustration purposes.

database. With larger databases, a higher number of key-

points will be detected in the measurements. This, in turn,

increases the number of possible keypoint triples. For this

reason, sparse object models will reduce the runtime of

object detection considerably.

In this paper, we present an approach to generate sparse

object models for 6D object pose estimation. The key idea

of our approach is to identify and remove keypoints that

are not relevant to the object localization: First, we detect

duplicate keypoints that result from merging partial views

of the object. Second, we identify unstable keypoints that

cannot be detected from a sufficiently large range of viewing

angles. To achieve a spatially well balanced model, we

finally sub-sample keypoints based on their distribution in

the volume of the object model. We evaluated our approach

using a SIFT-based 6D object localization system on the

basis of real world datasets. In our experiments, we achieved

a reduction of the model sizes to approximately 1% of the

original model size without a substantial loss of localization

performance. An example of the output of our algorithm can

be seen in Fig. 1.

The remainder of this paper is organized as follows: After

discussing related work, we describe the object recognition

approach we apply in our evaluation. In Sec. IV, we present

the algorithm we use to register partial views of an object.

Our approach to reduce initial object models to sparse models

is given in Sec. V. Finally, our experimental evaluation is

presented in Sec. VI.



II. RELATED WORK

A number of approaches have been proposed to detect

objects from SIFT keypoint models [1], [2], [4], [6], [11].

The process of generating models, however, is often not

discussed in detail. In this paper, we focus on generating

sparse keypoint models. Collet et al. [4] generate sparse

3D models by using bundle adjustment and clustering. In

contrast to our approach, they do not consider keypoint

stability and the distribution of keypoints in the model.

Grundmann et al. [6] apply nearest neighbors search to

cluster keypoints and they remove small clusters from the

final model. Arbeiter et al. [1] apply a fastSLAM approach

to construct 3D object models. In their approach, models

consist of keypoints that have been detected more than an

empirically determined number of times. Compared to these

previous approaches, our approach does not rely on fixed

number of sightings but instead applies a threshold on the

estimated range of viewing angles. We furthermore propose

to apply spacial sub-sampling to address the distribution of

model points on the object surface. Additionally, we provide

an analysis of the effect that the presented techniques have

on localization performance.

In our experiments, we take measurements using the

RGBD sensor Microsoft Kinect. Recently, a number of

approaches have been proposed to generate surface models

with this sensor. The KinectFusion approach proposed by

Newcombe et al. [12] is able to generate surface models of

complex and arbitrary indoor scenes. Henry et al. [7] pre-

sented their RGB-D Mapping framework to generate dense

surfel-based models of indoor environments. Weise et al. [16]

and Ruhnke et al. [14] presented approaches to model single

objects using surfels. An overview and evaluation of stereo

reconstruction algorithms in general is given in [15]. The

approaches mentioned above are able to produce consistent

models of object surfaces. However, they do not address

the problem of sparse model generation for object pose

detection.

III. OBJECT POSE ESTIMATION

To generate object poses in our experiments, we apply

a pose estimation approach that is similar to the approach

presented by Grundmann et al. [6]. The basic computational

steps are given in Alg. 1.

The algorithm is based on SIFT keypoints that are ex-

tracted from triangulated stereo images or RGBD measure-

ments, e.g., from the Kinect sensor. In a first step, the

SIFT keypoints are matched to a database D of object

models. For each object model d ∈ D, a maximum of

i hypotheses is generated. To generate hypotheses, three

keypoints are chosen randomly from the set of keypoints that

has been matched to model d. An object pose hypothesis is

then computed from these triples of matched points using

the approach proposed by Horn et al. [8]. Finally, pose

hypotheses are clustered and outliers are removed using the

RANSAC algorithm [5].

The runtime of the object localization approach primarily

depends on the number of keypoints in the database. While

Algorithm 1 6D Object Pose Estimation

Require:

z, input measurement

D, object database

Ensure:

H , set of pose hypotheses

1: extract SIFT keypoints from z

2: match keypoints to database D

3: for all object models d ∈ D do

4: for i iterations do

5: randomly choose three keypoints matched to d

6: compute object pose hypothesis from matches

7: end for

8: cluster pose hypotheses for object d

9: add clustered hypotheses to H

10: end for

the keypoint matching step can be efficiently implemented,

e.g., using kd-trees, the number of possible keypoint triples is

cubic in the number of matched keypoints. With dense object

models, the number of wrong pose hypotheses (outliers) will

in general increase and a high number of iterations i can

become necessary to localize objects reliably.

IV. MODEL ACQUISITION

The input to our modeling approach is a set z = {zi} of

overlapping partial views of the object. We assume that each

measurement consists of depth and texture information. Our

approach does not require the camera poses to be known

beforehand. Views can be recorded using a turntable, by

manually turning the object in front of the sensor, or by

moving the sensor around the object. Objects can be shaped

arbitrarily but we assume them to exhibit a salient texture

that is suited to extract SIFT keypoints.

Algorithm 2 Model Registration

Require:

z = {zi}, input measurements

Ensure:

c = {ci}, estimated camera poses

1: for all measurements zi ∈ z do

2: ki ← extract keypoints from zi
3: end for

4: Γ = ∅
5: for all pairs zi, zj ∈ z, i 6= j do

6: match keypoints ki and kj
7: if match successful then

8: γi,j ← compute geometrical constraint from

matches

9: Γ = Γ ∪ γi,j
10: end if

11: end for

12: reconstruct camera poses c from Γ

To construct a consistent model of an object, we transform

all input data to a common reference frame. Since we assume



Fig. 2. Estimated camera poses during one of our experiments. Mea-
surements were taken while the object was rotated on a turntable. Camera
poses are initially unknown. The object was scanned standing rightside-up
and upside-down. Camera poses are visualized as reference frames with the
z (forward pointing) axis depicted in blue.

that camera poses are unknown, we first compute an estimate

of all camera poses ci in a common reference frame. The

basic steps of our registration approach are given in Alg. 2.

First, we extract SIFT keypoints from all measurements

zi. These keypoints are then used to construct a set of

geometrical constraints Γ between pairs of measurements.

This step is implemented similar to the object localization

described above. Based on the set of constraints Γ, the

camera poses ci are estimated by applying an optimization

approach (we use the optimization framework g2o [10] in

this step). An example of the result can be seen in Fig. 2.

Once an estimate of the camera poses has been gener-

ated, we construct a joint object model by transforming all

extracted keypoints into a common reference frame. This

object model is suited for object pose estimation using an

approach such as the method described in Sec. III. However,

the object model is necessarily dense since it contains every

keypoint that has been extracted during model acquisition.

In the following section, we present techniques to remove

duplicate and ineffective keypoints to construct sparse object

models.

V. SPARSE MODEL GENERATION

Ideally, an object model consists of unique keypoints that

are detected stably across different measurements. An ideal

model is furthermore sparse and its keypoints are distributed

well across the surface of the object. In the following,

we present techniques to remove redundant or ineffective

keypoints from an initial object model generated using the

approach described in Sec. IV.

A. Data Association

The majority of redundant keypoints in the initial model

result from multiple sightings during model construction.

This redundancy cannot be avoided since we rely on overlap-

ping partial views during data registration. In fact, multiple

sightings of the same keypoint can be seen as a strong

indicator of the stability of the keypoint, as we will discuss

below.

We assume that keypoints which correspond to the same

physical point on the model will be distributed in a local

neighborhood with radius rDA in the model. This radius

depends on the measurement noise and the registration error.

In our experiments we found 3 mm to be a good value and it

corresponds to the measurement noise reported for the Kinect

device at approximately 1 m [9].

Often, clusters of keypoints will overlap and thus cannot

be separated based on Euclidean clustering alone. For this

reason, we furthermore require associated keypoints to have

matching descriptors. Note that it is not sufficient to rely on

descriptor matching alone since the same descriptor could be

computed at different locations on the object surface.

In our approach, two keypoints are associated if they lie

within a local neighborhood and their descriptors do not

differ by more than ǫDA (in our experiments, we choose a

value of ǫDA = 0.3). Let ki = (pi, di) ∈ k be keypoints

with their corresponding 3D position and descriptor. Two

keypoints ki and kj are associated if the following constraints

hold:

|pi − pj | < rDA (1)

|di − dj | < ǫDA. (2)

In the final object model, redundant keypoints do not improve

localization and can therefore safely be ignored. Duplicate

keypoints are removed from the final model by applying a

clustering technique as described in Sec. V-C.

B. Keypoint Stability

The initial object model consists of every keypoint that

was computed during data acquisition. Many of these key-

points have been detected from several camera positions,

we refer to them as stable keypoints. Unstable keypoints,

in contrast, could not be re-detected reliably. In previous ap-

proaches, unstable keypoints have been filtered by applying a

threshold on the number of detections [1], [6]. This threshold,

however, depends on the total number of views. It has to be

adjusted whenever the method of acquiring a raw model is

changed.

In our approach, we use the result of the data association to

determine the set of views from which a cluster of keypoints

was detected. We use the estimated camera origins of these

views to determine the range of viewing angles. Given a set

of associated keypoints {ki = (pi, di)}, let Cd = {ci} ⊂ C

be the set of camera origins from which the keypoints were

detected. The range of viewing angles αd is then computed

as the maximum angle between any two vectors pointing

from a camera pose to the corresponding keypoint position:

αd = max ∠((pi − ci), (pj − cj))
︸ ︷︷ ︸

αi,j

, ci, cj ∈ Cd (3)



Fig. 3. Illustration of viewing angle computation. Keypoints pi are assumed
to be multiple sightings of the same physical feature d. The range of viewing
angles αd of this feature is computed as the maximum angle between any
two vectors pointing from a camera pose ci to the corresponding keypoint
position pi. For clarity, only three of the six angles are shown.

An illustration of the angles αi,j is given in Fig. 3. In 3D,

αd corresponds to the opening angle of a viewing cone.

To eliminate unstable keypoints from the final model, we

apply a threshold αmin on αd. See Sec. VI-B for a discussion

on how to choose αmin.

C. Local Clustering

To eliminate duplicate keypoints that resulted from mul-

tiple sightings, we apply local clustering as proposed by

Collet et al. [4] and Grundmann et al. [6].

Each set of associated keypoints {ki = (pi, di)} is reduced

to one representative. From Eq. 2, we know that within such

a cluster the distance between descriptors di is smaller than

ǫDA. To determine the cluster representative, we compute

the mean position and the normalized mean descriptor.

More complex representations of clusters would certainly be

possible. In practice, however, this efficient method led to

good recognition results. In the final model, the sets {ki}
are replaced by the representatives.

D. Spacial Sub-sampling

To estimate object poses, groups of features are usually

considered. For example, triples of keypoints are selected

in Sec. III. In general, pose estimation will be less sensitive

to measurement noise if the keypoints in these groups are

well distributed on the observed surface. Groups of nearby

keypoints, in contrast, are likely to lead to inferior pose

estimates [2].

While the techniques above remove unstable and redun-

dant keypoints, we now describe how to thin out inefficient

clusters of keypoints. In our approach, we replace local

clusters of keypoints by a few representative keypoints. To

this end we apply spacial sub-sampling based on a 3D grid.

The volume occupied by the model points is discretized

into voxels (i.e., cubic sub-volumes of a given cube side

length). This sub-sampling is performed after removing

unstable keypoints from the model. Therefore we assume

that all remaining keypoints are equally well suited for

pose estimation. Of all keypoints in a voxel, we choose the

keypoint that is closest to the center of the voxel as the

representative of its cluster. The size of the voxels determines

Fig. 4. Illustration of 3D grid-based sub-sampling. The center-most
keypoint in each voxel is kept. Left: input keypoints, right: sub-sampled
keypoints.

TABLE I

NUMBER OF KEYPOINTS IN MODEL

rice salt cereals

initial model 45,755 30,490 115,135

stable keypoints 5,133 12,697 25,960

clustered stable 2,008 3,677 9,714

sub-sampled 485 285 1,478

the amount of keypoints in the final model. An illustration

of this process is given in Fig. 4.

VI. EXPERIMENTS

We evaluated our approach by modeling various real ob-

jects.The experiments are designed to show that our approach

leads to object models that are sparse but that are well suited

for object pose estimation.

We acquired models by placing objects on a turntable

and then taking measurements with a Microsoft Kinect. The

sensor was kept in a fixed position while objects were rotated.

Each object was rotated through 360 degrees and an RGBD-

measurement was taken every 10 degrees. Then, the objects

were turned upside-down and the procedure was repeated.

This process results in a total of 74 measurements per object

(see Fig. 2 for a visualization).

A. Dataset

To evaluate the influence of the techniques proposed in this

paper, we created initial model of three objects. The objects

and their initial keypoint models are shown in Fig. 5.

Additionally, test sets of 10 views per object were

recorded. This test data was used to estimate object poses

using the approach described in Sec. III.

Since ground truth object poses were not available, we

determined baseline object poses using the initial (full) model

database. The baseline pose is computed as the average result

of 10 localization runs.

B. Keypoint Stability and Local Clustering

In this experiment, we analyzed the influence of the view

angle threshold αmin on the model size and localization

error. We varied the threshold from 2 to 70 degrees. The

localization was executed three times for each of the views

in the test sets. The localization error was computed as the

deviation from the baseline pose in translation only.



a) b) c)

Fig. 5. Photos (left) and initial keypoint models (right) of the objects used in the evaluation. a) rice, b) salt, c) cereals. Note that the photos are shown
for illustration only, they have not been used during model generation.
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Fig. 6. Number of keypoints in the object model after applying a threshold
on the range of viewing angles. The lower parts of the bars (lighter colors)
correspond to the number of keypoints after applying an additional clustering
as described in Sec. V-C.

The resulting number of keypoints in the object models

can be seen in Fig. 6. Compared to the initial number of

keypoints (see Tab. I), a strong reduction in model points

can be seen even for small values of αmin. This is probably

due to the high measurement noise of the Kinect sensor that

leads to a high number of unstable keypoints. It can also be

seen, that thresholds bigger than 20 degrees do not lead to

strong reductions in the model sizes.

Localization errors for each object and each view angle

threshold are given in Fig. 7. It can be seen that the

localization error is smaller than the Kinect sensor noise of

3 mm up to a threshold of 20 degrees. For this reason, we

decided to use a value of αmin = 20 degrees in the following

experiments.

In a second experiment, we performed local clustering as

described in Sec. V-C to remove duplicate model points. The

clustering was applied to the models after unstable keypoints
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Fig. 7. Localization error after applying a threshold on the range of viewing
angles. Errors are computed with respect to the baseline object poses. Error
bars correspond to the 95% confidence intervals.

were removed. It can be seen from Fig. 6 and Tab. I that

more than half the points are filtered out in this step. Note

that in Fig. 6 the numbers of keypoints after clustering

are depicted as bars in lighter colors. Localization errors

using the clustered models were comparable to those of the

unclustered models.

C. Spacial Sub-sampling

In this experiment, we applied spacial sub-sampling using

a voxel grid of various resolutions. The input to the sub-

sampling were object models that have been thresholded on

the view angle αmin = 20 degrees and have been clustered

locally. Again, the localization was executed three times

for each of the views in the test sets and the results were

compared to the baseline poses.

The resulting model sizes are given in Fig. 8 and the

localization errors are plotted in Fig. 9. It comes as no

surprise that sub-sampling leads to a substantial reduction in

model sizes. Depending on the size of the object, however,

a voxel size of, e.g., 30 mm may reduce the model to very

few points so that such a model cannot be used for object

recognition. But from Fig. 9 one can see that a sub-sampling

with voxel sizes of up to 10 mm led to results that are

comparable to those in Sec. VI-B. With a voxel size of

10 mm, the localization error is below the sensor noise of

3 mm, yet, the models are reduced to 10% to 20% compared

to the models generated in Sec. VI-B.
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Fig. 9. Localization error after applying sub-sampling with a voxel grid.
Errors are computed with respect to the baseline object poses. Error bars
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D. Sparse Models

Table I gives an overview of the model sizes in our

experiments. To generate these models, unstable keypoints

have been removed by applying a view angle threshold of

αmin = 20 degrees. Spacial sub-sampling was performed

with a voxel grid of a resolution of 10 mm. It can be seen that

the final model sizes are in the order of 1% of the original

model sizes.

VII. CONCLUSION

In this paper, we presented an approach to generate sparse

object models for keypoint-based 6D object pose estima-

tion. Our approach generates sparse models by identifying

keypoints that are not relevant to the object localization.

It applies data association to detect duplicate keypoints

and applies statistical analysis to identify keypoints that

have not been detected reliably during model generation.

Our approach furthermore ensures that keypoints are well

distributed across the volume of the object model.

We evaluated our approach using a SIFT-based 6D object

localization system. We modeled three real world objects and

analyzed the effect of various parameters. In our experiments,

we achieved a reduction of the model to approximately

1% of the original model size without a substantial loss of

localization performance.
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