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Abstract. We describe a method for 3D visual manipulator control usinga re-
dundant camera system without explicit external or internal calibration. Under the
assumption of a simple linear camera model, a fusion equation is derived for which
only three parameters have to be estimated, regardless of the number of cameras.
Distributed sensor-units provide the necessary measurements, which are fused to-
gether in a Kalman filter. In simulations, as well as in real experiments, the feasi-
bility of our approach for a 3D positioning task of a six degree of freedom (DOF)
Puma 200 to a target is demonstrated. It is shown that using redundant views in-
creases positioning accuracy and fault tolerance. The achieved accuracy is sufficient
to perform an insertion task.

Key Words. uncalibrated vision, distributed sensing, sensor fusion,redundant-
camera system

1 Introduction

Using a robot manipulator for an assembly task requires the ability to grasp different
parts. The common approach is to solve the 3D relationship between the robot
and the environment based upon 2D vision measurements. Thatin turn requires
the internal and external camera parameters to be calibrated which is difficult and
cumbersome.

Recently, the idea of uncalibrated visual guidance has attracted more attention.
(Skaaret al., 1987) described camera space manipulation while (Yoshimiand Allen,
1996) demonstrated 2D alignment of an eye-on-hand manipulator using rotational
epipolar motion. Both (Hageret al., 1995) and (Cipolla and Hollinghurst, 1994)
exploit a nearly uncalibrated stereo camera setup. Recent work shows the feasibility
using the well known image Jacobian. In (Jägersandet al., 1997) the usefulness
of adaptive differential feedback employing a visual motorJacobian was shown.
In (Sutantoet al., 1997) the idea of exploratory movements for dynamic image
Jacobian estimation was demonstrated.

This work describes a different way of uncalibrated hand-eye coordination. It
is based upon several redundant arbitrary camera views. As stated in (Brooks and



Iyengar, 1996) redundancy increases the sensor reliability, efficiency and perfor-
mance. The problem is how to fuse the redundant multi-sensorreadings properly.
We deal with this problem by assigning each camera to a singlesensor-unit which
provides the specific measurement necessary to guide the manipulator towards a
target. Using a parallel (and therefore linear) camera model leads to a simple lin-
ear fusion-equation. We show simulations and real experiments demonstrating the
capability of a redundant uncalibrated camera system in order to increase position
accuracy and in case of different camera failures.

2 Distributed sensing and fusion

The key idea of our visual control is that for a Cartesian motion the image Jacobian is
equivalent to the assumption of a parallel-camera model. Defining an image-based
position error inj different views and exploiting the parallel projection camera-
model leads to a simple linear equation for a resulting Cartesian correction move-
ment – thefusion equation. The parameters in turn are estimated with a linear
Kalman filter (KF) using measurement obtained by distributed sensors.

2.1 Fusion equation

Many researchers in the field of visual control (either with uncalibrated cameras or
not) exploit the so calledimage Jacobian J introduced by (Weisset al., Oct. 1987)
in order to relate a (discrete and small) displace-movement�d (either in joint- or
task-space) with a 2 dimensional image-feature displacement�f :�f = J ��d (1)

The problem is to invert the Jacobian, using a (pseudo) inversion in order to cal-
culate the displacement�de corresponding to an image displacement�fe defined
by an appropriate feature-space error function.

We chose a different approach of how to relate a feature-space error function with
a corresponding task-space displacement. This approach issomewhat related to the
image Jacobian. We use a quite rough approximation of the image-forming process
– the parallel projection.

The parallel projectionP j (see (Harris, 1984)) of a 3D world pointm in homoge-
neous coordinatesmw = (mx;my;mz; 1)T = (m; 1)T onto thejth camera plane
is fj = �rj11 rj12 rj13 tj1rj21 rj22 rj23 tj2� �mw= (Rj tj) �mw= P j �mw (2)P j in eq. (2) is simply the first two rows of the corresponding homogeneous

transformationcjTw from the world to thejth camera coordinate system.



The simplest error function for a linear point-to-point movement of a manipulator
atm to a goalg is to define an appropriate error-displacement vector�de which
has to become (nearly) zero.�de =m� g ! 0 (3)

For the corresponding displacement feature�f je in thejth camera using eq. (2)
follows: �f je = f jm � f jg= P j �mw �P j � gw= Rj �m+ tj �Rj � g � tj= Rj ��de (4)

Eq. (4) shows additionally that the parallel projectionRj of a displacement is
equivalent to the image Jacobian in eq. (1).

Given a set of three Cartesian linear independent displacement vectors1 fd1;d2;d3g
the error-displacement vectorde can be calculated by their linear combination:de = 3Xi=1 �idi (5)

Under the assumption of a parallel projectionRj the projected version of eq. (5)
is: f je = Rj � de = Rj �P3i=1 �idi= P3i=1 �i �Rj � di = P3i=1 �if ji (6)

Hence we can define the error function as the projection of thecorresponding
Cartesian displacementde. Calculating an appropriate set of scalars�1; �2; �3 in the
image space and inserting them into eq. (5) leads directly tothe desired displacement-
vector in the Cartesian 3D space.

Unfortunately eq. (6) is under-determined. Therefore at least two views are nec-
essary yielding an over-determined system. Assuming a redundant multi-camera
system withj different sensor-units, all views can be integrated simplyby solving
the following over-determined system:0BBB@f 1ef 2e

...f je1CCCA| {z }z = 0BBB@f11 f 12 f13f21 f 22 f23
...

...
...f j1 f j2 f j31CCCA| {z }H �0@�1�2�31A| {z }� (7)

1Because in the following only displacements are consideredthe� is omitted.



Eq. (7) plays the central role in our approach and is called the fusion equation.
Only three parameters have to be estimated independently ofthe number of cameras
and only three initial test movements are necessary (instead of several exploratory
movements when performing a repeated Jacobian acquiring asin (Sutanto et al.,
1997) ).

2.2 Distributed sensing units

From each camera only the position-residualf je between the goal and the manipu-
lator is necessary in Eq. (7). Therefore we can assign each camera to a sensor-unit
which is able to calculate its localf je and send it back on request to a central fusion-
unit which in turn solve the parameters of the fusion-equation.

2.3 Solving the fusion equation

We use a linear discrete Kalman filter to solve the parametersof Eq. (7). Assuming
zero-mean, white-noisev andw, the plant and measurement equation are:�(k + 1) = �(k) + v; v � N(0;Q)z(k) = H(k) � �(k) +w; w � N(0;R) (8)

The incremental prediction and update solutions can be found in (Bar-Shalom and
Li, 1993). In our approach the whole system dynamic is included in the system noisev. We have chosen pure diagonal matrices forQ,R and the initial state covarianceP(0j0) with the diagonal elements�2P(0j0) = 0:1; �2Q = 0:01 and�2R = 5:0. The

initial state-estimate is set to�(0j0) = (1; 1; 1)T .

For a point-to-point movement to a selected target the manipulator first makes
three Cartesian test movements. Each sensor-unit detects their imagedji and send
them back to the fusion-unit. With their corresponding position-residuals an initial
down-scaled correction movementdc = s � de; 0 < s < 1 is calculated. After each
movement a new� is estimated by asking each sensor-unit for the actual position-
residual. This is iterated as long as the target is not reached.

3 Simulations

In the simulations the system-behaviour using redundant cameras and its robustness
in potential failure situations is investigated. The task is to position the manipulator
tool center point at a target position. The images of these points are generated using
a pin hole camera model for each view. However, for the algorithm the projected
points are used only and not the information of the simulatedcamera. This is still
an idealisation since in reality there is no guarantee that the measured points in the
images are the projection of the same 3D point. At least they should be closed
neighbours.

Each measurement of the target- and manipulator-position is overlayed with 2
dimensional Gaussian noise with a variance of 5 in both horizontal and vertical



direction. In the simulation setup each test move has a 50mm length aligned with
the robots coordinate system. The distance to be moved is about 375mm. Each
camera has a distance of approximately 2m from the scene. Theused pin-hole
cameras have a uniform scaling of 70 pixel/mm and a focal length of 20mm.

In order to show that even under the assumption of a parallel projection our it-
erative approach still holds, the parallel camera model is not used to simulate the
feature generation. At present three different termination criteria have been used:� Maximum number of iterationsImax = 200.� Two dimensional minimal distanced2; the approach is stopped if in every

image the projection of the moved distance is less thand2 pixel.� Three dimensional minimal distanced3; the approach is stopped if the last
three real motions have been less thand3 mm each.

The experiments were run 1000 times each with two cameras oneobserving thexz-plane and the other one theyz-plane. Tab. 1 shows the results for different
termination criteria. The number of runsnr with successful termination due to the
criterion, the corresponding mean number of iterationsni and the mean 3D residual
distanced after termination are displayed. For those runs which were terminated by
exceeding the iteration limit the max-iteration residualdm is shown, too.

Criteriond2 d3 d2 or d3
2p 5p 3mm 5mm 5p or 5mmnr 380 1000 573 1000 1000

KF ni 97 32 92 28 22d=dm 6.4/7.5 6.9 6.0/8.3 6.6 6.9

Table 1 Comparing different termination criteria.

For both termination criteriad2 andd3 the (trivial) observation is that the weaker
the criterion, the more it fires. However, weakening the criteria does not increase
the mean target-distanced significantly. In order to have a criterion that (nearly)
always fires and yields a (nearly) minimal number of iterations and a (nearly) min-
imal residual distance we suggest a combined criterion, shown in the last column
of Tab. 1. Although it does not produce the best residual distance it provides the
minimal number of iterations.

An example of the end-positions distribution using a Kalmanfilter with the com-
bined criterion 5p or 5mm is shown in Fig. 1. The target position has been trans-
formed into the origin. Each ellipse is equivalent to the standard deviation calcu-
lated from the covariance of the appropriate distribution.The ellipse is centered
at the mean value of the distribution and is oriented along the principal axis of the
covariance of the distribution. It can be seen in Fig. 1(c) and (d) that the distribution
around the z-axis is more compact than the distribution around the x- and y-axis.
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Figure 1 End position distribution using 2 cameras.

This is due to the fact that in this simulation the z-axis had been observed by both
cameras.

Therefore we should expect better results (i.e. less iterations, lessd and more
compact distributions) if a redundant third camera is introduced observing thexy-
plane. This is shown in Fig. 2 using the same combined termination criterion. The
denser distribution is obvious – the deviation ellipses arenearly circles and have
become smaller. Comparing the results forni andd for 1000 runs (as shown in
Tab. 2) it can be seen that both the mean residual distance andthe mean number of
iterations decreases ford3 and the combined criterion.

Criteriond2 d3 d2 or d3
2p 5p 3mm 5mm 5p or 5mm

2 Cameras 161 32 138 28 22ni 3 Cameras 196 84 78 19 19
Diff[ %] +22 +163 -43 -32 -14

2 Cameras 7.1 6.9 7.0 6.6 6.9d[mm] 3 Cameras 6.0 5.4 5.0 5.6 5.7
Diff[ %] -15 -22 -29 -15 -17

Table 2 Comparingni andd for a KF solution between 2 and 3 Cameras.

3.1 Defect simulation

Three different failure types of a single camera in a set of three have been simulated.
The first is that both the target and the manipulator have always the same position.
In this situation no residual information from this camera is obtained but the target
is reached (see Fig. 3(a)). The second failure is that targetand manipulator have
always the same but different positions. The residual is always the same and non-
zero but the target is reached, too (see Fig. 3(b)). In the last case both the target
and manipulator position are very noisy. The problem is thatthe (very important)
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Figure 2 End position distribution using 3 cameras.

test movements are detected with heavy noise, too. The worsethey are detected, the
worse the positioning is (see Fig. 3(c)). If the test movements are detected without
or with less noise (e.g. by a repetition of every move and calculating the mean) the
result is improved (the target is reached after 16 iterations, see Fig. 3(d)). In order
to increase the robustness of the system in the case of a camera defect, these results
suggest the use of redundant cameras which are fairly easy toincorporate in our
approach.

measured positions

real target

start

(a)

measured target

measured position

(b)

noisy positions

noisy target

real target

(c)

real target

reached end position

(d)

Figure 3 Different failure situations.

4 Experiment

In this section we demonstrate the quality of our approach ina real experiment.
The manipulator is a 6 DOF Puma 200 using RCCL (Lloyd, 1988) asthe control
language.

The cameras are in approximately 1.5m distance. The target is a hole with radius
8mm in a wooden toy cube. The manipulator carries another cube with a peg which
has to be inserted. The center of the hole is at(�30; 340; 163)mm and the manipu-
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Figure 4 End points in reality.

series d ni
1 2.5 12
2 2.5 11
3 2.5 9
4 3.0 9

mean 2.6 10

Table 3 Mean real end position
residual and iterations.

lator is at(150; 250; 0)mm. Four test series containing 64 runs have been performed
using a combined termination criteriond2 = 2p andd3 = 1mm.

Before running a test the fusion-unit requests an actual image from each sensor-
unit. The target and the manipulator point to be tracked are marked by the user
resulting in a template for both in each image. The tracking itself is performed by
each sensor-unit exploiting simple template matching. At each new control-cycle
the fusion-unit requests all the appropriate position-residuals from each sensor-unit.
Due to the selection procedure and the different perspectives of each camera the
template centers are not the projection of the same point in 3D space.

For security reasons a point above the selected target describes the desired target
position. For our setup this relative correction vector is�c = (0; 0;�50)mm. This
relative distance is projected onto each image using the parallel-camera model in
eq. (4). The six parameters are calculated based on the measured projection of
the test movements. Despite these errors (noise, parallel projection, manual target
selection) the results shown in Tab. 3 for the mean target residual distanced and
the mean iteration numberni are satisfying. The hole was found in all runs and the
mean distance is approximately 2.6mm from the center of the hole. Fig. 4 shows the
corresponding distribution of end positions of all 64 runs.Each ellipse around the
mean value is equivalent to the distance standard deviationof a test series. With the
achieved accuracy the peg was inserted successfully simplyby moving downward
with a force-guarded motion.

The last series of images in Fig. 5 demonstrates the ability of our approach to fuse
several arbitrary positioned camera views even if some images have poor quality
due to high lens distortion (Fig. 5(c)) or blur (Fig. 5(f)).

5 Conclusions

This work presented an uncalibrated visual manipulator control using redundant
cameras. A parallel-camera model is used to calculate a correction. Instead of
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Figure 5 End positions and projected trajectory in six arbitrary views.

exploiting the Jacobian directly, a linear combination of three linearly independent
test movements is performed. Independently of the number ofcameras only three
parameters have to be estimated. Using a redundant camera-system and exploiting
distributed sensing robustness and performance are increased. The results of the
distributed sensing-process are fused together with a Kalman filter. The quality of
this approach is shown in simulations and real experiments.

The next step in this framework is to incorporate an automatic motion detection
and tracking ability. Another point is to apply the known robot motion in order to
estimate the pin-hole camera parameters without any further knowledge. Using this
model, an estimate of the epipolar geometry might be useful in order to detect a tar-
get which has been selected in only one view. Orientation control will be examined
using additional track points on both the target and manipulator.

More work will go into flexibilisation – instead of using a fixed set of a priori
known sensor-units a dynamically self-configuring sensor-unit network could be
possible, using for instance a Contract Net Protocol (see (Smith, 1981)). Also the
autonomy of each sensor-unit could be increased exploitingthe idea of a decen-
tralised Kalman filter as in (Brown et al., 1992).
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