
A Service Robot for Automating the Sample
Management in Biotechnological Cell Cultivations

Torsten Scherer∗, Iris Poggendorf∗, Axel Schneider†, Daniel Westhoff‡
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Abstract— In this paper we present a mobile robot system
that is capable of automating the sample management in a
biotechnological laboratory. The system consists of a mobile
platform and a robot arm. It can navigate freely in the laboratory
and operate standard devices needed for the sample management.
The platform uses an extended Kalman filter for localization and
theA∗ algorithm for path planning on a tangent graph computed
from the laboratory’s map. Motion execution has been designed
to be as predictable as possible to not irritate, disturb or harm
human personnel. The robot arm uses color vision to detect
devices and compensate for positioning errors. The parameters
and tasks needed to operate the devices are specified in simple
scripts to allow quick and easy adaptations to other situations.

I. I NTRODUCTION

Sample management is an essential part of the biotechnolo-
gical process of mammalian cell cultivation for the production
of biopharmaceuticals. Its particular importance lies in mon-
itoring the culture and determining the optimal harvest time.
Steps of this process are taking samples from the bioreactor
at regular intervals, counting the cells and determining their
viability, separating cells from the broth using a centrifuge and
storing an aliquot of the cell-free supernatant in a freezer for
further measurements. These actions include the handling of
multiple types of tubes, pipetting of liquid from/into the tubes,
feeding them to various devices and operating the devices.

A normal cultivation of mammalian cells usually takes up to
two weeks, whereas continuous cultures might run for several
months. During this time human personnel must be present
for sample management, process supervision and to perform
necessary process changes. Since this includes both nights
and weekends it presents a high cost factor. Human personnel
also introduces unpredictable errors when judging the sample,
depending on their training and fatigue.

Attempts to achieve an automatic sample management with
online sample analysis have so far focused on designing
special and complex machines that are directly attached to a
bioreactor. These machines are both expensive and inflexible.
Already the slightest change in the analytical process may ren-
der them useless or require expensive modifications. They also
increase the amount of equipment that has to be kept sterile
in order to avoid contamination during bioreactor operation.

On the other hand, semi-automatic stand-alone analytical
devices for most culture parameters already exist. For example
the CEDEX cell counter [11] used in our setup automates the
cell count using the standard trypan-blue method. It allows a
fast and reliable analysis of the sample by using a computer
vision system on a microscope to count and classify mam-
malian cells [12]. Yet, the CEDEX has to be loaded/unloaded
and operated by human personnel.

To overcome these disadvantages we have built a mobile
robot system that automates theentiresampling process, while
also making it more reliable and consistent [16]. The system
consists of a mobile platform that navigates freely in the
laboratory and a robot arm to carry the sample and operate
devices. It presents a new approach because it uses standard
laboratory equipment with only the least necessary amount
of modifications. The intention is to explicitly use existing
devices and allow human personnel to use them for other tasks
while the robot is idle, and thus eliminate the need to have
duplicate equipment.

The system also introduces a sterility barrier by not being
fixedly connected to a reactor, and therefore minimizes the
risk of contaminating the reactor. Instead, a steam-sterilizable
sampling system directly connected to the bioreactor is used to
fill a sample into a tube, which is then carried to the different
analytical devices by the robot. Details about the sampling
routine and the devices used are given in [15].

In this paper we present the precise and reliable mechanism
for localization and navigation, as well as the color vision sys-
tem to classify devices and detect and compensate for position-
ing errors. It will be shown that several of the implementation
details have been designed to allow easy alteration of system
parameters by non-expert personnel. Results demonstrating the
system’s reliability during a test cultivation will be presented.

II. SYSTEM DESCRIPTION

The system consists of a Mitsubishi PA-10 robot arm [4]
mounted on a mobile platform [5] as in Fig. 1. The platform
is equipped with a differential drive with odometers, a gyro
compass, two SICK LMS-200 laser range finders and a PC
running Linux. The drive wheels and the gyro are connected to



Fig. 1. The mobile platform and robot arm.

the PC via CAN bus. The laser range finders are connected to
the PC via high speed RS422 ports. They measure the distance
to obstacles in a range of180◦ each and detect special retro-
reflecting marks used for localization.

The arm is equipped with a wrist-mounted force/torque sen-
sor (FTS), a microhead color camera and an electric parallel
yaw gripper as in Fig. 2. The arm is connected to the PC via
an ARCNET network and controlled at joint controller level
by a modified version of RCCL [1]. The FTS is connected
to the PC via an ISA bus receiver board, the camera via a
Matrox Meteor PCI framegrabber board and the gripper via
two general purpose I/O bits on the FTS board.

III. M OBILE ROBOT CONTROL

The basis for the successful manipulation of the devices
with the robot system is a precise positioning of the mobile
platform, for which three prerequisites have to be met:

1) The exact global position and orientation of the platform
have to be determined (the localization problem).

2) A path from the current robot position to a goal position
has to be found (the navigation problem).

3) A control mechanism has to be implemented that moves
the robot according to the computed path (the motion
execution problem).

Fig. 2. The robot arm tool.

A. Localization

Experiments done by Gutmann et. al. in [7] and [8] show
that Kalman filtering techniques yield the most precise results
for solving the localization problem. In this work an extended
Kalman filter (EKF) by Schmidt [9] is used. The system-state
vector~xt contains the platform’s position and velocity and the
angular velocities of the drive wheels as well as the positions
of the laser reflector marks. These reflector marks have to be
distributed throughout the mobile robot’s workspace and serve
as landmarks with a known global position. The complete state
vector~xt is:

~xt =
(
ωR, ωL, ẋ, ẏ, φ̇, x, y, φ, xf1, yf1, ..., xfi, yfi

)T
t
.

Apart from the state vector the EKF also uses a measurement
vector~zt containing all available sensor information. Besides
the distances and angles to the reflectors received from the
laser range finders the measurement vector also includes the
angular velocities of the drive wheels as reported by the
odometers. In addition the rotational velocity of the complete
mobile platform, made available by the gyro compass, is
part of the measurement vector. The measurement vector~zt
therefore is:

~zt = (ωR, ωL, ϕ̇, df1 , αf1 , ..., dfi , αfi)
T
t .

It has to be emphasized that the EKF is able to merge sensor
information of very different accuracy and give an estimate of
past, present and future system states. In our system it provides
a position estimate up to 38 times per second.

B. Navigation

In order to solve the navigation problem, theA∗ algorithm
and tangent graph discussed by Latombe in [10] have been
applied for planning a path from the current position to the
desired goal position at a device. TheA∗ algorithm searches
for the shortest path on a tangent graph built on a set of
polygons. These polygons represent the static obstacles in the



mobile platform’s workspace and are generated by expanding
a simple vector representation of the laboratory’s map.

In order to use this approach, the representation of the robot
in the map has to be shrunk to a point, while all obstacles have
to be expanded by the same amount. Based on that, a tangent
graph is that set of straight lines which connect all polygon
vertices without going through any polygon body.

TheA∗ algorithm returns the combination of those tangents
which form the shortest path from start to goal. An example
can be seen in Fig. 3, showing a path from a pointS to a
point G.
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Fig. 3. Expanded map with path. The three obstacles are expanded by the
radius of a circle which surrounds the robot.

C. Motion Execution

Motion execution does not utilize any behaviours (like
“avoid obstacles”) but strictly follows the computed path. If
the platform encounters an obstacle it stops and waits for
it to move or to be moved away (after notifying a human
operator, if necessary). This may seem inflexible, but makes
the platform predictable and verifiable - features which are of
great importance in an environment with human presence in
which a machine has to meet several safety standards.

Each segment of the path is taken as a desired trajectory.
A PI controller is used to stay on the trajectory while going
towards the target with a1d-trapezoidal velocity profile [2].
The motion is brought to rest at a line perpendicular to the
trajectory through the target point. This does allow overshoot-
ing of the mobile platform along the trajectory, but has the
advantage of keeping the platform from getting trapped in a
potentially endless loop of trying to come within a small catch
radius around the target with a desired orientation. Instead it
just stops and reports the deviation to the arm controller for
compensation. This compensation is done with the help of
visual fine-positioning, which is discussed in the next section.

IV. V ISUAL FINE-POSITIONING

Although the robot arm may compensate for known er-
rors in the positioning of the mobile platform, other errors

remain. These include inaccuracy of the mobile platform’s
localization due to noise in the sensor measurements as well
as the unpredictable influence of human personnel having used
and possibly moved the equipment. However, a very high
positioning accuracy of the arm tool of - for one device -
only about one millimeter is an indispensable prerequisite
for successful robot manipulations. A color vision system is
therefore used to determine and compensate these errors.

A. Color Vision

Cameras provide the most natural and comprehensive in-
formation. However, they require a very large amount of
processing to extract the essential information. It is therefore
desirable - if not simply necessary - to remove unwanted
information in advance. Since our objects either have colored
regions or can be easily tagged with a colored label we
chose to employ a color-based approach to detect objects by
searching for known colors.

If you are looking at “color” technically the often used
RGB color representation has the disadvantage that it mixes
color and brightness information. The standardized CCIR-
601 YUV color representation [14] separates the brightness
(Y) from the color (U/V) information and is therefore better
suited for our purpose. Another advantage of YUV is that
it is the native SVHS video signal format and can therefore
be processed by the framegrabber board with no need for
additional conversion. Its only disadvantage is that the color
information in a YUV image is encoded with less bandwidth
than brightness information, and therefore has a lower signal-
noise-ratio. Fig. 4 shows the Y, U and V channels of a sample
image.

Fig. 4. Y, U and V channel (from left to right) of a CCIR-601 YUV color
image (original images, not contrast-maximized).

One approach to detect colored regions is to search for
their edges in the U/V images. Classic edge detection using
a derivation-based approach like Sobel filters behaves poorly
on signals with a low signal-noise-ratio. Other approaches like
the SUSAN detector by Smith in [6] usually perform better
in these cases. Since we do not need the region’s shape or
edges for the classification we instead chose aregion growing
approach.

The U/V images can be transformed into a diagram showing
those colors in the U/V plane which are found in the image.
Fig. 5 shows such a diagram. In this diagram the colorvalue
is represented by the angle of a vector from the center point
into the plane, and the colorsaturation by its length. This
value/saturation representation is actually similar to the HSV
color format, which could also be used as input format.



Fig. 5. Sample image of the centrifuge (left) and its colors used in the
U/V plane (right, the colors in the background are indistinguishable in b/w
print because all pixels have the same gray value). It can be seen that only a
fraction of the full range of color saturation is used.

Searching for known colors now means looking for pixels
along a vector of a known angleα. First, the U/V plane is
rotated byα.

~r = TROT(z,α) · ~puv

In this rotated coordinate system a similarity measure

s = rx/r
max
x · exp(−f · |ry|/|ry|max)

is defined to yield a high ranking for pixels with a high
positive rx-value and a near zerory-value. This measure is

Fig. 6. Similarity measure of the colors “blue”, “yellow” and “red” of the
U/V space in Fig. 5.

more tolerant in accepting variance of the color saturation than
variance of the color value, as can be seen in Fig. 6.

The measure is then applied to the known colors of objects,
yielding similarity “images” of colors as in Fig. 7. An example
of how the situation with most brightness information removed
looks like for the robot is given in Fig. 8. These similarity

Fig. 7. Similarity of pixels to the colors “blue”, “yellow” and “red” (from
left to right) of the image in Fig. 5. The colors “yellow” and “red” are similar
enough to still yield a low ranking for their counterparts.

images are used to find the best-matching (brightest) pixel.
Around this pixel a region is built using aseed fillalgorithm
down to a threshold of similarity. The regions thus determined
are stored in a list.

Fig. 8. Combined similarity image.

B. Model Matching

These regions are reduced to their color andcenter of
gravity (COG) to build a model of the image scene, which
is matched against stored models of objects. As opposed
to learning-based approaches like neural networks or fuzzy
controllers like [13] this model-based approach needs only one
training image for the one desired situation. This is particularly
important if it is not possible to obtain images of an object
from all perspectives (e.g. because a lid is obstructing a part
of the workspace). Learning-based approaches usually only
perform correctly if the learn space is homogeneously covered
by learn data.

The matching is done by looking at an assignment of COG
pixels. Allowing only thexy-translation andz-rotation of a
2d-model, the relation between each image pixel~pi and its
model pixel~pm can be described as cosα sinα tx

− sinα cosα ty
0 0 1

 ·
 xm

ym
1

 =

 xi
yi
1

 ,

which can be rearranged to

[
xm ym 1 0
ym −xm 0 1

]
·


cosα
sinα
tx
ty

 =
(
xi
yi

)
.

Combining the equations of at least two pixels of a complete
model yields an overdetermined equation system1

Mm · ~u = ~pi

which can be solved with the pseudo inverse

M−1 ≈ (MTM)−1MT

1We takesinα andcosα as linearly independent for simplification.



to yield the optimal vector~u of unknowns in the sense of
least-square error (LSE). The LSE

e = ‖Mm · ~u− ~pi‖

can be used to find the correct model and pixel assignments.
As can be seen in Fig. 9, this approach does not deal with

perspective effects caused by displacements and/or lens errors.
A 3d-model to compensate these effects has been tested,
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Fig. 9. LSE changes caused by perspective effects at different displacements.
The circles labelled “5” and “10” show isobars of the error function.

but has been found to be less well conditioned. Despite the
systematic error thus introduced, the2d-model still allows safe
classification of devices (see Fig. 10).
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Fig. 10. LSE allows an unambiguous classification of different devices with
different displacements. Error values have been clipped at 150.

C. Illumination Invariance

Since the vision system uses no brightness information it is
very tolerant against changes in the illumination. Fig. 11 shows
that the amount of noise in the color data does increase and the
quality of the resulting regions does decrease with worsening
illumination conditions. The matching, however, stays largely

unaffected by this because it is only done on the COGs of
the regions. Only if the scene should become so dark that
complete regions are lost the classification will fail.

V. ROBOT CONTROL

The robot acts as a server in a (wireless) TCP/IP network,
waiting for the process control system to request its services.
It offers a set of high-level functions like “fetch a tube”, “ hold
a tube under the pipette” or “ place a tube in the centrifuge
and start it”. To allow easy adaptation of these functions a
couple of simplifying features have been incorporated.

A. Sequence Scripts

The sequence of commands and parameters - mostly ho-
mogeneous transformations describing spatial relationships -
required for each high-level function is stored in a central
database and is re-read each time the function is invoked. Since
they are stored as ASCII text they can be trivially changed.

It has proven to be impossible to use an existing script
language/interpreter (like tcl/tk, perl, python etc.) and have all
the functionality in the script. This is because of the need to
access hardware and/or to have realtime capabilities, e.g. for
force control. Instead, we chose to have a set of complex built-
in functions that can use the full power of C++ and a realtime
OS and only a rather trivial and custom script language. This
lack of complexity in the script language in turns allows people
with comparably little training to do changes.

B. Script Commands

Script commands offer textual access to routines imple-
mented in C++ in the main program. They represent a sim-
plified approach to the full functionality of RCCL [1] for arm
control, the vision system and the mobile platform. Only those
aspects needed to allow easy adaptation are used in each case.
An excerpt of the set of script commands is shown in table I.

C. High-Level Functions

With these script commands the set of high-level functions
is realized. These functions can operate

• a sampling device, in which a tube has to be placed and
secured while it is being filled with the sample,

• a pipetting device - basically a needle, under which
different types of tubes have to be held at different depths,

• a centrifuge, where the hinged lid has to be
opened/closed, a tube has to be placed in or picked out
of the cage (which may have to be rotated into a proper
position first) and buttons have to be pressed,

• the CEDEX, where a small tube has to be inserted or
picked out of a rotary disk with very low clearance,

• a freezer, where a sliding lid has to be opened/closed and
a tube placed into it,

• a barcode scanner, in front of which a barcode-labelled
tube has to be held and possibly moved a little bit until
the scanner has read the barcode and

• several storage racks, from which tubes have to be picked.



(a) overexposed (b) normal (c) dark (d) very dark

Fig. 11. Vision performance under different illumination conditions.

TABLE I

SCRIPT COMMANDS.

COMMAND ARGUMENTS EXPLANATION
checkstate [REQUIRES<list>] [CHANGES<list>] enforce safety and reasonability checks on sequences of high-level functions
call <name> invoke sub-scriptname
callif TRANS | ROT<trsf> <op> <limit> <name> invoke sub-scriptnameconditionally
open open the gripper
close close the gripper
pushspeed <scale> push the current speed on a stack and set the new speed as current speed times

scale
popspeed restore the previous speed from the stack
move <poseq> move the arm in cartesian space according to a position equation
movej <poseq> move the arm in joint space according to a position equation
centerregion <color> <trsf> <poseq> center over the already centermost region of colorcolor by changingtrsf in

poseq
confirmmodel <device> <trsf> confirm modeldeviceby checking all models and settrsf to its displacement
centermodel <device> <trsf> <poseq> center on modeldeviceby successively modifyingtrsf in poseq
fmove [CTRL,<spec>] [ABORT,<spec>] <poseq> move in cartesian space according to a position equation while obeying force

constraints and/or limits
selectslot <device> <flags> <trsf> set trsf to the displacement of a free/full slot fromdeviceaccording toflags
settrsf <trsf> [<coordspec> | <trsf2>] set trsf
newtrsf <trsf> <coordspec> create and set a newtrsf to be visible until the current script is left
multtrsf <trsf> <trsf2> multiply trsf by trsf2
circle <trsf> <trsf2> <trsf3> <poseq> move the arm in cartesian space according to a circular motion relative to the

current position
mobile move<device> move the mobile platform todevice
mobile forward<distance> move the mobile platform forward bydistancemeters (may be negative)
arm start start the arm by disabling brakes
arm stop stop the arm by enabling brakes
arm approach<poseq> sequence of motions to unfold the arm from its park position into an optimal

position (in terms of best joint scope) to approachposeq
arm retreat<poseq> retreat fromposeqand go into park position by applying the reverse order of

commands as in ”start”

A sequence of functions that meets the specific biotech-
nological requirements for sample management can then be
issued by the process control system.

D. State Machine

The high-level functions (actions) are secured by a state
machine using attributes to describe the system state. This
state machine enforces checks which ensure that no damage
is done to the system in case of accidental mixing up of the
command order. The actions can be divided into two types:

1) Actions that end with the robot staying in kinematic
contact with a device (to fixate a tube) and

2) actions that do not.
For those actions that end staying in contact with a device
(“hold”), only that action that removes this contact (“take”) is
allowed as the next command to prevent damaging the device.

All other actions are only allowed if the robot is not in contact
with any device. This most important case is handled with the
holding attribute. More restrictions are imposed by means of
other attributes.

These restrictions are formulated by a list ofrequired
attribute values as pre-conditions of a command and a list
of changedattributes as a result of its execution. Again, these
lists are stored as ASCII text in the central database for easy
maintenance. Table II shows the sequence of commands and
their constraints used for our sample management.

This table not only expresses safety, but also a few reason-
ability contraints. It cannot coverall reasonability constraints
because the robot cannot fully observe the system state space.
State information like whether a tube is centrifuged or not
could only be derived from the sequence of past actions, but
not actively verified with the given sensors. It is therefore



TABLE II

STATE MACHINE CONDITIONS. ATTRIBUTES THAT ARE OPTIONAL AND ONLY USED FOR REASONABILITY ARE WRITTEN INitalics.

COMMAND REQUIRES CHANGES
1 UnparkCharger holding=charger holding=false
2 PickCedexCedex holding=false, gripper=empty gripper=cedex
3 PlaceCedexWaste holding=false,gripper=cedex gripper=empty
4 PickTubeStorage holding=false, gripper=empty gripper=nunc, tubeempty=true,barcode=false
5 HoldTubeSampler holding=false, gripper=nunc, tubeempty=true holding=sampler
6 TakeTubeSampler holding=sampler holding=false, tubeempty=false
7 HoldTubePipette holding=false, gripper=nunc holding=pipette
8 TakeTubePipette holding=pipette holding=false
9 LoadAndRunCentrifuge holding=false, gripper=nunc, centrifugeloaded=false gripper=empty, centrifugeloaded=true

10 PickCedexStorage holding=false, gripper=empty gripper=cedex, tubeempty=true,barcode=false
11 HoldCedexPipette holding=false, gripper=cedex holding=pipette
12 TakeCedexPipette holding=pipette holding=false
13 PlaceCedexCedex holding=false,gripper=cedex
14 OpenFridge holding=false, gripper=empty, fridge=closed fridge=open
15 StopAndUnloadCentrifuge holding=false, gripper=empty, centrifugeloaded=true gripper=nunc, centrifugeloaded=false
16 HoldTubePipette holding=false, gripper=nunc holding=pipette
17 TakeTubePipette holding=pipette holding=false
18 PlaceTubeWaste holding=false,gripper=nunc gripper=empty
19 PickTubeStorageBarcode holding=false, gripper=empty gripper=nunc, tubeempty=true,barcode=true
20 HoldTubePipette holding=false, gripper=nunc holding=pipette
21 TakeTubePipette holding=pipette holding=false
22 HoldTubeScanner holding=false, gripper=nunc,barcode=true holding=scanner
23 TakeTubeScanner holding=scanner holding=false
24 PlaceTubeAndCloseFridge holding=false, gripper=nunc, fridge=open gripper=empty, fridge=closed
25 ParkCharger holding=false holding=charger

deliberately discarded. This means that the resulting state
machine is non-deterministic, allowing multiple successive
states with the same action. It is up to the user to impose
more restrictions until the point where e.g. exactly only the
sequence in table II is allowed.

VI. RESULTS

The success of the manipulations depends mainly on the
positioning accuracy of the mobile platform. Manual offline
measurements have shown that the mobile platform’s deviation
from the goal position is typically less than1 cm - a value not
reached by many other platforms. However, failing a global
reference, this accuracy cannot be computed online.

What can be computed online are the displacements seen
by the vision subsystem when the robot arm has already
compensated what the mobile platform has reported as error.
Fig. 12 shows an example of these displacements. Considering
that the camera is equipped with a wide-angle lens and covers
an area of app.10.5×8 cm at a viewing height of14 cm these
displacements are well within bounds.

Another aspect is whether compensation of positioning
errors results in a motion target being out-of-range for the arm.
Fig. 13 shows that for the centrifuge there is still a (reasonable)
safety margin, though the centrifuge is most demanding in this
respect. Ahead-of-execution simulation might be used to detect
if this margin becomes too low. In this case, the platform’s
approach to the device could be repeated to cancel out noise
or the stored position could be updated to cancel out more
systematic influences.

VII. C ONCLUSIONS

We have shown that a mobile robot system using largely
unmodified standard laboratory equipment can be used to
automate a complex technological process usually requiring
human personnel. The presented methods provide the nec-
essary accuracy to allow a robot with only limited sensoric
capabilities to safely operate a wide range of biotechnological
devices.

The system can be very easily adapted to devices with a
similar structure as those used in our setup. For example, a
centrifuge with a different layout of buttons would only require
teaching a new model and changing a few motion primitives.

Even completely new devices could be incorporated rather
easily if they can be operated with the existing script com-
mands. The system is therefore not at all limited to biotech-
nological labs or processes, but can be used in a much wider
area of similar situations.

Finally, in a next step of automation, the culture parameters
gathered by the system could be used to close the control loop
and optimize a completely automatated cultivation.
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Fig. 12. Positioning displacements as seen by vision system. For the left graph the navigation was deliberately disturbed by gaussian noise of up to30mm
to show that large deviations are compensated before the vision system is invoked, while the right graph shows the normal situation.
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