
Evolino: Hybrid Neuroevolution / Optimal Linear Search for Sequence Learning

Jürgen Schmidhuber1,2, Daan Wierstra2, and Faustino Gomez2
{juergen, daan, tino}@idsia.ch

1 TU Munich, Boltzmannstr. 3, 85748 Garching, München, Germany
2 IDSIA, Galleria 2, 6928 Lugano, Switzerland

Abstract
Current Neural Network learning algorithms are
limited in their ability to model non-linear dynami-
cal systems. Most supervised gradient-based recur-
rent neural networks (RNNs) suffer from a vanish-
ing error signal that prevents learning from inputs
far in the past. Those that do not, still have prob-
lems when there are numerous local minima. We
introduce a general framework for sequence learn-
ing, EVOlution of recurrent systems with LINear
outputs (Evolino). Evolino uses evolution to dis-
cover good RNN hidden node weights, while us-
ing methods such as linear regression or quadratic
programming to compute optimal linear mappings
from hidden state to output. Using the Long Short-
Term Memory RNN Architecture, the method is
tested in three very different problem domains: 1)
context-sensitive languages, 2) multiple superim-
posed sine waves, and 3) the Mackey-Glass sys-
tem. Evolino performs exceptionally well across
all tasks, where other methods show notable defi-
ciencies in some.

1 Introduction
Real world non-linear dynamical systems are black-box in na-
ture: it is possible to observe their input/output behavior, but
the internal mechanism that generates this behavior is often
unknown. Modeling such systems to accurately predict their
behavior is a huge challenge with potentially far-reaching im-
pact on areas as broad as speech processing/recognition, fi-
nancial forecasting, and engineering.

Artificial Neural Networks with feedback connections or
Recurrent Neural Networks (RNNs; [Werbos, 1990; Robin-
son and Fallside, 1987; Williams and Zipser, 1989]) are
an attractive formalism for non-linear modeling because of
their ability, in principle, to approximate any dynamical sys-
tem with arbitrary precision [Siegelmann and Sontag, 1991].
However, training RNNs with standard gradient descent algo-
rithms is only practical when a short time window (less than
10 time-steps) is sufficient to predict the correct system out-
put. For longer temporal dependencies, the gradient vanishes
as the error signal is propagated back through time so that
network weights are never adjusted correctly to account for
events far in the past [Hochreiter et al., 2001].

Echo State Networks (ESNs; [Jaeger, 2004a]) deal with
temporal dependencies by simply ignoring the gradients as-
sociated with hidden neurons. Composed primarily of a large
pool of neurons (typically hundreds or thousands) with fixed
random weights, ESNs are trained by computing a set of
weights analytically from the pool to the output units using
fast, linear regression. The idea is that with so many ran-
dom hidden units, the pool is capable of very rich dynamics
that just need to be correctly “tapped” by adjusting the output
weights. This simple approach is currently the title holder in
the Mackey-Glass time-series benchmark, improving on the
accuracy of all other methods by as much as three orders of
magnitude [Jaeger, 2004a].

The drawback of ESNs, of course, is that the only truly
computationally powerful, nonlinear part of the net does not
learn at all. This means that on some seemingly simple tasks,
such as generating multiple superimposed sine waves, the
method fails. According to our experience, it is also not able
to solve a simple context-sensitive grammar task [Gers and
Schmidhuber, 2001]. Moreover, because ESNs use such a
large number of processing units, they are prone to overfit-
ting, i.e. poor generalization.

One method that adapts all weights and succeeds in us-
ing gradient information to learn long-term dependencies is
Long Short-Term Memory (LSTM; [Hochreiter and Schmid-
huber, 1997; Gers and Schmidhuber, 2001]). LSTM uses a
specialized network architecture that includes linear memory
cells that can sustain their activation indefinitely. The cells
have input and output gates that learn to open and close at
appropriate times either to let in new information from out-
side and change the state of the cell, or to let activation out
to potentially affect other cells or the network’s output. The
cell structure enables LSTM to use gradient descent to learn
dependencies across almost arbitrarily long time spans. How-
ever, in cases where gradient information is of little use due
to numerous local minima, LSTM becomes less competitive.

An alternative approach to training RNNs is neuroevolu-
tion [Yao, 1999]. Instead of using a single neural network,
the space of network parameters is searched in parallel using
the principle of natural selection. A population of chromo-
somes or strings encoding, for instance, network weight val-
ues and connectivity is evaluated on the problem, and each
chromosome is awarded a fitness value that quantifies its rel-
ative performance. The more highly fit chromosomes are
combined by exchanging substrings (crossover) and by ran-
domly changing some values (mutation), producing new so-

LEARNING 853

Recurrent
Neural Network

Linear Output
Layer W

m

u (t) u (t) u (t)

(t)(t) (t) (t)(t)

y1(t) y (t)2

1 2 3 4 u (t)p

y

φ φ φ φφ 2 n1 3 4

u

(t)

(t)

Figure 1: Evolino network. A recurrent neural network receives
sequential inputs u(t) and produce the vector (φ1, φ2, . . . , φn) at ev-
ery time step t. These values are linearly combined with the weight
matrix W to yield the network’s output vector y(t). While the RNN
is evolved, the output layer weights are computed using a fast, opti-
mal method such as linear regression or quadratic programming.

lutions that hopefully improve upon the existing population.
This approach has been very effective in solving continu-
ous, partially observable reinforcement learning tasks where
the gradient is not directly available, outperforming conven-
tional methods (e.g. Q-learning, SARSA) on several diffi-
cult learning benchmarks [Moriarty and Miikkulainen, 1996;
Gomez and Miikkulainen, 1999]. However, neuroevolution
is rarely used for supervised learning tasks such as time se-
ries prediction because it has difficulty fine-tuning solution
parameters (e.g. network weights), and because of the pre-
vailing maxim that gradient information should be used when
it is available.

In this paper, we present a novel framework called EVO-
lution of recurrent systems with LINear outputs (Evolino)
that combines elements of the three aforementioned meth-
ods, to address the disadvantages of each, extending ideas
proposed for feedforward networks of radial basis functions
(RBFs) [Maillard and Gueriot, 1997]. Applied to the LSTM
architecture, Evolino can solve tasks that ESNs cannot, and
achieves higher accuracy in certain continuous function gen-
eration tasks than conventional gradient descent RNNs, in-
cluding gradient-based LSTM.

Section 2 explains the basic concept of Evolino and de-
scribes in detail the specific implementation used in this pa-
per. Section 3 presents our experiments using Evolino in
three different domains: context-sensitive grammars, contin-
uous function generation, and the Mackey-Glass time-series.
Section 4 and 5 discuss the algorithm and the experimental
results, and summarize our conclusions.

2 The Evolino Framework
Evolino is a general framework for supervised sequence
learning that combines neuroevolution (i.e. the evolution of
neural networks) and analytical linear methods that are opti-
mal in some sense, such as linear regression or quadratic pro-
gramming. The underlying principle of Evolino is that often a
linear model can account for a large number of properties of a

problem. Properties that require non-linearity and recurrence
are then dealt with by evolution.

Figure 1 illustrates the basic operation of an Evolino net-
work. The output of the network at time t, y(t) ∈ Rm, is
computed by the following formulas:

y(t) = Wφ(t), (1)

φ(t) = f(u(t), u(t − 1), . . . , u(0)), (2)
where φ(t) ∈ Rn is the output of a recurrent neural network
f(·), and W is a weight matrix. Note that because the net-
works are recurrent, f(·) is indeed a function of the entire in-
put history, u(t), u(t− 1), . . . , u(0). In the case of maximum
margin classification problems [Vapnik, 1995] we may com-
pute W by quadratic programming. In what follows, how-
ever, we focus on mean squared error minimization problems
and compute W by linear regression.

In order to evolve an f(·) that minimizes the error between
y and the correct output, d, of the system being modeled,
Evolino does not specify a particular evolutionary algorithm,
but rather only stipulates that networks be evaluated using the
following two-phase procedure.

In the first phase, a training set of sequences obtained from
the system, {ui, di}, i = 1..k, each of length li, is presented
to the network. For each sequence ui, starting at time t = 0,
each input pattern ui(t) is successively propagated through
the recurrent network to produce a vector of activations φi(t)

that is stored as a row in a n ×
∑k

i li matrix Φ. Associated
with each φi(t), is a target row vector di in D containing the
correct output values for each time step. Once all k sequences
have been seen, the output weights W (the output layer in fig-
ure 1) are computed using linear regression from Φ to D. The
column vectors in Φ (i.e. the values of each of the n outputs
over the entire training set) form a non-orthogonal basis that
is combined linearly by W to approximate D.

In the second phase, the training set is presented to the net-
work again, but now the inputs are propagated through the
recurrent network f(·) and the newly computed output con-
nections to produce predictions y(t). The error in the predic-
tion or the residual error is then used as the fitness measure
to be minimized by evolution.

Neuroevolution is normally applied to reinforcement learn-
ing tasks where correct network outputs (i.e. targets) are not
known a priori. Here we use neuroevolution for supervised
learning to circumvent the problems of gradient-based ap-
proaches. In order to obtain the precision required for time-
series prediction, we do not try to evolve a network that makes
predictions directly. Instead, the network outputs a set of vec-
tors that form a basis for linear regression. The intuition is
that finding a sufficiently good basis is easier than trying to
find a network that models the system accurately on its own.

In this study, Evolino is instantiated using Enforced Sub-
Populations to evolve LSTM networks. The next sections de-
scribe ESP and LSTM, and the details of how they are com-
bined within the Evolino framework.

2.1 Enforced Subpopulations
Enforced SubPopulations differs from standard neuroevolu-
tion methods in that instead of evolving complete networks,
it coevolves separate subpopulations of network components
or neurons (figure 2). Evolution in ESP proceeds as follows:

LEARNING854

ESP

LSTM Network

Time series

input

output

fitness

pseudo−inverse
weights

Figure 2: Enforced SubPopulations (ESP). The population of
neurons is segregated into subpopulations. Networks are formed by
randomly selecting one neuron from each subpopulation. A neuron
accumulates a fitness score by adding the fitness of each network
in which it participated. The best neurons within each subpopula-
tion are mated to form new neurons. The network shown here is an
LSTM network with four memory cells (the triangular shapes).

1. Initialization: The number of hidden units H in the net-
works that will be evolved is specified and a subpopula-
tion of n neuron chromosomes is created for each hidden
unit. Each chromosome encodes a neuron’s input, out-
put, and recurrent connection weights with a string of
random real numbers.

2. Evaluation: A neuron is selected at random from each
of the H subpopulations, and combined to form a recur-
rent network. The network is evaluated on the task and
awarded a fitness score. The score is added to the cu-
mulative fitness of each neuron that participated in the
network.

3. Recombination: For each subpopulation the neurons are
ranked by fitness, and the top quartile is recombined us-
ing 1-point crossover and mutated using Cauchy dis-
tributed noise to create new neurons that replace the
lowest-ranking half of the subpopulation.

4. Repeat the Evaluation–Recombination cycle until a suf-
ficiently fit network is found.

ESP searches the space of networks indirectly by sampling
the possible networks that can be constructed from the sub-
populations of neurons. Network evaluations serve to pro-
vide a fitness statistic that is used to produce better neurons
that can eventually be combined to form a successful network.
This cooperative coevolutionary approach is an extension to
Symbiotic, Adaptive Neuroevolution (SANE; [Moriarty and
Miikkulainen, 1996]) which also evolves neurons, but in a
single population. By using separate subpopulations, ESP
accelerates the specialization of neurons into different sub-

output

peephole

external inputs

Σ

G

F

GI

o

G

S

Figure 3: Long Short-TermMemory. The figure shows an LSTM
memory cell. The cell has an internal state S together with a forget
gate (GF) that determines how much the state is attenuated at each
time step. The input gate (GI) controls access to the cell by the
external inputs that are summed into the Σ unit, and the output gate
(GO) controls when and how much the cell fires. Small dark nodes
represent the multiplication function.

functions needed to form good networks because members of
different evolving sub-function types are prevented from mat-
ing. Subpopulations also reduce noise in the neuron fitness
measure because each evolving neuron type is guaranteed to
be represented in every network that is formed. This allows
ESP to evolve recurrent networks, where SANE could not.

If the performance of ESP does not improve for a predeter-
mined number of generations, a technique called burst muta-
tion is used. The idea of burst mutation is to search the space
of modifications to the best solution found so far. When burst
mutation is activated, the best neuron in each subpopulation
is saved, the other neurons are deleted, and new neurons are
created for each subpopulation by adding Cauchy distributed
noise to its saved neuron. Evolution then resumes, but now
searching in a neighborhood around the previous best solu-
tion. Burst mutation injects new diversity into the subpopu-
lations and allows ESP to continue evolving after the initial
subpopulations have converged.

2.2 Long Short-Term Memory
LSTM is a recurrent neural network purposely designed to
learn long-term dependencies via gradient descent. The
unique feature of the LSTM architecture is the memory cell
that is capable of maintaining its activation indefinitely (fig-
ure 3). Memory cells consist of a linear unit which holds the
state of the cell, and three gates that can open or close over
time. The input gate “protects” a neuron from its input: only
when the gate is open, can inputs affect the internal state of
the neuron. The output gate lets the state out to other parts
of the network, and the forget gate enables the state to “leak”
activity when it is no longer useful.

The state of cell i is computed by:

si(t) = neti(t)g
in
i (t) + gforget

i (t)si(t − 1), (3)

LEARNING 855

where gin and gforget are the activation of the input and for-
get gates, respectively, and net is the weighted sum of the
external inputs (indicated by the Σs in figure 3):

neti(t) = h(
∑

j

wcell
ij cj(t − 1) +

∑

k

wcell
ik uk(t)), (4)

where h is usually the identity function, and cj is the output
of cell j:

cj(t) = tanh(gout
j (t)sj(t)). (5)

where gout is the output gate of cell j. The amount each gate
gi of memory cell i is open or closed at time t is calculated
by:

gtype
i (t) = σ(

∑

j

wtype
ij cj(t − 1) +

∑

k

wtype
ik uk(t)), (6)

where type can be input, output, or forget, and σ is the
standard sigmoid function. The gates receive input from the
output of other cells cj , and from the external inputs to the
network.

2.3 Combining ESP with LSTM in Evolino
We apply our general Evolino framework to the LSTM archi-
tecture, using ESP for evolution and regression for comput-
ing linear mappings from hidden state to outputs. ESP co-
evolves subpopulations of memory cells instead of standard
recurrent neurons (figure 2). Each chromosome is a string
containing the external input weights and the input, output,
and forget gate weights, for a total of 4 ∗ (I + H) weights
in each memory cell chromosome, where I is the number of
external inputs and H is the number of memory cells in the
network. There are four sets of I + H weights because the
three gates (equation 6) and the cell itself (equation 4) receive
input from outside the cell and the other cells. ESP, as de-
scribed in section 2.1, normally uses crossover to recombine
neurons. However, for the present Evolino variant, where fine
local search is desirable, ESP uses only mutation. The top
quarter of the chromosomes in each subpopulation are dupli-
cated and the copies are mutated by adding Cauchy noise to
all of their weight values.

The linear regression method used to compute the output
weights (W in equation 2) is the Moore-Penrose pseudo-
inverse method, which is both fast and optimal in the
sense that it minimizes the summed squared error [Penrose,
1955]—compare [Maillard and Gueriot, 1997] for an appli-
cation to feedforward RBF nets. The vector φ(t) consists of
both the cell outputs, ci (equation 5), and their internal states,
si (equation 3), so that the pseudo-inverse computes two con-
nection weights for each memory cell. We refer to the con-
nections from internal states to the output units as “output
peephole” connections, since they peer into the interior of the
cells.

For continuous function generation, backprojection (or
teacher forcing in standard RNN terminology) is used where
the predicted outputs are fed back as inputs in the next time
step: φ(t) = f(u(t), y(t − 1), u(t− 1), . . . , y(0), u(0)).

During training, the correct target values are backprojected,
in effect “clamping” the network’s outputs to the right values.
During testing, the network backprojects its own predictions.
This technique is also used by ESNs, but whereas ESNs do
not change the backprojection connection weights, Evolino
evolves them, treating them like any other input to the net-
work. In the experiments described below, backprojection

Training data Gradient LSTM Evolino LSTM
1..10 1..28 1..53
1..20 1..66 1..95
1..30 1..91 1..355
1..40 1..120 1..804

Table 1: Generalization results for the anbncn language. The
table compares Evolino-based LSTM to Gradient-based LSTM. The
left column shows the set of legal strings used to train each method.
The other columns show the set of strings that each method was able
to accept after training. The result for LSTM with gradient descent
are from [Gers and Schmidhuber, 2001]. Averages of 20 runs.

was found useful for continuous function generation tasks,
but interferes to some extent with performance in the discrete
context-sensitive language task.

3 Experimental Results
Experiments were carried out on three test problems: context-
sensitive languages, multiple superimposed sine waves, and
the Mackey-Glass time series. The first two were chosen to
highlight Evolino’s ability to perform well in both discrete
and continuous domains. For a more detailed description of
setups used in these two problems, and further experiments,
we direct the reader to [Wierstra et al., 2005]. The Mackey-
Glass system was selected to compare Evolino with ESNs, the
reference method on this widely used time series benchmark.

3.1 Context-Sensitive Grammars
Learning to recognize context-sensitive languages is a diffi-
cult and often intractable problem for standard RNNs because
it can require unlimited memory. For instance, recognizing
the language anbncn (i.e. strings where the number of as, bs,
and cs is equal) entails counting the number of consecutive as,
bs, and cs, and potentially having to remember these quan-
tities until the whole string has been read. Gradient-based
LSTM has previously been used to learn anbncn, so here we
compare the results in [Gers and Schmidhuber, 2001] to those
of Evolino-based LSTM.

Four sets of 20 simulations were run each using a different
training set of legal strings, {anbncn}, n = 1..N , where N
was 10, 20, 30, and 40. Symbol strings were presented to the
networks, one symbol at a time. The networks had 4 input
units, one for each possible symbol: S for start, a, b, and
c. An input is set to 1.0 when the corresponding symbol is
observed, and -1.0 when it is not present. At every time step,
the network predicts what symbols could come next, a, b,
c, and the termination symbol T , by activating its 4 output
units. An output unit is considered to be “on” if its activation
is greater than 0.0.

ESP evolved LSTM networks with 4 memory cells,
weights randomly initialized to values between −0.1 and 0.1.
The Cauchy noise parameter α for both mutation and burst
mutation was set to 0.00001, i.e. 50% of the mutations is kept
within this bound. Evolution was terminated after 50 gener-
ations, after which the best network in each simulation was
tested.

The results are summarized in Table 1. Evolino-based
LSTM learns in approximately 3 minutes on average, but,
more importantly, it is able to generalize substantially better
than gradient-based LSTM.

LEARNING856

300 1300600 1000300
time steps

predicted

system

Figure 4: Performance of Evolino on the triple superimposed
sine wave task. The plot show the behavior of a typical network
produced after 50 generations (3000 evaluations). The first 300 steps
(the data-points left of the vertical dashed line) were used as training
data, the rest must be predicted by the network during testing. Time-
steps above 300 show the network predictions (dashed curve) during
testing plotted against the correct system output (solid curve). The
inset is a magnified detail that more clearly shows the two curves.

3.2 Multiple Superimposed Sine Waves
Jaeger [Jaeger, 2004b] reports that Echo State Networks are
unable to learn functions composed of multiple superim-
posed oscillators. Specifically, functions like sin(0.2x) +
sin(0.311x), in which the individual sines have the same am-
plitude but their frequencies are not multiples of each other.
ESNs have difficulty solving this problem because the dy-
namics of all the neurons in the ESN “pool” are coupled,
whereas truly solving the task requires an internal representa-
tion of multiple attractors due to the non-periodic behavior of
the function.

We evolved networks with 10 memory cells to predict
the aforementioned double sine, sin(0.2x) + sin(0.311x),
and network with 15 cells for a more complex triple sine,
sin(0.2x) + sin(0.311x) + sin(0.42x). Evolino used the
same parameter settings as in the previous section, except that
backprojection was used (see section 2.3). Networks for both
tasks were evolved for 50 generations to predict the first 300
time steps of each function, and then tested on data points
from time-steps 300..600.

The average summed squared error over the training set
was 0.011 for the double sine and 0.2 for the triple sine. The
average error over the test set was 0.044 and 1.58, respec-
tively. These error levels are barely visible out to time-step
600. Figure 4 shows the behavior of one of the triple sine
wave Evolino networks out to time-step 1300. The magni-
fied inset illustrates how even beyond 3 times the length of
the training set, the network still makes very accurate predic-
tions.

3.3 Mackey-Glass Time-Series Prediction
The Mackey-Glass system (MGS; [Mackey and Glass, 1977])
is a standard benchmark for chaotic time series prediction.
The system produces an irregular time series that is produced
by the following differential equation: ẏ(t) = αy(t−τ)/(1+
y(t − τ)β) − γy(t), where the parameters are usually set to
α = 0.2,β = 10, γ = 0.1. The system is chaotic whenever
the delay τ > 16.8. We use the most common value for the
delay τ = 17.

Although the MGS can be modeled very accurately us-
ing feedforward networks with a time-window on the input,
we compare Evolino to ESNs (currently the best method for

MGS) in this domain to show its capacity for making precise
predictions. We used the same setup in our experiments as
in [Jaeger, 2004a]. Networks were trained on the first 3000
time steps of the series using a “washout time” of 100 steps.
During the washout time the vectors φ(t) are not collected for
calculating the pseudo-inverse.

We evolved networks with 30 memory cells for 200 gen-
erations, and a Cauchy noise α of 10−7. A bias input of
1.0 was added to the network, and the backprojection values
were scaled by a factor of 0.1. For testing, the outputs were
clamped to the correct targets for the first 3000 steps, after
which the network backprojected its own prediction for the
next 84 steps1. The cell input (equation 4) was squashed with
the tanh function. The average NRMSE84 for Evolino with
30 cells over the 15 runs was 1.9× 10−3 compared to 10−4.2

for ESNs with 1000 neurons [Jaeger, 2004a]. The Evolino
results are currently the second-best reported so far.

Figure 5 shows the performance of an Evolino network on
the MG time-series with even fewer memory cells, after 50
generations. Because this network has fewer parameters, it
is unable to achieve the same precision as with 30 neurons,
but it demonstrates how Evolino can learn complex functions
very quickly; in this case within approximately 3 minutes of
CPU time.

4 Discussion
The real strength of the Evolino framework is its general-
ity. Across different classes of sequence prediction prob-
lems, it was able to compete with the best known methods
and convincingly outperform them in several cases. In partic-
ular, it generalized much better than gradient-based LSTM in
the context-sensitive grammar task, and it solved the super-
imposed sine wave task, which ESNs cannot. These results
suggest that Evolino could be widely applicable to model-
ing complex processes that have both discrete and continuous
properties, such as speech.

Evolino avoids the problem of vanishing gradient and local
minima normally associated with RNN training by searching
the space of networks in parallel through evolution. Further-
more, by using LSTM memory cells, Evolino searches in a
weight space that is already biased toward extracting, retain-
ing, and relating discrete events that may be very far apart in
time. And, by borrowing the idea of linear regression from
ESNs, Evolino is capable of making very precise predictions
in tasks like the Mackey-Glass benchmark.

Apart from its versatility, another advantage of Evolino
over ESNs is that it produces more parsimonious solutions.
ESNs have large pools of neurons that are more likely to over-
fit the data. Evolino networks can be made much smaller and,
therefore, potentially more general, less susceptible to noise,
and more easily comprehensible by, for instance, RNN rule
extraction techniques.

Evolino is a template that can be instantiated by plugging
in (1) alternative analytical methods for computing optimal
linear mappings to the outputs, given the hidden state, (2) dif-
ferent neuroevolution algorithms, and (3) various recurrent
network architectures. In particular, our implementation used

1The normalized root mean square error (NRMSE84) 84 steps
after the end of the training sequence, is the standard comparison
measure used for this problem.

LEARNING 857

Mackey−Glass
Evolino

Evolino Mackey−Glass

 800

 0.8

 0.6

 1200 400 200
 0.4

 1

 1.2

 1.4

 0 1400 1000 600

Figure 5: Performance of Evolino on the Mackey-Glass time-series. The plot shows both the Mackey-Glass system and the prediction
made by a typical Evolino-based LSTM network evolved for 50 generations. The obvious difference between the system and the prediction
during the first 100 steps is due to the washout time. The inset shows a magnification more clearly showing the deviation between the two
curves.

mean squared error and linear regression, but we could as well
use the maximum margin optimality criterion [Vapnik, 1995]
and use quadratic programming to find optimal linear map-
pings from hidden state to sequence classifications, obtaining
a hitherto unknown species of sequential support vector ma-
chines.

We could also use neuroevolution methods that evolve net-
work topology as well, so that network complexity is also
determined through genetic search. Other RNNs, such as
higher-order networks could be used instead of LSTM. Gen-
eralizations to nonlinear readout mechanisms (e.g., nonlinear
neural networks) with gradient-based search are obvious. We
may also start training LSTM by Evolino, then fine-tune by
traditional pure gradient search.

Future work will further explore this space of possible im-
plementations to provide potentially even more powerful pre-
dictors, classifiers, and sequence generators.
5 Conclusion
We introduced EVOlution of recurrent systems with LIN-
ear outputs (Evolino), a general framework that combines
evolution of recurrent neural networks and analytical linear
methods to solve sequence learning tasks. The implemen-
tation of Evolino in this paper combined the pseudo-inverse
and Enforced Subpopulations algorithms to search a space of
Long-Short Term Memory networks. This yielded a versatile
method that can solve both tasks that require long-term mem-
ory of discrete events such as context-sensitive languages, and
continuous time-series such as the Mackey-Glass benchmark
and multiple superimposed sine waves.
Acknowledgments
This research was partially funded by CSEM Alpnach and the
EU MindRaces project, FP6 511931.
References
[Gers and Schmidhuber, 2001] F. A. Gers and J. Schmidhu-

ber. LSTM recurrent networks learn simple context free
and context sensitive languages. IEEE Transactions on
Neural Networks, 12(6):1333–1340, 2001.

[Gomez and Miikkulainen, 1999] Faustino Gomez and Risto
Miikkulainen. Solving non-Markovian control tasks with
neuroevolution. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence, Denver, CO,
1999. Morgan Kaufmann.

[Hochreiter and Schmidhuber, 1997] S. Hochreiter and
J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[Hochreiter et al., 2001] S. Hochreiter, Y. Bengio, P. Fras-
coni, and J. Schmidhuber. Gradient flow in recurrent nets:
the difficulty of learning long-term dependencies. In S. C.
Kremer and J. F. Kolen, editors, A Field Guide to Dynam-
ical Recurrent Neural Networks. IEEE Press, 2001.

[Jaeger, 2004a] H. Jaeger. Harnessing nonlinearity: Predict-
ing chaotic systems and saving energy in wireless commu-
nication. Science, 304:78–80, 2004.

[Jaeger, 2004b] H. Jaeger. http://www.faculty.iu-bremen.de/
hjaeger/courses/seminarspring04/esnstandardslides.pdf,
2004.

[Mackey and Glass, 1977] M. C. Mackey and L. Glass. Os-
cillation and chaos in physiological control systems. Sci-
ence, 197:287–289, 1977.

[Maillard and Gueriot, 1997] E. P. Maillard and D. Gueriot.
RBF neural network, basis functions and genetic algo-
rithms. In IEEE International Conference on Neural Net-
works, pages 2187–2190, Piscataway, NJ, 1997. IEEE.

[Moriarty and Miikkulainen, 1996] D. E. Moriarty and
R. Miikkulainen. Efficient reinforcement learning through
symbiotic evolution. Machine Learning, 22:11–32, 1996.

[Penrose, 1955] R. Penrose. A generalized inverse for matri-
ces. In Proceedings of the Cambridge Philosophy Society,
volume 51, pages 406–413, 1955.

[Robinson and Fallside, 1987] A. J. Robinson and F. Fall-
side. The utility driven dynamic error propagation net-
work. Technical Report CUED/F-INFENG/TR.1, Cam-
bridge University Engineering Department, 1987.

[Siegelmann and Sontag, 1991] H. T. Siegelmann and E. D.
Sontag. Turing computability with neural nets. Applied
Mathematics Letters, 4(6):77–80, 1991.

[Vapnik, 1995] V. Vapnik. The Nature of Statistical Learning
Theory. Springer, New York, 1995.

[Werbos, 1990] P. Werbos. Backpropagation through time:
what does it do and how to do it. In Proceedings of IEEE,
volume 78, pages 1550–1560, 1990.

[Wierstra et al., 2005] Daan Wierstra, Juergen Schmidhuber,
and Faustino Gomez. Modeling non-linear dynamical
systems with evolino. To appear in Proceedings of the
Genetic Evolutionary Computation Conference (GECCO-
05). Springer-Verlag, Berlin; New York, 2005.

[Williams and Zipser, 1989] R. J. Williams and D. Zipser. A
learning algorithm for continually running fully recurrent
networks. Neural Computation, 1(2):270–280, 1989.

[Yao, 1999] Xin Yao. Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423–1447, 1999.

LEARNING858

