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Abstract. The growing literature on consciousness does not provide a formal
demonstration of theusefulnessof consciousness. Here we point out that the
recently formulated Gödel machines may provide just such atechnical justifi-
cation. They are the first mathematically rigorous, general, fully self-referential,
self-improving, optimally efficient problem solvers, “conscious” or “self-aware”
in the sense that their entire behavior is open to introspection, and modifiable.
A Gödel machine is a computer that rewrites any part of its own initial code as
soon as it finds a proof that the rewrite isuseful,where the problem-dependent
utility function, the hardware, and the entire initial code are described by axioms
encoded in an initial asymptotically optimal proof searcher which is also part of
the initial code. This type of total self-reference is precisely the reason for the
Gödel machine’s optimality as a general problem solver: any self-rewrite is glob-
ally optimal—no local maxima!—since the code first had to prove that it is not
useful to continue the proof search for alternative self-rewrites.

1 Introduction and Outline

In recent years the topic of consciousness has gained some credibility as a serious re-
search issue, at least in philosophy and neuroscience, e.g., [8]. However, there is a lack
of technicaljustifications of consciousness: so far no one has shown thatconscious-
ness is really useful for solving problems, even though problem solving is considered
of central importance in philosophy [29].

Our fully self-referential Gödel machine [43, 45] may be viewed as providing just
such a technical justification. It is “self-aware” or “conscious” in the sense that the al-
gorithm determining its behavior is completely open to self-inspection, and modifiable
in a very general (but computable) way. It can ‘step outside of itself’ [13] by executing
self-changes that are provably good, where the mechanism for generating the proofs
also is part of the initial code and thus subject to analysis and change. We will see that
this type of total self-reference makes the Gödel machine an optimalgeneral problem
solver, in the sense of Global Optimality Theorem 1, to be discussed in Section 4.

Outline. Section 2 presents basic concepts of Gödel machines, relations to the most
relevant previous work, and limitations. Section 3 presents the essential details of a
self-referential axiomatic system of one particular Gödel machine, Section 4 the Global



Optimality Theorem 1, and Section 5 anO()-optimal (Theorem 2) initial proof searcher.
Section 6 provides examples and additional relations to previous work, and lists answers
to several frequently asked questions about Gödel machines. Section 7 wraps up.

2 Basic Overview / Most Relevant Previous Work / Limitations

All traditional algorithms for problem solving are hardwired. Some are designed to
improve some limited type of policy through experience [19], but are not part of the
modifiable policy, and cannot improve themselves in a theoretically sound way. Hu-
mans are needed to create new / better problem solving algorithms and to prove their
usefulness under appropriate assumptions.

Here we eliminate the restrictive need for human effort in the most general way
possible, leaving all the work including the proof search toa system that can rewrite
and improve itself in arbitrary computable ways and in a mostefficient fashion. To
attack this“Grand Problem of Artificial Intelligence,”we introduce a novel class of
optimal, fully self-referential [10] general problem solvers calledGödel machines[43,
44].1 They are universal problem solving systems that interact with some (partially
observable) environment and can in principle modify themselves without essential lim-
its apart from the limits of computability. Their initial algorithm is not hardwired; it
can completely rewrite itself, but only if a proof searcher embedded within the initial
algorithm can first prove that the rewrite is useful, given a formalized utility function re-
flecting computation time and expected future success (e.g., rewards). We will see that
self-rewrites due to this approach are actuallyglobally optimal(Theorem 1, Section
4), relative to Gödel’s well-known fundamental restrictions of provability [10]. These
restrictions should not worry us; if there is no proof of someself-rewrite’s utility, then
humans cannot do much either.

The initial proof searcher isO()-optimal (has an optimal order of complexity) in the
sense of Theorem 2, Section 5. Unlike hardwired systems suchas Hutter’s [15, 16] (Sec-
tion 2) and Levin’s [23, 24], however, a Gödel machine can inprinciple speed up any
part of its initial software, including its proof searcher,to meetarbitrary formalizable
notions of optimality beyond those expressible in theO()-notation. Our approach yields
the first theoretically sound, fully self-referential, optimal, general problem solvers.

2.1 Set-up and Formal Goal

Many traditional problems of computer science require justone problem-defining input
at the beginning of the problem solving process. For example, the initial input may be a
large integer, and the goal may be to factorize it. In what follows, however, we will also
consider themore general casewhere the problem solution requires interaction with a
dynamic, initially unknown environment that produces a continual stream of inputs and

1 Or ‘Goedel machine’, to avoid theUmlaut. But ‘Godel machine’would not be quite correct.
Not to be confused with what Penrose calls, in a different context, ‘Gödel’s putative theorem-
proving machine’[28]!



feedback signals, such as in autonomous robot control tasks, where the goal may be
to maximize expected cumulative future reward [19]. This may require the solution of
essentially arbitrary problems (examples in Section 6.1 formulate traditional problems
as special cases).

Our hardware (e.g., a universal or space-bounded Turing machine [55] or the ab-
stract model of a personal computer) has a single life which consists of discrete cycles
or time stepst = 1, 2, . . .. Its total lifetimeT may or may not be known in advance.
In what follows, the value of any time-varying variableQ at timet will be denoted by
Q(t).

During each cycle our hardware executes an elementary operation which affects its
variable states ∈ S ⊂ B∗ (whereB∗ is the set of possible bitstrings over the binary
alphabetB = {0, 1}) and possibly also the variable environmental stateEnv ∈ E
(here we need not yet specify the problem-dependent setE). There is a hardwired state
transition functionF : S × E → S. For t > 1, s(t) = F (s(t − 1), Env(t − 1)) is the
state at a point where the hardware operation of cyclet − 1 is finished, but the one of
t has not started yet.Env(t) may depend on past output actions encoded ins(t − 1)
and is simultaneously updated or (probabilistically) computed by the possibly reactive
environment.

In order to talk conveniently about programs and data, we will often attach names to
certain string variables encoded as components or substrings ofs. Of particular interest
are the three variables calledtime, x, y, andp:

1. At time t, variabletime holds a unique binary representation oft. We initialize
time(1) = ‘1’, the bitstring consisting only of a one. The hardware increments
time from one cycle to the next. This requires at mostO(log t) and on average
only O(1) computational steps.

2. Variablex holds the inputs form the environment to the Gödel machine.For t > 1,
x(t) may differ fromx(t− 1) only if a program running on the Gödel machine has
executed a special input-requesting instruction at timet − 1. Generally speaking,
the delays between successive inputs should be sufficientlylarge so that programs
can perform certain elementary computations on an input, such as copying it into
internal storage (a reserved part ofs) before the next input arrives.

3. Variabley holds the outputs of the Gödel machine.y(t) is the output bitstring
which may subsequently influence the environment, wherey(1) = ‘0’ by default.
For example,y(t) could be interpreted as a control signal for an environment-
manipulating robot whose actions may have an effect on future inputs.

4. p(1) is the initial software: a program implementing the original (sub-optimal) pol-
icy for interacting with the environment, represented as a substringe(1) of p(1),
plus the original policy for searching proofs. Details willbe discussed below.

At any given timet (1 ≤ t ≤ T ) the goal is to maximize future success orutility. A
typical “value to go” utility function is of the formu(s, Env) : S × E → R, whereR
is the set of real numbers:

u(s, Env) = Eµ
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wherer(t) is a real-valued reward input (encoded withins(t)) at time t, Eµ(· | ·)
denotes the conditional expectation operator with respectto some possibly unknown
distributionµ from a setM of possible distributions (M reflects whatever is known
about the possibly probabilistic reactions of the environment), and the above-mentioned
time = time(s) is a function of states which uniquely identifies the current cycle.
Note that we take into account the possibility of extending the expected lifespanEµ(T |
s, Env) through appropriate actions.

Alternative formalizable utility functions could favor improvement ofworst case
instead ofexpectedfuture performance, or higher reward intakeper time intervaletc.
Clearly, most classic problems of computer science can be formulated in this framework—
see examples in Section 6.1.

2.2 Basic Idea of G̈odel Machine

Our machine becomes a self-referential [10]Gödel machineby loading it with a partic-
ular form of machine-dependent, self-modifying codep. The initial codep(1) at time
step 1 includes a (typically sub-optimal) problem solving subroutinee(1) for inter-
acting with the environment, such as any traditional reinforcement learning algorithm
[19], and a general proof searcher subroutine (Section 5) that systematically makes pairs
(switchprog, proof)(variable substrings ofs) until it finds aproof of a target theorem
which essentially states:‘the immediate rewrite ofp through current programswitch-
progon the given machine implies higher utility than leavingp as is’.Then it executes
switchprog, which may completely rewritep, including the proof searcher. Section 3
will explain details of the necessary initial axiomatic systemA encoded inp(1). Com-
pare Figure 1.

The Global Optimality Theorem (Theorem 1, Section 4) shows this self-improve-
ment strategy is not greedy: since the utility of‘leavingp as is’ implicitly evaluates all
possible alternativeswitchprogs which an unmodifiedp might find later, we obtain a
globally optimal self-change—thecurrent switchprogrepresents the best of all possible
relevant self-changes, relative to the given resource limitations and initial proof search
strategy.

2.3 Proof Techniques and anO()-optimal Initial Proof Searcher

Section 5 will present anO()-optimal initialization of the proof searcher, that is, one
with an optimalorderof complexity (Theorem 2). Still, there will remain a lot of room
for self-improvement hidden by theO()-notation. The searcher uses an online extension
of Universal Search[23, 24] to systematically testonline proof techniques, which are
proof-generating programs that may read parts of states (similarly, mathematicians are
often more interested in proof techniques than in theorems). To prove target theorems
as above, proof techniques may invoke special instructionsfor generating axioms and
applying inference rules to prolong the currentproof by theorems. Here an axiomatic
systemA encoded inp(1) includes axioms describing(a) how any instruction invoked
by a program running on the given hardware will change the machine’s states (includ-
ing instruction pointers etc.) from one step to the next (such that proof techniques can
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Fig. 1. Storage snapshot of a not yet self-improved example Gödel machine, with the initial soft-
ware still intact. See text for details.

reason about the effects of any program including the proof searcher),(b) the initial
programp(1) itself (Section 3 will show that this is possible without introducing cir-
cularity),(c) stochastic environmental properties,(d) the formal utility functionu, e.g.,
equation (1), which automatically takes into account computational costs of all actions
including proof search.

2.4 Relation to Hutter’s Previous Work

Here we will briefly review the most closely related previouswork, and point out the
main novelties of the Gödel machine. More relations to older approaches can be found
in Section 6.2.



Hutter’s non-self-referential but stillO()-optimal ‘fastest’ algorithm for all well-
defined problemsHSEARCH [16] uses ahardwiredbrute force proof searcher and ig-
nores the costs of proof search. Assume discrete input/output domainsX/Y , a formal
problem specificationf : X → Y (say, a functional description of how integers are
decomposed into their prime factors), and a particularx ∈ X (say, an integer to be
factorized). HSEARCH orders all proofs of an appropriate axiomatic system by sizeto
find programsq that for all z ∈ X provably computef(z) within time boundtq(z).
Simultaneously it spends most of its time on executing theq with the best currently
proven time boundtq(x). It turns out that HSEARCH is as fast as thefastestalgorithm
that provably computesf(z) for all z ∈ X , save for a constant factor smaller than
1 + ε (arbitraryε > 0) and anf -specific butx-independent additive constant [16]. This
constant may be enormous though.

Hutter’s AIXI (t,l) [15] is related. In discrete cyclek = 1, 2, 3, . . . of A IXI (t,l)’s life-
time, actiony(k) results in perceptionx(k) and rewardr(k), where all quantities may
depend on the complete history. Using a universal computer such as a Turing machine,
A IXI (t,l) needs an initial offline setup phase (prior to interaction with the environment)
where it uses ahardwiredbrute force proof searcher to examine all proofs of length
at mostL, filtering out those that identify programs (of maximal sizel and maximal
runtimet per cycle) which not only could interact with the environment but which for
all possible interaction histories also correctly predicta lower bound of their own ex-
pected future reward. In cyclek, A IXI (t,l) then runs all programs identified in the setup
phase (at most2l), finds the one with highest self-rating, and executes its corresponding
action. The problem-independent setup time (where almost all of the work is done) is
O(L · 2L). The online time per cycle isO(t · 2l). Both are constant but typically huge.

Advantages and Novelty of the G̈odel Machine.There are major differences between
the Gödel machine and Hutter’s HSEARCH [16] and AIXI (t,l) [15], including:

1. The theorem provers of HSEARCHand AIXI (t,l) are hardwired, non-self-referential,
unmodifiable meta-algorithms that cannot improve themselves. That is, they will
always suffer from the same huge constant slowdowns (typically � 101000) buried
in theO()-notation. But there is nothing in principle that prevents our truly self-
referential code from proving and exploiting drastic reductions of such constants,
in the best possible way that provably constitutes an improvement, if there is any.

2. The demonstration of theO()-optimality of HSEARCHand AIXI (t,l) depends on a
clever allocation of computation time to some of their unmodifiable meta-algorithms.
Our Global Optimality Theorem (Theorem 1, Section 4), however, is justified through
a quite different type of reasoning which indeed exploits and crucially depends on
the fact that there is no unmodifiable software at all, and that the proof searcher
itself is readable, modifiable, and can be improved. This is also the reason why its
self-improvements can be more than merelyO()-optimal.

3. HSEARCH uses a “trick” of proving more than is necessary which also disappears
in the sometimes quite misleadingO()-notation: it wastes time on finding programs
that provably computef(z) for all z ∈ X even when the currentf(x)(x ∈ X) is
the only object of interest. A Gödel machine, however, needs to prove only what is
relevant to its goal formalized byu. For example, the generalu of eq. (1) completely



ignores the limited concept ofO()-optimality, but instead formalizes a stronger type
of optimality that does not ignore huge constants just because they are constant.

4. Both the Gödel machine and AIXI (t,l) can maximize expected reward (HSEARCH

cannot). But the Gödel machine is more flexible as we may plugin any type of
formalizable utility function (e.g.,worst casereward), and unlike AIXI (t,l) it does
not require an enumerable environmental distribution.

Nevertheless, we may use AIXI (t,l) or HSEARCH or other less general methods to ini-
tialize the substringe of p which is responsible for interaction with the environment.
The Gödel machine will replacee(1) as soon as it finds a provably better strategy.

2.5 Limitations of Gödel Machines

The fundamental limitations are closely related to those first identified by Gödel’s cel-
ebrated paper on self-referential formulae [10]. Any formal system that encompasses
arithmetics (or ZFC etc) is either flawed or allows for unprovable but true statements.
Hence even a Gödel machine with unlimited computational resources must ignore those
self-improvements whose effectiveness it cannot prove, e.g., for lack of sufficiently
powerful axioms inA. In particular, one can construct pathological examples ofenvi-
ronments and utility functions that make it impossible for the machine to ever prove
a target theorem. Compare Blum’s speed-up theorem [3, 4] based on certain incom-
putable predicates. Similarly, a realistic Gödel machinewith limited resources cannot
profit from self-improvements whose usefulness it cannot prove within its time and
space constraints.

Nevertheless, unlike previous methods, it can in principleexploit at least theprov-
ablygood speed-ups ofanypart of its initial software, including those parts responsible
for huge (but problem class-independent) slowdowns ignored by the earlier approaches
[15, 16].

3 Essential Details of One Representative G̈odel Machine

Notation. Unless stated otherwise or obvious, throughout the paper newly introduced
variables and functions are assumed to cover the range implicit in the context.l(q)
denotes the number of bits in a bitstringq; qn then-th bit of q; λ the empty string (where
l(λ) = 0); qm:n = λ if m > n andqmqm+1 . . . qn otherwise (whereq0 := q0:0 := λ).

Theorem proving requires an axiom scheme yielding an enumerable set of axioms
of a formal logic systemA whose formulas and theorems are symbol strings over
some finite alphabet that may include traditional symbols oflogic (such as→,∧, =
, (, ), ∀, ∃, . . ., c1, c2, . . . , f1, f2, . . .), probability theory (such asE(·), the expectation
operator), arithmetics (+,−, /, =,

∑

, <, . . .), string manipulation (in particular, sym-
bols for representing any part of states at any time, such ass7:88(5555)). A proof is
a sequence of theorems, each either an axiom or inferred fromprevious theorems by
applying one of the inference rules such asmodus ponenscombined withunification,
e.g., [9].



The remainder of this paper will omit standard knowledge to be found in any proof
theory textbook. Instead of listingall axioms of a particularA in a tedious fashion,
we will focus on the novel and critical details: how to overcome problems with self-
reference and how to deal with the potentially delicate online generation of proofs that
talk about and affect the currently running proof generatoritself.

3.1 Proof techniques

Brute force proof searchers (used in Hutter’s AIXI (t,l) and HSEARCH; see Section 2.4)
systematically generate all proofs in order of their sizes.To produce a certain proof,
this takes time exponential in proof size. Instead ourO()-optimal p(1) will produce
many proofs with low algorithmic complexity [51, 21, 25] much more quickly. It sys-
tematically tests (see Section 5)proof techniqueswritten in universal languageL im-
plemented withinp(1). For example,L may be a variant of PROLOG [6] or the univer-
sal FORTH[27]-inspired programming language used in recent work on optimal search
[46]. A proof technique is composed of instructions that allow any part ofs to be read,
such as inputs encoded in variablex (a substring ofs) or the code ofp(1). It may
write onsp, a part ofs reserved for temporary results. It also may rewriteswitchprog,
and produce an incrementally growing proof placed in the string variableproof stored
somewhere ins. proofandsp are reset to the empty string at the beginning of each new
proof technique test. Apart from standard arithmetic and function-defining instructions
[46] that modifysp, the programming languageL includes special instructions for pro-
longing the currentproof by correct theorems, for settingswitchprog, and for checking
whether a provably optimalp-modifying program was found and should be executed
now. Certain long proofs can be produced by short proof techniques.

The nature of the sixproof-modifying instructions below (there are no others) makes
it impossible to insert an incorrect theorem intoproof, thus trivializing proof verifica-
tion:

1. get-axiom(n)takes as argument an integern computed by a prefix of the currently
tested proof technique with the help of arithmetic instructions such as those used
in previous work [46]. Then it appends then-th axiom (if it exists, according to the
axiom scheme below) as a theorem to the current theorem sequence inproof. The
initial axiom scheme encodes:

(a) Hardware axioms describing the hardware, formally specifying how certain
components ofs (other than environmental inputsx) may change from one
cycle to the next.
For example, if the hardware is a Turing machine2 (TM) [55], thens(t) is a
bitstring that encodes the current contents of all tapes of the TM, the positions

2 Turing reformulated Gödel’s unprovability results in terms of Turing machines (TMs) [55]
which subsequently became the most widely used abstract model of computation. It is well-
known that there areuniversalTMs that in a certain sense can emulate any other TM or any
other known computer. Gödel’s integer-based formal language can be used to describe any
universal TM, and vice versa.



of its scanning heads, and the currentinternal stateof the TM’s finite state
automaton, whileF specifies the TM’s look-up table which maps any possible
combination of internal state and bits above scanning headsto a new internal
state and an action such as: replace some head’s current bit by 1/0, increment
(right shift) or decrement (left shift) some scanning head,read and copy next
input bit to cell above input tape’s scanning head, etc.
Alternatively, if the hardware is given by the abstract model of a modern micro-
processor with limited storage,s(t) will encode the current storage contents,
register values, instruction pointers etc.
For instance, the following axiom could describe how some 64-bit hardware’s
instruction pointer stored ins1:64 is continually incremented as long as there is
no overflow and the value ofs65 does not indicate that a jump to some other
address should take place:

(∀t∀n : [(n < 264 − 1) ∧ (n > 0) ∧ (t > 1) ∧ (t < T )

∧(string2num(s1:64(t)) = n) ∧ (s65(t) = ‘0’)]

→ (string2num(s1:64(t + 1)) = n + 1))

Here the semantics of used symbols such as ‘(’ and ‘>’ and ‘→’ (implies) are
the traditional ones, while ‘string2num’ symbolizes a function translating
bitstrings into numbers. It is clear that any abstract hardware model can be
fully axiomatized in a similar way.

(b) Reward axiomsdefining the computational costs of any hardware instruction,
and physical costs of output actions, such as control signals y(t) encoded in
s(t). Related axioms assign values to certain input events (encoded in variable
x, a substring ofs) representing reward or punishment (e.g., when a Gödel
machine-controlled robot bumps into an obstacle). Additional axioms define
the total value of the Gödel machine’s life as a scalar-valued function of all
rewards (e.g., their sum) and costs experienced between cycles1 andT , etc.
For example, assume thats17:18 can be changed only through external inputs;
the following example axiom says that the total reward increases by 3 whenever
such an input equals ‘11’ (unexplained symbols carry the obvious meaning):

(∀t1∀t2 : [(t1 < t2) ∧ (t1 ≥ 1) ∧ (t2 ≤ T ) ∧ (s17:18(t2) = ‘11’)]

→ [R(t1, t2) = R(t1, t2 − 1) + 3]),

whereR(t1, t2) is interpreted as the cumulative reward between timest1 and
t2. It is clear that any formal scheme for producing rewards canbe fully ax-
iomatized in a similar way.

(c) Environment axiomsrestricting the way the environment will produce new in-
puts (encoded within certain substrings ofs) in reaction to sequences of outputs
y encoded ins. For example, it may be known in advance that the environment
is sampled from an unknown probability distributionµ contained in a given
set M of possible distributions (compare equation 1). E.g.,M may contain
all distributions that are computable, given the previous history [51, 52, 15], or



at least limit-computable [39, 40]. Or, more restrictively, the environment may
be some unknown but deterministic computer program [57, 37]sampled from
the Speed Prior [41] which assigns low probability to environments that are
hard to compute by any method. Or the interface to the environment is Marko-
vian [33], that is, the current input always uniquely identifies the environmental
state—a lot of work has already been done on this special case[31, 2, 54]. Even
more restrictively, the environment may evolve in completely predictable fash-
ion known in advance. All such prior assumptions are perfectly formalizable in
an appropriateA (otherwise we could not write scientific papers about them).

(d) Uncertainty axioms; string manipulation axioms:Standard axioms for arith-
metics and calculus and probability theory [20] and statistics and string manip-
ulation that (in conjunction with the hardware axioms and environment axioms)
allow for constructing proofs concerning (possibly uncertain) properties of fu-
ture values ofs(t) as well as bounds on expected remaining lifetime / costs /
rewards, given some timeτ and certain hypothetical values for components of
s(τ) etc. An example theorem saying something about expected properties of
future inputsx might look like this:

(∀t1∀µ ∈ M : [(1 ≤ t1) ∧ (t1 + 15597 < T ) ∧ (s5:9(t1) = ‘01011’)

∧(x40:44(t1) = ‘00000’)] → (∃t : [(t1 < t < t1 + 15597)

∧(Pµ(x17:22(t) = ‘011011’ | s(t1)) >
998

1000
)])),

wherePµ(. | .) represents a conditional probability with respect to an ax-
iomatized prior distributionµ from a set of distributionsM described by the
environment axioms (Item 1c).
Given a particular formalizable hardware (Item 1a) and formalizable assump-
tions about the possibly probabilistic environment (Item 1c), obviously one can
fully axiomatize everything that is needed for proof-basedreasoning about past
and future machine states.

(e) Initial state axioms: Information about how to reconstruct the initial states(1)
or parts thereof, such that the proof searcher can build proofs including axioms
of the type

(sm:n(1) = z), e.g. : (s7:9(1) = ‘010’).

Here and in the remainder of the paper we use bold font in formulas to indicate
syntactic place holders (such asm,n,z) for symbol strings representing vari-
ables (such asm,n,z) whose semantics are explained in the text—in the present
contextz is the bitstringsm:n(1).
Note that it isno fundamental problem to fully encode both the hardware
descriptionand the initial hardware-describingp within p itself. To see this,
observe that some software may include a program that can print the software.

(f) Utility axioms describing the overall goal in the form of utility functionu; e.g.,
equation (1) in Section 2.1.

2. apply-rule(k, m, n) takes as arguments the indexk (if it exists) of an inference rule
such asmodus ponens(stored in a list of possible inference rules encoded within



p(1)) and the indicesm, n of two previously proven theorems (numbered in order
of their creation) in the currentproof. If applicable, the corresponding inference
rule is applied to the addressed theorems and the resulting theorem appended to
proof. Otherwise the currently tested proof technique is interrupted. This ensures
thatproof is never fed with invalid proofs.

3. delete-theorem(m)deletes them-th theorem in the currently storedproof, thus
freeing storage such that proof-storing parts ofs can be reused and the maximal
proof size is not necessarily limited by storage constraints. Theorems deleted from
proof, however, cannot be addressed any more byapply-rule to produce further
prolongations ofproof.

4. set-switchprog(m,n)replacesswitchprog by sp
m:n, provided thatsp

m:n is indeed a
non-empty substring ofsp, the storage writable by proof techniques.

5. check()verifies whether the goal of the proof search has been reached. First it tests
whether the last theorem (if any) inproof has the form of atarget theorem. A
target theorem states that given thecurrentaxiomatized utility functionu (Item 1f),
the utility of a switch fromp to the currentswitchprogwould be higher than the
utility of continuing the execution ofp (which would keep searching for alternative
switchprogs). Target theorems are symbol strings (encoded ins) of the (decoded)
form

(u[s(t1) ⊕ (switchbit(t1) = ‘1’), Env(t1)] >

u[s(t1) ⊕ (switchbit(t1) = ‘0’), Env(t1)]) (2)

where the variablet1 (represented by syntactic place holdert1) stands for a time
step, while all other symbols belong to the alphabet of the theorem-proving calcu-
lus, that is, the set of possible target theorems is parameterized only byt1. Here the
calculus should permit the notations(t1) ⊕ (switchbit(t1) = ‘b’) as a shortcut
for the state obtained when we replaceswitchbit(t1), the true value of the vari-
able bit switchbit (encoded ins) at time t1, by b ∈ {0, 1}. This will facilitate
the formulation of theorems that compare values conditioned on various alternative
hypothetical properties ofs(t1). (Note thats(t1) may be only partially known by
the current proof technique even in environments wheres(t1) andswitchbit(t1) are
fully predetermined for all validt1.)
The purpose of introducingt1 is to deal with hardware-specific temporal delays
that may be involved in checking and switching—it may take a significant amount
of time to match abstract symbol strings found during proof search to the Gödel
machine’s real current state. If a target theorem has been found,check()uses a sim-
ple prewired subroutine to check whether there is enough time left to set variable
switchbit(originally 0) to 1 before the continually increasingtime will equal t1. If
this subroutine returns a negative result,check()exits. Otherwise it setsswitchbit
:= 1 (there is no other way of changingswitchbit). Then it repeatedly teststime
until time > t1, to make sure the condition of formula (2) was fulfilled att1. Then
it transfers control toswitchprog(there is no other way of callingswitchprog). The
switchprogmay subsequently rewrite all parts ofs, excluding hardware-reserved
parts such astime andx, but includingp.



6. state2theorem(m, n)takes two integer argumentsm, n and tries to transform the
current contents ofsm:n into a theorem of the form

(sm:n(t1) = z), e.g. : (s6:9(7775555) = ‘1001’),

wheret1 represents a time measured (by checkingtime) shortly afterstate2theorem
was invoked, andz the bistringsm:n(t1) (recall the special caset1 = 1 of Item
1e). So we accept the time-labeled current observable contents of any part ofs
as a theorem that does not have to be proven in an alternative way from, say, the
initial states(1), because the computation so far has already demonstrated that
the theorem is true. Thus we may exploit information conveyed by environmental
inputs, and the fact that sometimes (but not always) the fastest way to determine
the output of a program is to run it.
This non-traditional online interface between syntax and semantics requires spe-
cial care though. We must avoid inconsistent results through parts ofs that change
while being read. For example, the present value of a quicklychanging instruction
pointer IP (continually updated by the hardware) may be essentially unreadable
in the sense that the execution of the reading subroutine itself will already mod-
ify IP many times. For convenience, the (typically limited) hardware could be set
up such that it stores the contents of fast hardware variables everyc cycles in a
reserved part ofs, such that an appropriate variant ofstate2theorem()could at
least translate certain recent values of fast variables into theorems. This, how-
ever, will not abolishall problems associated with self-observations. For example,
the sm:n to be read might also contain the reading procedure’s own, temporary,
constantly changing string pointer variables, etc.3 To address such problems on
computers with limited memory,state2theoremfirst uses some fixed protocol to
check whether the currentsm:n is readable at all or whether it might change if it
were read by the remaining code ofstate2theorem. If so, or if m, n, are not in the
proper range, then the instruction has no further effect. Otherwise it appends an
observedtheorem of the form(sm:n(t1) = z) to proof. For example, if the current
time is 7770000, then the invocation ofstate2theorem(6,9)might return the theo-
rem(s6:9(7775555) = ‘1001’), where7775555−7770000 = 5555 reflects the time
needed bystate2theoremto perform the initial check and to read leading bits off the
continually increasingtime (readingtime also costs time) such that it can be sure
that7775555 is a recent proper time label following the start ofstate2theorem.

The axiomatic systemA is a defining parameter of a given Gödel machine. Clearly,
A must be strong enough to permit proofs of target theorems. Inparticular, the theory of

3 We see that certain parts of the currents may not be directly observable without changing
the observable itself. Sometimes, however, axioms and previous observations will allow the
Gödel machine todeducetime-dependent storage contents that are not directly observable.
For instance, by analyzing the code being executed through instruction pointerIP in the exam-
ple above, the value ofIP at certain times may be predictable (or postdictable, afterthe fact).
The values of other variables at given times, however, may not be deducible at all. Such lim-
its of self-observability are reminiscent of Heisenberg’scelebrated uncertainty principle [11],
which states that certain physical measurements are necessarily imprecise, since the measuring
process affects the measured quantity.



uncertainty axioms (Item 1d) must be sufficiently rich. Thisis no fundamental problem:
we simply insert all traditional axioms of probability theory [20].

4 Global Optimality Theorem

Intuitively, at any given timep should execute some self-modification algorithm (via in-
structioncheck()—Item 5 above) only if it is the ‘best’ of all possible self-modifications,
given the utility function, which typically depends on available resources, such as stor-
age size and remaining lifetime. At first glance, however, target theorem (2) seems to
implicitly talk about just one single modification algorithm, namely,switchprog(t1) as
set by the systematic proof searcher at timet1. Isn’t this type of local search greedy?
Couldn’t it lead to a local optimum instead of a global one? No, it cannot, according to
the global optimality theorem:

Theorem 1 (Globally Optimal Self-Changes, givenu and A encoded inp). Given
any formalizable utility functionu (Item 1f), and assuming consistency of the underlying
formal systemA, any self-change ofp obtained through execution of some program
switchprogidentified through the proof of a target theorem (2) is globally optimal in the
following sense: the utility of starting the execution of the presentswitchprogis higher
than the utility of waiting for the proof searcher to producean alternativeswitchprog
later.

Proof. Target theorem (2) implicitly talks about all the otherswitchprogs that the proof
searcher could produce in the future. To see this, consider the two alternatives of the
binary decision: (1) either execute the currentswitchprog(setswitchbit= 1), or (2) keep
searching forproofs andswitchprogs (setswitchbit= 0) until the systematic searcher
comes up with an even betterswitchprog. Obviously the second alternative concerns
all (possibly infinitely many) potentialswitchprogs to be considered later. That is, if
the currentswitchprogwere not the ‘best’, then the proof searcher would not be ableto
prove that settingswitchbitand executingswitchprogwill cause higher expected reward
than discardingswitchprog, assuming consistency ofA. Q.E.D.

4.1 Alternative Relaxed Target Theorem

We may replace the target theorem (2) (Item 5) by the following alternative target the-
orem:

(u[s(t1) ⊕ (switchbit(t1) = ‘1’), Env(t1)] ≥

u[s(t1) ⊕ (switchbit(t1) = ‘0’), Env(t1)]) (3)

The only difference to the original target theorem (2) is that the “>” sign became a
“≥” sign. That is, the Gödel machine will change itself as soonas it has found a proof
that the change will not make things worse. A Global Optimality Theorem similar to
Theorem 1 holds; simply replace the last phrase in Theorem 1 by: the utility of starting
the execution of the presentswitchprogis at least as high as the utility of waiting for
the proof searcher to produce an alternativeswitchproglater.



4.2 Global Optimality and Recursive Meta-Levels

One of the most important aspects of our fully self-referential set-up is the follow-
ing. Any proof of a target theorem automatically proves thatthe corresponding self-
modification is good for all further self-modifications affected by the present one, in
recursive fashion. In that sense all possible “meta-levels” of the self-referential system
are collapsed into one.

4.3 How Difficult is it to Prove Target Theorems?

This depends on the tasks and the initial axiomsA, of course. It is straight-forward to
devise simple tasks and corresponding consistentA such that there are short and trivial
proofs of target theorems. On the other hand, it is possible to construct set-ups where it
is impossible to prove target theorems, for example, by using results of undecidability
theory, e.g., [30, 3, 4].

The point is: usually we do not know in advance whether it is possible or not to
change a given initial problem solver in a provably good way.The traditional approach
is to invest human research effort into finding out. A Gödel machine, however, can do
this by itself, without essential limits apart from those ofcomputability and provability.

Note that to prove a target theorem, a proof technique does not necessarily have
to compute the true expected utilities of switching and not switching—it just needs to
determine which is higher. For example, it may be easy to prove that speeding up a
subroutine of the proof searcher by a factor of 2 will certainly be worth the negligible
(compared to lifetimeT ) time needed to execute the subroutine-changing algorithm, no
matter what is the precise utility of the switch.

5 Bias-Optimal Proof Search (BIOPS)

Here we construct ap(1) that isO()-optimal in a certain limited sense to be described
below, but still might be improved as it is not necessarily optimal in the sense of
the givenu (for example, theu of equation (1) neither mentions nor cares forO()-
optimality). Our Bias-Optimal Proof Search (BIOPS) is essentially an application of
Universal Search [23, 24] to proof search. One novelty, however, is this: Previous prac-
tical variants and extensions of Universal Search have beenapplied [36, 38, 49, 46] to
offlineprogram search tasks where the program inputs are fixed such that the same pro-
gram always produces the same results. In ouronlinesetting, however, BIOPS has to
take into account that the same proof technique started at different times may yield dif-
ferent proofs, as it may read parts ofs (e.g., inputs) that change as the machine’s life
proceeds.

BIOPS starts with a probability distributionP (the initial bias) on the proof tech-
niquesw that one can write inL, e.g.,P (w) = K−l(w) for programs composed from
K possible instructions [24]. BIOPS isnear-bias-optimal[46] in the sense that it will
not spend much more time on any proof technique than it deserves, according to its



probabilistic bias, namely, not much more than its probability times the total search
time:

Definition 1 (Bias-Optimal Searchers [46]).Let R be a problem class,C be a search
space of solution candidates (where any problemr ∈ R should have a solution inC),
P (q | r) be a task-dependent bias in the form of conditional probability distributions on
the candidatesq ∈ C. Suppose that we also have a predefined procedure that creates and
tests any givenq on anyr ∈ Rwithin timet(q, r) (typically unknown in advance). Then
a searcher isn-bias-optimal (n ≥ 1) if for any maximal total search timeTtotal > 0
it is guaranteed to solve any problemr ∈ R if it has a solutionp ∈ C satisfying
t(p, r) ≤ P (p | r) Ttotal/n. It is bias-optimal ifn = 1.

Method 51 (BIOPS) In phase(i = 1, 2, 3, . . .) DO: FOR all self-delimiting [24] proof
techniquesw ∈ L satisfyingP (w) ≥ 2−i DO:

1. Runw until halt or error (such as division by zero) or2iP (w) steps consumed.
2. Undo effects ofw onsp (does not cost significantly more time than executingw).

A proof techniquew can interrupt Method 51 only by invoking instructioncheck()
(Item 5), which may transfer control toswitchprog(which possibly even will delete
or rewrite Method 51). Since the initialp runs on the formalized hardware, and since
proof techniques tested byp can readp and other parts ofs, they can produce proofs
concerning the (expected) performance ofp and BIOPS itself. Method 51 at least has
the optimalorderof computational complexity in the following sense.

Theorem 2. If independently of variabletime(s)some unknown fast proof techniquew
would require at mostf(k) steps to produce a proof of difficulty measurek (an integer
depending on the nature of the task to be solved), then Method51 will need at most
O(f(k)) steps.

Proof. It is easy to see that Method 51 will need at mostO(f(k)/P (w)) = O(f(k))
steps—the constant factor1/P (w) does not depend onk. Q.E.D.

Note again, however, that the proofs themselves may concernquite different, ar-
bitrary formalizable notions of optimality (stronger thanthose expressible in theO()-
notation) embodied by the given, problem-specific, formalized utility functionu. This
may provoke useful, constant-affecting rewrites of the initial proof searcher despite its
limited (yet popular and widely used) notion ofO()-optimality.

6 Discussion & Additional Relations to Previous Work

Here we list a few examples of Gödel machine applicability to various tasks defined
by various utility functions and environments (Section 6.1), and additional relations
to previous work (Section 6.2). We also provide a list of answers to frequently asked
questions (Section 6.3).



6.1 Example Applications

Traditional examples that do not involve significant interaction with a probabilistic en-
vironment are easily dealt with in our reward-based framework:

Example 1 (Time-limited NP-hard optimization).The initial input to the Gödel machine
is the representation of a connected graph with a large number of nodes linked by edges
of various lengths. Within given timeT it should find a cyclic path connecting all nodes.
The only real-valued reward will occur at timeT . It equals 1 divided by the length of the
best path found so far (0 if none was found). There are no otherinputs. The by-product
of maximizing expected reward is to find the shortest path findable within the limited
time, given the initial bias.

Example 2 (Fast theorem proving).Prove or disprove as quickly as possible that all
even integers> 2 are the sum of two primes (Goldbach’s conjecture). The reward is
1/t, wheret is the time required to produce and verify the first such proof.

More general cases are:

Example 3 (Maximizing expected reward with bounded resources).A robot that needs
at least 1 liter of gasoline per hour interacts with a partially unknown environment,
trying to find hidden, limited gasoline depots to occasionally refuel its tank. It is re-
warded in proportion to its lifetime, and dies after at most 100 years or as soon as its
tank is empty or it falls off a cliff etc. The probabilistic environmental reactions are
initially unknown but assumed to be sampled from the axiomatized Speed Prior [41],
according to which hard-to-compute environmental reactions are unlikely. This permits
a computable strategy for making near-optimal predictions[41]. One by-product of
maximizing expected reward is to maximize expected lifetime.

Example 4 (Optimize any suboptimal problem solver).Given any formalizable prob-
lem, implement a suboptimal but known problem solver as software on the Gödel ma-
chine hardware, and let the proof searcher of Section 5 run inparallel.

6.2 More Relations to Prvious, Less General Methods

Despite (or maybe because of) the ambitiousness and potential power of self-improving
machines, there has been little work in this vein outside ourown labs at IDSIA and
TU Munich. Here we will list essential differences between the Gödel machine and
our previous approaches to ‘learning to learn,’ ‘metalearning,’ self-improvement, self-
optimization, etc.

1. Gödel Machine vs Success-Story Algorithm and Other Metalearners
A learner’s modifiable components are called its policy. An algorithm that modifies
the policy is a learning algorithm. If the learning algorithm has modifiable compo-
nents represented as part of the policy, then we speak of a self-modifying policy



(SMP) [47]. SMPs can modify the way they modify themselves etc. The Gödel
machine has an SMP.
In previous work we used thesuccess-story algorithm(SSA) to force some (stochas-
tic) SMP to trigger better and better self-modifications [35, 48, 47, 49]. During the
learner’s life-time, SSA is occasionally called at times computed according to SMP
itself. SSA uses backtracking to undo those SMP-generated SMP-modifications
that have not been empirically observed to trigger lifelongreward accelerations
(measured up until the current SSA call—this evaluates the long-term effects of
SMP-modifications setting the stage for later SMP-modifications). SMP-modifica-
tions that survive SSA represent a lifelong success history. Until the next SSA call,
they build the basis for additional SMP-modifications. Solely by self-modifications
our SMP/SSA-based learners solved a complex task in a partially observable envi-
ronment whose state space is far bigger than most found in theliterature [47].
The Gödel machine’s training algorithm is theoretically much more powerful than
SSA though. SSA empirically measures the usefulness of previous self-modifications,
and does not necessarily encourage provably optimal ones. Similar drawbacks hold
for Lenat’s human-assisted, non-autonomous,self-modifying learner [22], our Meta-
Genetic Programming [32] extending Cramer’s Genetic Programming [7, 1], our
metalearning economies [32] extending Holland’s machine learning economies [14],
and gradient-based metalearners for continuous program spaces of differentiable
recurrent neural networks [34, 12]. All these methods, however, could be used to
seedp(1) with an initial policy.

2. Gödel Machine vs Universal Search
Unlike the fully self-referential Gödel machine, Levin’sUniversal Search[23, 24]
has a hardwired, unmodifiable meta-algorithm that cannot improve itself. It is asymp-
totically optimal for inversion problems whose solutions can be quickly verified in
O(n) time (wheren is the solution size), but it will always suffer from the same
huge constant slowdown factors (typically>> 101000) buried in theO()-notation.
The self-improvements of a Gödel machine, however, can be more than merely
O()-optimal, since its utility function may formalize a stonger type of optimality
that does not ignore huge constants just because they are constant—compare the
utility function of equation (1). The next item points out additional limitations of
Universal Search and its extensions.

3. Gödel Machine vsOOPS

The Optimal Ordered Problem Solver OOPS[46, 42] extends Universal Search. It is
a bias-optimal (see Def. 1) way of searching for a program that solves each problem
in an ordered sequence of problems of a rather general type, continually organizing
and managing and reusing earlier acquired knowledge. Solomonoff recently also
proposed related ideas for ascientist’s assistant[53] that modifies the probability
distribution of Universal Search [23] based on experience.
As pointed out earlier [46] (section on OOPSlimitations), however, neither Univer-
sal Search nor OOPS-like methods are necessarily optimal for general lifelongrein-
forcement learning (RL) tasks [19] such as those for which AIXI [15] was designed.
The simple and natural but limited optimality notion of OOPS is bias-optimality



(Def. 1): OOPS is a near-bias-optimal searcher for programs which computesolu-
tions that one can quickly verify (costs of verification are taken into account). For
example, one can quickly test whether some currently testedprogram has computed
a solution to thetowers of Hanoiproblem used in the earlier paper [46]: one just
has to check whether the third peg is full of disks.

But general RL tasks are harder. Here in principle the evaluation of the value of
some behavior consumes the learner’s entire life! That is, the naive test of whether
a program is good or not would consume the entire life. That is, we could test only
one program; afterwards life would be over.

So general RL machines need a more general notion of optimality, and must do
things that plain OOPS does not do, such as predictingfuture tasks and rewards.
A provably optimal RL machine must somehowproveproperties of otherwise un-
testable behaviors (such as: what is the expected reward of this behavior which one
cannot naively test as there is not enough time). That is partof what the Gödel
machine does: it tries to greatly cut testing time, replacing naive time-consuming
tests by much faster proofs of predictable test outcomes whenever this is possible.

Proof verification itself can be performed very quickly. In particular, verifying the
correctness of a found proof typically does not consume the remaining life. Hence
the Gödel machine may use OOPS as a bias-optimal proof-searching submodule.
Since the proofs themselves may concern quite different,arbitrary notions of op-
timality (not just bias-optimality), the Gödel machine ismore general than plain
OOPS. But it is not just an extension of OOPS. Instead of OOPS it may as well use
non-bias-optimal alternative methods to initialize its proof searcher. On the other
hand, OOPSis not just a precursor of the Gödel machine. It is a stand-alone, incre-
mental, bias-optimal way of allocating runtime to programsthat reuse previously
successful programs, and is applicable to many traditionalproblems, including but
not limited to proof search.

4. Gödel Machine vsA IXI etc.
Unlike Gödel machines, Hutter’s recent AIXI model[15, 18] generally needsun-
limited computational resources per input update. It combines Solomonoff’s uni-
versal prediction scheme [51, 52] with anexpectimaxcomputation. In discrete cycle
k = 1, 2, 3, . . ., actiony(k) results in perceptionx(k) and rewardr(k), both sam-
pled from the unknown (reactive) environmental probability distributionµ. A IXI

defines a mixture distributionξ as a weighted sum of distributionsν ∈ M, where
M is any class of distributions that includes the true environmentµ. For example,
M may be a sum of all computable distributions [51, 52], where the sum of the
weights does not exceed 1. In cyclek + 1, A IXI selects as next action the first
in an action sequence maximizingξ-predicted reward up to some given horizon.
Recent work [17] demonstrated AIXI ’s optimal use of observations as follows.
The Bayes-optimal policypξ based on the mixtureξ is self-optimizing in the sense
that its average utility value converges asymptotically for all µ ∈ M to the opti-
mal value achieved by the (infeasible) Bayes-optimal policy pµ which knowsµ in
advance. The necessary condition thatM admits self-optimizing policies is also
sufficient. Furthermore,pξ is Pareto-optimal in the sense that there is no other pol-



icy yielding higher or equal value inall environmentsν ∈ M and a strictly higher
value in at least one [17].
While AIXI clarifies certain theoretical limits of machine learning, it is computa-
tionally intractable, especially whenM includes all computable distributions. This
drawback motivated work on the time-bounded, asymptotically optimal AIXI (t,l)
system [15] and the related HSEARCH [16], both already discussed in Section 2.4,
which also lists the advantages of the Gödel machine. Both methods, however,
could be used to seed the Gödel machine with aninitial policy.
It is the self-referentialaspects of the Gödel machine that relieve us of much of
the burden of careful algorithm design required for AIXI (t,l) and HSEARCH. They
make the Gödel machine both conceptually simplerandmore general than AIXI (t,l)
and HSEARCH.

6.3 Frequently Asked Questions

In the past half year the author frequently fielded questionsabout the Gödel machine.
Here a list of answers to typical ones.

1. Q: Does the exact business of formal proof search really make sense in the uncer-
tain real world?
A: Yes, it does. We just need to insert intop(1) the standard axioms for representing
uncertainty and for dealing with probabilistic settings and expected rewards etc.
Compare items 1d and 1c in Section 3.1, and the definition of utility as anexpected
value in equation (1).

2. Q: The target theorem (2) seems to refer only to thevery first self-change, which
may completely rewrite the proof-search subroutine—doesn’t this make the proof of
Theorem 1 invalid? What prevents later self-changes from being destructive?
A: This is fully taken care of. Please have a look once more at theproof of Theorem
1, and note that the first self-change will be executed only ifit is provably useful (in
the sense of the present untility functionu) for all future self-changes (for which
the present self-change is setting the stage). This is actually the main point of the
whole Gödel machine set-up.

3. Q (related to the previous item):The G̈odel machine implements a meta-learning
behavior: what about a meta-meta, and a meta-meta-meta level?
A: The beautiful thing is that all meta-levels are automatically collapsed into one:
any proof of a target theorem automatically proves that the corresponding self-
modification is good for all further self-modifications affected by the present one,
in recursive fashion. Recall Section 4.2.

4. Q: The G̈odel machine software can produce only computable mappingsfrom input
sequences to output sequences. What if the environment is non-computable?
A: Many physicists and other scientists (exceptions: [57, 37]) actually do assume
the real world makes use of all the real numbers, most of whichare incomputable.
Nevertheless, theorems and proofs are just finite symbol strings, and all treatises
of physics contain only computable axioms and theorems, even when some of the
theorems can be interpreted as making statements about uncountably many objects,



such as all the real numbers. (Note though that the Löwenheim-Skolem Theorem
[26, 50] implies that any first order theory with an uncountable model such as the
real numbers also has a countable model.) Generally speaking, formal descriptions
of non-computable objects donot at allpresent a fundamental problem—they may
still allow for finding a strategy that provably maximizes utility. If so, a Gödel
machine can exploit this. If not, then humans will not have a fundamental advantage
over Gödel machines.

5. Q: Isn’t automated theorem-proving very hard? Current AI systems cannot prove
nontrivial theorems without human intervention at crucialdecision points.
A: More and more important mathematical proofs (four color theorem etc) heavily
depend on automated proof search. And traditional theorem provers do not even
make use of our novel notions of proof techniques andO()-optimal proof search. Of
course, some proofs are indeed hard to find, but here humans and Gödel machines
face the same fundamental limitations.

6. Q: Don’t the “no free lunch theorems” [56] say that it is impossible to construct
universal problem solvers?
A: No, they do not. They refer to the very special case of problems sampled from
i.i.d. uniform distributions onfinite problem spaces. See the discussion of no free
lunch theorems in an earlier paper [46].

7. Q: Can’t the G̈odel machine switch to a programswitchprogthat rewrites the util-
ity function to a “bogus” utility function that makes unfounded promises of big
rewards in the near future?
A: No, it cannot. It should be obvious that rewrites of the utility function can happen
only if the Gödel machine first can prove that the rewrite is useful according to the
presentutility function.

8. Q: Aren’t there problems with undecidability? For example, doesn’t Rice’s theorem
[30] or Blum’s speed-up theorem [3, 4] pose problems?
A: Not at all. Of course, the Gödel machine cannot profit from a hypothetical useful
self-improvement whose utility is undecidable, and will therefore simply ignore it.
Compare Section 2.5 on fundamental limitations of Gödel machines (and humans,
for that matter). Nevertheless, unlike previous methods, aGödel machine can in
principle exploit at least the provably good improvements and speed-ups ofany
part of its initial software.

7 Conclusion

In 1931, Kurt Gödel used elementary arithmetics to build a universal programming lan-
guage for encoding arbitrary proofs, given an arbitrary enumerable set of axioms. He
went on to constructself-referentialformal statements that claim their own unprovabil-
ity, using Cantor’s diagonalization trick [5] to demonstrate that formal systems such
as traditional mathematics are either flawed in a certain sense or contain unprovable
but true statements [10]. Since Gödel’s exhibition of the fundamental limits of proof
and computation, and Konrad Zuse’s subsequent construction of the first working pro-
grammable computer (1935-1941), there has been a lot of workon specialized algo-
rithms solving problems taken from more or less general problem classes. Apparently,



however, one remarkable fact has so far escaped the attention of computer scientists: it
is possible to use self-referential proof systems to build optimally efficient yet concep-
tually very simple universal problem solvers.

The initial softwarep(1) of our machine runs an initial problem solver, e.g., one
of Hutter’s approaches [15, 16] which have at least an optimal order of complexity, or
some less general method. Simultaneously, it runs anO()-optimal initial proof searcher
using an online variant of Universal Search to testproof techniques, which are programs
able to compute proofs concerning the system’s own future performance, based on an
axiomatic systemA encoded inp(1), describing a formalutility functionu, the hard-
ware andp(1) itself. If there is no provably good, globally optimal way ofrewriting
p(1) at all, then humans will not find one either. But if there is one, thenp(1) itself
can find and exploit it. This approach yields the first class oftheoretically sound, fully
self-referential, optimally efficient, general problem solvers.

If we equate the notion of “consciousness” with the ability to execute unlimited
formal self-inspection and provably useful self-change (unlimited except for the limits
of computability and provability), then the Gödel machineand its Global Optimality
Theorem 1 do provide the first technical justification of consciousness in the context of
general problem solving [29].
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