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Abstract

Even in absence of external reward, babies and scientists and others explore their world. Using some
sort of adaptive predictive world model, they improve theirability to answer questions such as: what
happens if I do this or that? They lose interest in both the predictable things and those predicted to
remain unpredictable despite some effort. One can design curious robots that do the same. The author’s
basic idea for doing so (1990, 1991): a reinforcement learning (RL) controller is rewarded for action
sequences that improve the predictor. Here this idea is revisited in the context of recent results on optimal
predictors and optimal RL machines. Several new variants ofthe basic principle are proposed. Finally
it is pointed out how the fine arts can be formally understood as a consequence of the principle: given
some subjective observer, great works of art and music yieldobservation histories exhibiting more novel,
previously unknown compressibility / regularity / predictability (with respect to the observer’s particular
learning algorithm) than lesser works, thus deepening the observer’s understanding of the world and what
is possible in it.

1 Introduction

An important goal of the nascent field of developmental robotics (Blank and Meeden, 2005; Blank and
Meeden, 2006; Provost et al., 2006; Kuipers et al., 2006; Stronger and Stone, 2006; Schlesinger, 2006;
Oudeyer and Kaplan, 2006; Gold and Scassellati, 2006; Olsson et al., 2006) is to build adaptive robots that
not only try to achieve externally given rewards but also tryto discover, in an unsupervised and experiment-
based fashion, how their external world works, how their internal or ‘mental’ world works, and how both
worlds interact through the sensor-motor interface. Such explorative behavior may actually later help to
solve teacher-given tasks. This paper will review and extend basic principles for building such curious
robots, and relate them to what artists and other creative agents do.

Consider a learning robotic agent whose single life consists of discrete cycles or time stepst =
1, 2, . . . , T . Its total lifetimeT may or may not be known in advance. In what follows,the value of any
time-varying variableQ at timet (1 ≤ t ≤ T ) will be denoted byQ(t), the ordered sequence of values
Q(1), . . . , Q(t) by Q(≤ t), and the (possibly empty) sequenceQ(1), . . . , Q(t − 1) by Q(< t).

At any givent the robot receives a real-valued input vectorx(t) from the environment and executes
a real-valued actiony(t) which may affect future inputs. At timest < T its goal is to maximize future
success orutility

u(t) = Eµ

[

T
∑

τ=t+1

r(τ)

∣

∣

∣

∣

∣

h(≤ t)

]

, (1)

wherer(t) is an additional real-valued reward input at timet, h(t) the ordered triple[x(t), y(t), r(t)] (hence
h(≤ t) is the known history up tot), andEµ(· | ·) denotes the conditional expectation operator with respect
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to some possibly unknown distributionµ from a setM of possible distributions. HereM reflects whatever
is known about the possibly probabilistic reactions of the environment. For example,M may contain all
computable distributions (Solomonoff, 1964; Solomonoff,1978; Li and Vitányi, 1997; Hutter, 2004). Note
that unlike in most previous work by others (Kaelbling et al., 1996; Sutton and Barto, 1998), but like
in much of the author’s own previous work (Schmidhuber, 1997a, 2003), there is just one life, no need
for predefined repeatable trials, no restriction to Markovian interfaces between sensors and environment
(Schmidhuber, 1991d), and the utility function implicitlytakes into account the expected remaining lifespan
Eµ(T | h(≤ t)) and thus the possibility to extend it through appropriate actions (Schmidhuber, 2003,
2005a, 2005b, 2005c).

Intuitively, to achieve its goal the robot may profit from exploring its environment and learning about the
consequences of its actions in order to build a predictive world model. Such activity is commonly referred
to ascuriosity. The obtained world model may later speed up or otherwise facilitate the computation of
action sequences that lead to external rewards.

Recent work has led to the first learning machines that are universal and optimal in various very general
senses (Hutter, 2004; Schmidhuber, 2005a, 2005b). Such machines can in principle find out by themselves
whether curiosity and world model construction are useful or useless in a given environment, and learn to
behave accordingly.

The present paper, however, will assumea priori that world model building is good and should be
done; here we shall not worry about the possibility that “curiosity may kill the cat.” Towards this end, in
the spirit of the author’s previous work (Schmidhuber, 1991a, 1991b, 1997b, 2002a, Storck et. al., 1995),
we split the reward signalr(t) into two scalar real-valued components:r(t) = g(rext(t), rint(t)), where
g maps pairs of real values to real values, e.g.,g(a, b) = a + b. Hererext(t) denotes traditionalexternal
reward provided by the environment, such as pain (negative reward) in response to bumping against a wall,
or pleasure (positive reward) in response to reaching some teacher-given goal state. In the context of the
present paper, however, we are especially interested inrint(t), the internal reward, or intrinsic reward, or
curiosityreward, which is provided whenever an internal predictive world model of the robot improves in
some sense. In fact, the initial focus will be on the caserext(t) = 0 for all valid t. The basic principle
remains the one we published before (Schmidhuber, 1991a, 1991b, 1997b, 2002a, 2004a, Storck et. al.,
1995):

Principle 1 Generate curiosity reward for the adaptive action selector(or controller) in response to pre-
dictor improvements.

So we conceptually separate the goal (understanding the world) from the means of achieving the goal.
Once the goal is formally specified in terms of an algorithm for computing curiosity rewards, let the con-
troller’s reinforcement learning (RL) mechanism figure outhow to translate such rewards into world model-
improving action sequences.

What kind of learning algorithm should the predictor use? How can one measure the predictor’s im-
provements? Which RL algorithm should the controller use? In what follows, we will first briefly review
previous work, then formalize a rather general framework (Section 3) into which we may plug various pre-
dictors (Section 3.1), measures of predictor performance (Section 3.2), measures of predictor performance
improvement (Section 3.3), and RL agorithms for the controller. Subsequently we defineoptimalcurious
behavior, relative to the computational restrictions of some given predictor, and explain how to achieve it
through recent, theoretically optimal, universal RL machines. Finally we will use the framework to give
the first formal, technical definition ofgood artandgood musicrelative to some subjective world model-
building observer (previous explanations in the literature on fine arts and music were informal at best), and
discuss illustrative examples.

2 Previous work

Our first publications on artificial curiosity (Schmidhuber, 1990, 1991c) described a predictor based on a
recurrent neural network (Werbos, 1988; Williams and Zipser, 1994; Robinson and Fallside, 1987; Schmid-
huber, 1992a; Pearlmutter, 1995; Schmidhuber, 2004c) (in principle a rather powerful computational de-
vice, even by today’s machine learning standards), predicting inputsx(t) andr(t) from the entire history
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of previous inputs and actions. The curiosity rewards were proportional to the predictor errors, that is,
it was implicitly and optimistically assumed that the predictor will indeed improve whenever its error is
high. Follow-up work (Schmidhuber, 1991a, 1991b) pointed out that this approach may be inappropriate,
especially in probabilistic environments:one should not focus on the errors of the predictor, but on its
improvements. Otherwise the system will concentrate its search on those parts of the environment where
it can always get high prediction errors due to noise or randomness, or due to computational limitations of
the predictor. While the neural predictor of the implementation described in the follow-up work was indeed
computationally less powerful than the previous one (Schmidhuber, 1991c), there was a novelty, namely, an
explicit (neural) adaptive model of the predictor’s improvements. This model essentially learned to predict
the predictor’s changes. For example, although noise was unpredictable and led to wildly varying target
signals for the predictor, in the long run these signals did not change the adaptive predictor parameters
much, and the predictor of predictor changes was able to learn this. A standard RL algorithm (Watkins,
1989; Kaelbling et al., 1996; Sutton and Barto, 1998) was fedwith curiosity reward signals proportional
to the expected long-term predictor changes, and thus triedto maximize information gain (Fedorov, 1972;
Hwang et al., 1991; MacKay, 1992; Plutowski et al., 1994; Cohn, 1994) within the given limitations.
Additional follow-up work also focused on non-deterministic worlds (Storck et al., 1995).

More recent work (Schmidhuber, 1997b, 2002a) greatly increased the computational power of con-
troller and predictor by implementing them as symmetric, opposing modules consisting of self-modifying
probabilistic programs (Schmidhuber et al., 1997a, 1997b)written in a universal programming language
(Gödel, 1931; Turing, 1936). The internal storage for temporary computational results of the programs
was viewed as part of the changing environment. Each module could suggest experiments in the form of
probabilistic algorithms to be executed, and make confidentpredictions about their effects by betting on
their outcomes, where the‘betting money’essentially played the role of the intrinsic reward. The opposing
module could reject or accept the bet in a zero-sum game by making a contrary prediction. In case of
acceptance, the winner was determined by executing the algorithmic experiment and checking its outcome;
the money was eventually transferred from the surprise loser to the confirmed winner. Both modules tried
to maximize their money using a rather general RL algorithm designed for complex stochastic policies
(Schmidhuber et al., 1997a, 1997b).

All the references above also demonstrated experimentallythat the presence of curiosity rewardrint(t)
can speed up the collection ofexternalreward.

Recently several researchers also implemented variants orapproximations of Principle 1. Singh and
Barto and coworkers focused on implementations within the option framework of RL (Barto et al., 2004;
Singh et al., 2005), directly using prediction errors as curiosity rewards. Additional implementations were
presented at the recent 2005 AAAI Spring Symposium on Developmental Robotics (Blank and Meeden,
2005).

In what follows, we will formulate a general framework whichallows for discussing optimal predictors,
optimal predictor improvements, and optimal RL algorithmsfor the controller.

3 General Synchronous Framework for Curiosity Reward

At any timet (1 ≤ t < T ), given some predictor or world modelp and historyh(≤ t), let C(p, h(≤ t))
denotep’s performance onh(≤ t). Several more or less general types of predictor are discussed in Section
3.1, various natural performance measuresC in Section 3.2. Letp(t) denote the robot’s current predictor,
ands(t) its current controller, and do:

1. Lets(t) use (parts of) historyh(≤ t) to select and executey(t + 1).

2. Observex(t + 1).

3. Evaluatep(t) on (known parts of) historyh(≤ t + 1), to obtainC(p(t), h(≤ t + 1)).

4. Let the predictor’s learning algorithm use (known parts of) h(≤ t + 1) to obtain a hopefully better
predictorp(t + 1).

5. Evaluatep(t + 1) onh(≤ t + 1), to obtainC(p(t + 1), h(≤ t + 1)).
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6. Generate curiosity reward

rint(t + 1) = f [C(p(t + 1), h(≤ t + 1)), C(p(t), h(≤ t + 1))] (2)

in response to the predictor’s progress between timest andt + 1, wheref maps pairs of real values
to real values. Various alternative progress measures are discussed in Section 3.3; most obvious is
f(a, b) = a − b.

7. Let the controller’s RL algorithm useh(≤ t+1), in particular,rint(t+1), and possibly also the new
predictive world modelp(t + 1) itself, to obtain a new controllers(t + 1), in line with objective (1).
RL algorithms that are optimal in a certain sense will be discussed in Section 6.

The framework is labelled‘synchronous’as it synchronizes action selection and reward-generationand
learning in a fixed step-by-step process. This may be incovenient and actually unrealistic for practical
purposes. For such reasons we will later (Section 5) discussan asynchronous variant that loosens the strict
coupling between the generation of curiosity reward and other system activities.

3.1 Predictors, World Models, or History Compressors

The complexity of evaluating some predictorp on historyh(≤ t) depends on bothp and its performance
measureC. Let us first focus on the former. Givent, one of the simplestp will just use a linear mapping to
predictx(t+1) from x(t) andy(t+1); see Section 4.1. More complexp such as adaptive recurrent neural
networks (RNN) (Werbos, 1988; Williams and Zipser, 1994; Robinson and Fallside, 1987; Schmidhuber,
1992a; Pearlmutter, 1995; Hochreiter and Schmidhuber, 1997; Schmidhuber and Bakker, 2003; Schmid-
huber, 2004b; Schmidhuber, 2004c) will use a nonlinear mapping and possibly the entire historyh(≤ t)
as a basis for the predictions. In fact, the first work on artificial curiosity (Schmidhuber, 1991c) focused
on online learning RNN of this type. A theoretically optimalpredictor would be Solomonoff’s universal
induction scheme (Solomonoff, 1964; Solomonoff, 1978; Li and Vitányi, 1997), to be discussed in more
detail in Section 4.2.

Prediction and compression are closely related. Ap that correctly predicts manyx(τ), given history
h(< τ), for 1 ≤ τ ≤ t, can be used to encodeh(≤ t) compactly: Givenp, only the wrongly predicted
x(τ) plus information about the corresponding time stepsτ are necessary to reconstruct historyh(≤ t),
e.g., (Schmidhuber, 1992b). Similarly, ap that learns a probability distribution of the possible nextevents,
given previous events, can be used to efficiently encode observations with high (respectively low) predicted
probability by few (respectively many) bits (Huffman, 1952; Schmidhuber and Heil, 1996), thus achieving
a compressed history representation.

Generally speaking, we may viewp as the essential part of a program that re-computesh(≤ t). If this
program is short in comparison toh(≤ t), thenh(≤ t) is regular or non-random (Solomonoff, 1964; Kol-
mogorov, 1965; Li and Vitányi, 1997; Schmidhuber, 2002b),presumably reflecting essential environmental
laws. Thenp may also be highly useful for predicting future, yet unseenx(τ) for τ > t.

3.2 Predictor Performance Measures

Given predictorp and timet, a naive predictor performance measureC = Cnaive will ignore all but the
most recent event:

Cnaive(p, h(≤ t)) =|| pred(p, x(t)) − x(t) ||2, (3)

wherepred(p, x(τ)) is p’s prediction ofx(τ). Similar naive measures ignore all but a few recent ob-
servations in a sliding time window of events. A more computationally expensive performance measure
re-evaluatesp onall external inputs observed so far. The costs of this are linearin t, assumingp consumes
equal amounts of computation time for each single prediction:

Cx(p, h(≤ t)) =

t
∑

τ=1

|| pred(p, x(τ)) − x(τ) ||2 . (4)
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A similar measure that also takes into account predictions of reward would be

Cxr(p, h(≤ t)) = Cx(p, h(≤ t)) +

t
∑

τ=1

|| pred(p, r(τ)) − r(τ) ||2 . (5)

If the predictor also tries to predict future controller actions we obtain

Cxry(p, h(≤ t)) = Cxr(p, h(≤ t)) +

t
∑

τ=1

|| pred(p, y(τ)) − y(τ) ||2 . (6)

Similar performance measures can be obtained for predictors p predicting a probability distribution of
the next possible observations, given previous observations (Section 3.1), by replacing the mean squared
error by statistical similarity measures, such as the Kullback-Liebler distance between two probability
distributions (Kullback, 1959).

If we view p as a program that compresses historyh(≤ t) (Section 3.1), then an appropriate perfor-
mance measure would be

Cl(p, h(≤ t)) = l(p), (7)

where l(p) denotes the length ofp, measured in number of bits: the shorterp, the more algorithimic
regularity and compressibility and predictability and lawfulness in the observations so far. The ultimate
limit for Cl(p, h(≤ t)) would beK∗(h(≤ t)), a variant of the Kolmogorov complexity ofh(≤ t), namely,
the length of the shortest program (for the given hardware) that computes an output starting withh(≤ t)
(Solomonoff, 1964; Kolmogorov, 1965; Li and Vitányi, 1997; Schmidhuber, 2002b).

Clearly, many other similar performance measures are possible. Later we will focus on the apparently
most sound ones: those that re-evaluatep on the entire observation history so far. To our knowledge such
measures have not yet been used in experimental work.

3.3 Predictor Performance Improvement Measures

The previous Section 3.2 only discussed measures of predictor performance, but not of performanceim-
provement,which is the essential issue in our curiosity-oriented context. To repeat the point made in
Section 2:The important thing are the improvements of the predictor, not its errors. The most obvi-
ousf for step 6 of the general framework above isf(a, b) = a − b. Our first work (Schmidhuber, 1990,
1991c) as well as more recent work (Barto et al., 2004; Singh et al., 2005; Blank and Meeden, 2005),
however, essentially usedf(a, b) = b, with C = Cnaive of eq. 3, implicitly assuming that high prediction
error automatically implies predictor improvements. In stochastic environments this is generally not true,
and even in deterministic environments it is generally not true due to limitations of the predictor and its
learning algorithm. This motivated the follow-up work (Schmidhuber, 1991a, 1991b, 1997b, 2002a, 2004a,
Storck et. al., 1995) —compare Section 2. However, no previous implementation really used mathemati-
cally justifiable performance measures such asCx or Cxy (Section 3.2). All introduced major simplifying
assumptions, ignoring potentially misleading effects dueto online parameter changes.

4 Optimal Predictors

At time t the agent cannot know more about the world thanh(≤ t), the entire history of sensory perceptions
and actions so far. Let us assume for the moment that computation time is not an issue. At each time stept

we may then use a rather expensive performance measure such asCxr, eq. (5), to computerint(t) in step
6 of the general framework, usingf(a, b) = a − b.

4.1 Optimal Linear Predictors

Let p(t) be theoptimal linear predictor trying to mapx(τ − 1), y(τ) to x(τ) for 1 < τ ≤ t such that
Cx(p(t), h(≤ t)) is minimized, eq. (4). One may find such an optimum using the well-known pseudo-
inverse algorithm (Penrose, 1955). That is, we obtain a well-defined and easily computable curiosity
rewardrint(t).
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Clearly,rint(t) ≥ 0 for all t, since the new predictorp(t + 1) will never perform worse onh(≤ t + 1)
thanp(t).

The costs of computing the optimalp(t) tend to grow polynomially int. In simulated environments
this is no major problem as we can wait with thet-specific update of the environment untilp(t) has been
computed. Real environments, however, do not wait. Therefore, to avoid the computation of an optimal
predictor at every single time step, Section 5 will discuss anatural asynchronous variant of the basic
framework.

4.2 Optimal Universal Predictors

Solomonoff’s theoretically optimal universal predictorsand their Bayesian learning algorithms (Solomonoff,
1964; Solomonoff, 1978; Li and Vitányi, 1997; Hutter, 2004) only assume that the reactions of the envi-
ronment are sampled from an unknown probability distribution µ contained in a setM of all enumerable
distributions—compare text after equation (1). That is, given an observation sequenceq(≤ t), we only
assume there exists a computer program that can compute the probability of the next possibleq(t + 1),
givenq(≤ t). Since we typically do not know this program, we predict using a mixture distribution

ξ(q(t + 1) | q(≤ t)) =
∑

i

wiµi(q(t + 1) | q(≤ t)), (8)

a weighted sum ofall distributionsµi ∈ M, i = 1, 2, . . ., where the sum of the constant weights satisfies
∑

i wi ≤ 1. It turns out that this is indeed the best one can possibly do,in a very general sense (Solomonoff,
1978; Hutter, 2004). The drawback is that the scheme is incomputable, sinceM contains infinitely many
distributions.

One can increase the theoretical power of the scheme by augmenting M by certain non-enumerable
but limit-computable distributions (Schmidhuber, 2002b), or restrict it such that it becomes computable,
e.g., by assuming the world is computed by some unknown but deterministic computer program sampled
from the Speed Prior (Schmidhuber, 2002c) which assigns lowprobability to environments that are hard to
compute by any method.

4.3 Other Predictors

Many alternative predictors can be defined, more general than the linear ones, less general than the univer-
sal ones, yet still optimal in some well-defined sense reflecting the predictor’s computational limitations.
For example, given cost functionCx and RNN predictorp(t), it is formally clear what is an optimalp(t).
It is less clear how to find it efficiently, though. Givenh(≤ t), standard RNN algorithms (Werbos, 1988;
Williams and Zipser, 1994; Robinson and Fallside, 1987; Schmidhuber, 1992a; Pearlmutter, 1995; Hochre-
iter and Schmidhuber, 1997; Schmidhuber, 2004c) are not guaranteed to find an optimal RNN within rea-
sonable time; they are based on gradient descent methods subject to local optima.

Practical applications will have to take into account such limitations of existing prediction algorithms.
To facilitate their discussion, we will now introduce an asynchronous variant of the framework in Section
3.

5 General Asynchronous Framework for Curiosity Reward

Thesynchronousframework of Section 3 may be unnatural for practical implementations. For example,
the costs of computing an optimal linearp(t) (Section 4.1) based on a performance measure such asCx,
eq. (4), grow linearly int. For larget, however, it is unrealistic to assume that we can evaluatep(t) within
a single time step. To further decouple the predictor’s evaluation and learning procedures from those of the
controller, we describe an asynchronous variant of the framework.

Controller: At any timet (1 ≤ t < T ) do:

1. Lets(t) use (parts of) historyh(≤ t) to select and executey(t + 1).
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2. Observex(t + 1).

3. Check if there is non-zero curiosity rewardrint(t + 1) provided by the separate, asynchronously
running predictor learning algorithm (see below). If not, set rint(t + 1) = 0.

4. Let the controller’s RL algorithm useh(≤ t + 1) includingrint(t + 1) (and possibly also the latest
available predictive world model provided by the predictorbelow) to obtain a new controllers(t+1),
in line with objective (1).

Predictor: Setpnew equal to the initial predictor. Starting at time 1, repeat forever until interrupted by
deathT :

1. Setpold = pnew; get current time stept and sethold = h(≤ t).

2. Evaluatepold onhold, to obtainC(pold, hold) (Section 3.2). This may take many time steps.

3. Let the predictor’s learning algorithm usehold to obtain a hopefully better predictorpnew. Although
this may take many time steps,pnew may not be optimal, due to limitations of the learning algorithm,
e.g., local maxima.

4. Evaluatepnew onhold, to obtainC(pnew , hold). This may take many time steps.

5. Get current time stepτ and generate curiosity reward

rint(τ) = f [C(pold, hold), C(pnew , hold)], (9)

e.g.,f(a, b) = a − b; see Section 3.3.

Clearly, this asynchronuous scheme may cause long temporaldelays between controller actions and corre-
sponding curiosity rewards. This may further increase the burden on the controller’s RL algorithm whose
task is to assign credit to past actions (to inform the controller about beginnings of predictor evaluation
processes etc., we may augment its input by unique representations of such events). Nevertheless, there are
RL algorithms for this purpose which are theoretically optimal in various senses, to be discussed next.

6 Optimal Curiosity & Creativity

Our chosen predictor typically will have certain computational limitations. In the absence of any external
rewards, we may defineoptimal pure curiosity behaviorrelative to these limitations: At timet this behavior
selects the action that maximizes

u(t) = Eµ

[

T
∑

τ=t+1

rint(τ)

∣

∣

∣

∣

∣

h(≤ t)

]

. (10)

The resulting task of the controller’s RL algorithm may be a formidable one, even when we are using
very simple predictors and the synchronuous framework of Section 3. For example, the optimal linear
predictors (Section 4.1) may make it quite hard for the RL algorithm to compute action sequences that
maximize future expected curiosity reward according to objective (10). As the system is revisiting pre-
viously unpredictable parts of the environment, some of those will tend to become more predictable, that
is, the corresponding curiosity rewards will decrease overtime. An optimal RL algorithm must somehow
detect and thenpredict this decrease, and act accordingly. Traditional RL algorithms (Kaelbling et al.,
1996; Sutton and Barto, 1998), however, do not provide any theoretical guarantee of optimality for such
situations.

This is not to say though that sub-optimal RL methods may not lead to success in certain applications;
experimental studies might lead to interesting insights. In particular, it would be desirable to apply simple
traditional RL to (previously untried) sound objective functions taking the entire history into account, such
asCxr, eq. (5). In what follows, however, we will focus on optimal RL, to address the limits of what is
theoretically possible.
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Let us first make the natural assumption that the predictor isnot super-complex such as Solomonoff’s,
that is, its output and andrint(t) are computable for allt. Is there an optimal RL algorithm for achieving
objective (10)? Indeed, there is, for both the synchronuousand asynchronuous framework. Its drawback,
however, is that itself is not computable in finite time. Nevertheless, it serves as a reference point for
defining what is achievable at best.

6.1 Optimal But Incomputable Action Selector

At any timet, Hutter’s recent theoretically optimal yet uncomputable RL algorithm AIXI (Hutter, 2004)
uses Solomonoff’s universal prediction scheme (Section 4.2) to select those action sequences that promise
maximal future reward up to some horizon, typically2t, given the current datah(≤ t). One may adapt
this to the case of any finite horizonT . That is, in cyclet + 1, A IXI selects as its next action the first
action of an action sequence maximizingξ-predicted reward up to the horizon, appropriately generalizing
eq. (8). Recent work (Hutter, 2004) demonstrated AIXI ’s optimal use of observations as follows. The
Bayes-optimal policypξ based on the mixtureξ is self-optimizing in the sense that its average utility value
converges asymptotically for allµ ∈ M to the optimal value achieved by the (infeasible) Bayes-optimal
policy pµ which knowsµ in advance. The necessary condition thatM admits self-optimizing policies is
also sufficient. Furthermore,pξ is Pareto-optimal in the sense that there is no other policy yielding higher
or equal value inall environmentsν ∈ M and a strictly higher value in at least one (Hutter, 2004).

6.2 Computable Selector of Provably Optimal Actions, Given Current System

A IXI needs unlimited computation time. To take the consumed computation time into account in a general,
optimal way, we may use the recent Gödel machines (Schmidhuber, 2003, 2005a, 2005b, 2005c) instead.
Gödel machines represent the first class of mathematicallyrigorous, general, fully self-referential, self-
improving, optimally efficient problem solvers. In particular, they are applicable to the problem embodied
by objective (10).

The initial softwareS of such a Gödel machine contains an initial problem solver,e.g., one of Hutter’s
approaches (Hutter, 2004) or some less general, typical sub-optimal method (Kaelbling et al., 1996; Sutton
and Barto, 1998). Simultaneously, it contains an asymptotically optimal initial proof searcher based on an
online variant of Levin’sUniversal Search(Levin, 1973), which is used to run and testproof techniques.
Proof techniques are programs written in a universal programming language implemented on the Gödel
machine withinS, able to compute proofs concerning the system’s own future performance, based on
an axiomatic systemA encoded inS. A describes the formalutility function, in our case eq. (10), the
hardware properties, axioms of arithmetic and probabilitytheory and string manipulation etc, andS itself,
which is possible without introducing circularity (Schmidhuber, 2003).

Inspired by Kurt Gödel’s celebrated self-referential formulas (1931), the Gödel machine rewrites any
part of its own code in a computable way through a self-generated executable program as soon as itsUni-
versal Searchvariant has found a proof that the rewrite isusefulaccording to objective (10). According
to the Global Optimality Theorem (Schmidhuber, 2003, 2005a, 2005b, 2005c), such a self-rewrite is glob-
ally optimal—no local maxima!—since the self-referentialcode first had to prove that it is not useful to
continue the proof search for alternative self-rewrites.

If there is no provably useful, globally optimal way of rewritingS at all, then humans will not find one
either. But if there is one, thenS itself can find and exploit it. Unlike previousnon-self-referential methods
based on hardwired proof searchers (Hutter, 2004), Gödel machines not only boast an optimalorder of
complexity but can optimally reduce (through self-changes) any slowdowns hidden by theO()-notation,
provided the utility of such speed-ups is provable at all.

6.3 Consequences of Optimal Action Selecton

Now let us apply any optimal RL algorithm to curiosity rewards. The expected consequences are obvious:
at timet the controller will do the best to select an actiony(t) that starts an action sequence expected to
create observations yielding maximal expected predictor progress up until expected deathT . In particular,
ignoring issues of computation time, it will focus in the best possible way on things that are currently still
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unpredictable but will soon become predictable through additional learning. It will get bored by things that
are predictable. It will also get bored by things that are currently unpredictable but will apparently remain
unpredictable, given the experience so far, or where the costs of making them predictable exceed those of
making other things predictable, etc.

Previous work (Schmidhuber, 1991a, 1991b, 1997b, 2002a, 2004a, Storck et. al., 1995) already dis-
cussed such effects, but not in the context of theoreticallyoptimal ways of achieving them.

7 Music and the Fine Arts

Works of art and music do not seem to have an obvious purpose. Some even classify them as superfluous
(Pinker, 1997). Others try to justify them through their social aspects, e.g., (Balter, 2004). Undoubtedly,
however, many derive pleasure and rewards from perceiving works of art, such as certain paintings, or
songs. What exactly is the source of these rewards? Do they reflect some non-obvious, hidden usefulness
of art? Why do certain observers perceive some artworks as being superior to others?

While previous attempts at describing what is satisfactoryart or music were informal, the frameworks
of Sections 3 and 5 permit the firsttechnical, formalapproach to answering such questions.

Any artificial or human observer must perceive art sequentially, and typically also actively, e.g., through
a sequence of attention-shifting eye saccades or camera movements scanning a sculpture, or internal shifts
of attention that filter and emphasize sounds made by a pianist, while surpressing background noise.

Different subjective observers with different sensory apparati and learning algorithms will prefer dif-
ferent input sequences. Hence any objective theory of what is good art must take the subjective observer
as a parameter, to answer questions such as: Which action sequences should he select to maximize his
pleasure? According to our curiosity reward framework he should select one that maximizes the number of
quickly learnable regularities that are new, relative to his current knowledge and his (usually limited) way
of incorporating or learning new data.

7.1 Music

For example, which song should some given observer select right now? Not the one he just heard ten times
in a row. It became too predictable in the process. But also not the new weird one with the completely
unfamiliar rhythm and tonality. It seems too irregular and contain too much arbitrariness and subjective
noise. He should try a song that is unfamiliar enough to contain somewhat unexpected harmonies or
melodies or beats etc., but familiar enough to allow for quickly recognizing the presence of a new learnable
regularity in the sound stream. Sure, this song will get boring over time, but not yet.

The observer dependence is illustrated by the fact that Sch¨onberg’s twelve tone music is less popular
than certain Bach tunes, presumably because its algorithmic structure is less obvious to many human ob-
servers. Those with a prior education about the basic concepts and objectives and constraints of twelve
tone music, however, tend to appreciate Schönberg more than those without such an education.

All of this perfectly fits our frameworks from Section 3 and 5.The current predictor of a given sub-
jective observer tries to compress (compare Section 3.1) his history of acoustic and other inputs where
possible. The action selector tries to find actions that improve the predictor’s performance on the history
so far. The interesting musical and other subsequences are those with previously unknown yet learnable
types of regularities, because they lead to predictor improvements. The boring patterns are those that seem
arbitrary or random, or whose structure seems too hard to understand.

7.2 Visual Arts

Similar statements not only hold for other dynamic art including film and dance (relate this to the non-
traditional objective functionCxry, eq. (6), which takes into account predictions of controller actions), but
also for painting and sculpture, which cause dynamic pattern sequences due to attention-shifting actions
(Schmidhuber and Huber, 1991) of the observer.

For example, consider Figure 1, due to the author, reprintedfrom the journalLeonardo(Schmidhuber,
1997a). It depicts a butterfly approaching a vase with a flower. The image to the left can be specified by
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very few bits of information; it can be constructed through avery simple procedure or algorithm based on
fractal circle patterns (Schmidhuber, 1997a). People who understand this algorithm tend to appreciate the
drawing more than others. They realize how simple it is. The reward is generated by the discovery of the
simple underlying pattern. This is not an immediate, all-or-nothing, binary process though—the typical
human visual system has a lot of experience with circles, andeven without formal explanation tends to
realize that there is something special about this butterfly. Although few people are able to immediately
see how the drawing was made, most do notice how the curves somehow fit together and exhibit some sort
of regularity.

Figure 1:Left: Image of a butterfly approaching a vase with a flower, reprinted fromLeonardo(Schmid-
huber, 1997a).Right: Explanation of how the image was constructed through a very simple algorithm
exploiting fractal circles (Schmidhuber, 1997a). The frame is a circle; its leftmost point is the center of
another circle of the same size. Wherever two circles of equal size touch or intersect are centers of two
more circles with equal and half size, respectively. Each line of the drawing is a segment of some circle, its
endpoints are where circles touch or intersect. There are few big circles and many small ones. In general,
the smaller a circle, the more bits are needed to specify it. The drawing to the left is simple (compressible)
as it is based on few, rather large circles. Many human observers report that they derive a certain amount
of pleasure from learning about this simplicity.

7.3 Artists vs Observers: Any Difference?

So far we have focused on observers of works of art. What aboutthe artists? Just as observers get intrinsic
rewards from observing artwork that exhibits new, previously unknown regularities, artists get reward for
making it. The distinction is not clear though. Artists can be observers and vice versa. Both artists and
observers execute action sequences. The intrinsic motivations of both are fully compatible with our simple
theoretical framework.

Some artists, however, craveexternalreward from other observers, in form of praise, money, or both,
in addition to theinternal reward that comes from creating a new work of art. Our framework, however,
conceptually separates these two types of reward.

7.4 Beauty vs What’s Interesting

In the 1990s we established a simple theory of subjective beauty (Schmidhuber, 1997a, 1998): among sev-
eral patterns classified as ‘comparable’ by some given subjective observer, the subjectively most beautiful
is the one with the simplest (shortest) description, given the observer’s particular method for encoding and
memorizing it.
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For example, mathematicians find beauty in a simple proof with a short description in the formal lan-
guage they are using. Another example of beauty through simplicity is given by the construction of a
geometrically simple, attractive face (Schmidhuber, 1998).

What’s beautiful is not necessarily interesting though. A beautiful thing may be interesting (that is,
trigger intrinsic curiosity rewards) only as long as it is new, that is, as long as the algorithmic regularity
that makes it simple has not yet been assimilated by the adaptive observer.

7.5 Summary: Art and Creativity as By-Products of Curiosity Rewards

In the light of the observations above, we postulate that active perception of all kinds of artwork and our
interest therein is just a by-product of a curiosity reward-generating framework such as the ones of Section 3
or 5. These frameworks are sufficiently formal and precise toallow for their implementation on computers
or developmental robots. The resulting artificial observers will vary in terms of the computational power
of their predictors and learning algorithms. This will influence what is good art to them, and what they find
interesting.

In this sense we may indeed say that good observer-dependentart deepens the observer’s insights about
this world or possible worlds, connecting previously disconnected patterns in an initially surprising way
that eventually becomes known and less interesting.

Is there a way of applying this scheme to the automatic, robotic creation of artwork that typicalhuman
observers will appreciate? To do it right would require a better understanding of the predictive mechanisms
used by average humans. Popular artists may have acquired anintuitive understanding thereof, but more
research is necessary to automate the process of creating widely popular art.

8 Conclusions

There are theoretically optimal ways of improving the predictive world model of a robotic agent. They
are based on optimal reinforcement learners maximizing expected future reward. The rewards are the
predictor’s improvements on the observation history so far. They encourage the reinforcement learner to
produce action sequences that cause the creation and the learning of new, previously unknown regularities
in the sensory input stream. Art and creativity can be explained as by-products of such intrinsic curiosity
rewards.
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