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Abstract—
Localization of a robot is a central theme of dif-

ferent elaborations. But the determination of an ex-
act position for a vehicle in urban area is more com-
plex and an extensive algorithm challenge. This paper
adresses the precise localization of a vehicle by combi-
nation of different sensor information using a Kalman
and Particle filter. We present a vision based approach,
which handles especially the kidnapping problem by
standard sensor technology of a series-production vehi-
cle. Therefore, the fusion of GPS1 data and odometry,
like speed and turn rate, produces a good initial po-
sition, which is the basis for generating different pose
hypotheses. The inaccuracy of the GPS receiver lim-
its their range of dispersion. For the evaluation, the
subsequent Particle filter matches high precise map in-
formation with the current grayscale image of a built
in camera. Different approaches known from robotics
engineering are validated for their feasibility in auto-
motive applications.

Index Terms—kidnapping, Particle filter, Kalman fil-
ter, pose estimation

I. I NTRODUCTION

The integration rate of navigation in modern au-
tomobiles systems increases continuously. But their
accuracy of pose estimation by using dead reckoning
and map matching, described in [1], [2] and [3], is not
precise enough for applications of driving assistant
or security systems. These algorithms reduce only
the lateral error but disregard the longitudinal direc-
tion. High-precision sensor systems based especially
on DGPS2 are indeed available on the market but their
package size and costs do not meet the requirements
of automotive applications. The availability of further
sensor information in series production vehicle causes

1Global Positioning System
2Differential GPS

the idea of data combination for localization. Espe-
cially car-to-car communication benefits from the ex-
change of accurate position information for collision
detection.
The localization task is often handled in robotic engi-
neering. In particular, Particle and Kalman filter are
commonly used for pose estimation there. Ashokaraj
[4] described the combination of inertial sensors, en-
coders and ultrasonic sensors by Extendend Kalman
filtering. The usage of Particle filter for robot local-
ization is often attended by SLAM3 algorithm, com-
pare [5]. We have stepwise implemented and modi-
fied these approaches for vehicle localization.
The environment of a robot can be artificially adapted,
that means the localization is limited to a special area,
like a playing field (see [6]) or a bounded indoor scene
(see [7]). Whereas the vehicle localization deals with
complex and changeable outdoor scenes. The limited
sensor information and the multifaceted environment
is a challenge, which we want to meet. Our car is
equipped with a GPS receiver and a grayscale cam-
era. In addition odometry data like turn rate and ve-
locity are available. Advanced map material provides
apart from road network also environmental informa-
tion like urban areas. We use precise maps (GIS4),
which include building outlines. The generated ver-
tical building edges are these landmarks, where the
vehicle is positioned to. The map based model in-
formation are combined with an image of a grayscale
camera for pose hypotheses evaluation. The succeed-
ing sequence scheme, Fig.1, shows a step by step de-
termination of a precise vehicle position.

With this paper we mainly focus on the kidnapping
problem of vehicle localization.

3Simultaneous Localization and Mapping
4Geographic Information System



Fig. 1. Overview of the model-based self-localization solving
the kidnapping problem
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Fig. 2. Error of GPS receiver against vehicle velocity

II. POSEESTIMATION OF A VEHICLE IN A

OUTDOOR SCENE

For solving the kidnapping problem of vehicle lo-
calization, the inaccuracy of the used standard GPS
receiver of up to 30m has to be considered, see 2.

Known from robotic localization, there are two
main probabilistic methods existant for state estima-
tion, more precisely Kalman and Particle filter. We
use a combined approach of both, which is discussed
here. The main focus of localization lies on the x- and
y-position of the vehicle and its orientation.

A. Kalman Filter

The estimation of the vehicle position using the
Kalman filter in the way of sensor data fusion is a
common and promising method. All information of
the odometry, like speed and turn rate, a single cam-
era and a GPS receiver could be combined with this
probabilistic method. The video data of the grayscale
camera plays a special role in filtering. The matching
of reality and model information is possible by using
this method. The handling of landmarks by using the
Kalman filter leads to an extension of the state vector

and results in a significantly increased processing ef-
fort. Because of the initially described position vari-
ation by the GPS receiver a landmark based Kalman
filter is not able to exactly determine the vehicle posi-
tion. The high variability of the GPS position will be
averaged by the Kalman filter, but still the alignment
between model edge and object edge within the im-
age results in wrong correspondences and produces
local maxima. The kidnapping problem itself can not
be mastered utilizing this approach. The Particle fil-
ter is the appropriate method solving this issue. Still
the Kalman filter in combination with the odometry
data and the GPS signal is a solution to determine the
initial position and orientation for the subsequent Par-
ticle filter process. With the utilization of the CTRV5

model from [8] it is possible to estimate the vehicle
position and direction. This system model describes
a turn movement by a segment of a circle, in which
turn rate and velocity are constant. The state vector
xtk consists of position informationx andy, rotation
angleγ, velocity v and turn rateω. The state transi-
tion equation (1) includes a non linear process, thus
the utilization of the Extended Kalman filter is neces-
sary. The time-discrete prediction step is defined in
the form of

x∗tk = gA(xtk) (1)

P ∗

tk
= AtkPtk−1

AT
tk
+Qtk−1

, (2)

wherePt is the covariance matrix of the state vec-
tor andAt the Jacobian matrix ofgA. Th gaussian
process noise is expressed byQt. In the subsequent
correction step the sensor information of the GPS re-
ceiver and the odometry data will be combined. This
fusion represented by the correction step is only al-
lowed if the independent measurement data was syn-
chronized before. Basis for the correction are mea-
sured information about speed, turn rate from the
odometry and GPS position. A compass for angle
measurement is not available. The update step is de-
scribed by the following equations

xtk = x∗tk +Ktk(ytk
− Ctkx

∗

tk
︸ ︷︷ ︸

y∗
tk

) (3)

Ktk = P ∗

tk
CT
tk
(CtkP

∗

tk
CT
tk
+Rtk)

−1 (4)

Ptk = (I −KtkCtk)P
∗

tk
(5)
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whereKt is the Kalman gain andRt the sensor noise.
With this approach the inital vehicle direction and po-
sition can be estimated which is used as starting point
for the Particle filter.

B. Particle Filter

The key idea of the Particle filter is to approximate
the posterior densityp(xk−1|z1:k−1) at timet = k−1
by a set

Sk =
{

x
(i)
k−1|ω

(i)
k−1, i = 1, ..., N

}

(6)

of N state samplesxi or particles and their corre-
sponding weightsωi. Estimates are computed based
on these particles and weights.

The following steps of the Particle filter update
the particle set to represent the posterior density
p(xk|z1:k) for the current timek, compare Fig. 3.

Fig. 3. Steps of the Particle filter algorithm

• Normalize the particle weights.
• Get a new distribution by the elimination of par-

ticles with low importance ratios and multiplica-
tion of particles with high importance ratios.

• Add small random values to each parameter to
move multiple particles slightly for better space
covering.

• Adapt each particle according to prediction.
• Update the particle weights with respect to the

current measurementszk.
• Repeat from step 1
The iteration process over time produces particle

clustering especially around groundtruth data. Based
on the known deviation of the urban vehicle position
the estimation of the Kalman filter can be transferred
into the Particle filter where it is refined . The esti-
mated deviation is the basis for the scattering of pose

hypotheses in terms of particles. The Particle filter
state to be estimated includes therefore position in-
formationx andy, rotation angleγ.

The challenge when using the Particle filter is the
determination of the probability of each particle, see
equation

w
(i)
t = p(zt|x

(i)
t ). (7)

In this context the probability (weight) will be named
as importance factorw. With the utilization of
the video image information, the distances between
model and object edges build its input values, see [9].
As basis for the determination of these distance val-
ues the RAPiD6 algorithm [10] known from object
tracking is used. Therefore the visible model edges
are being projected into the image domain and di-
vided into segments of the same length. Afterwards
the algorithm searches for object edges of image fea-
tures along the normal vectors based on the created
interpolated points, see also [11], [12] and [13]. The
approach of determining the distance values is being
transferred from the RAPiD algorithm to Particle fil-
ter with the purpose of identifying the weight. How-
ever the model edges are limited to vertical building
edges as shown in Fig. 4

Fig. 4. Image with projected model edges and distance values

The building outlines of the map material are used
for generating vertical model edges. The 3D model
creation is based on the assumption of a minimum
building height of 10m. The point of view separates
visible and non visible edges. The disregard of hori-
zontal model edges is caused by obstacles like park-
ing cars near ground and the guess of the building
height.

6Real-time Attitude and Position Determination



III. R ESULTS

For our vision-based pose estimation we compare
the results of the Particle filter with precise position
information of high value reference sensors, which
are additionally integrated in our test vehicle. There-
fore the usage of complexe outdoor scenes is possible
for evaluating the described approach. The generated
particles are hypotheses of position information. The
vehicle direction is set to precise reference data in or-
der to restrict the envelope of the Particle filter and al-
low a selective analysis. In addition there is no move-
ment of the vehicle. Fig. 6 shows the convergence
behavior of the particles. The denser the particles are
concentrated in a specific area the higher the probabil-
ity of the density function is approximated. The clus-
tering of the particles near groundtruth position impli-
cates a well designed importance factor and supports
our vision-based approach, compare Fig. 6f . The
clustering area after few Particle filter steps is clear
smaller than the inacurracy of the GPS receiver. This
cluster has a size of circa 2m x 2m, which delivers a
precise position estimation in lateral and longitudinal
direction. On closer examination of the best weighted
particle (red point) compared to groundtruth position
(green point), see Fig. 6f , we get a∆x = 0.02m and
∆y = 0.5m. The considered outdoor scene is well
structured and supports the vision based approach.
But if we use a scene with ambiguities due to adja-
cent homogeneous building fronts, the result of the
Particle filter is unsatisfactory. The Fig. 5 shows a
vast area of particles with similar weights, which re-
sults in generation of one or more less concentrated
particle cluster(s).
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Fig. 5. Weighted particles of a homogeneous outdoor scene

IV. CONCLUSION

In this paper the utilization of roboter localization
approaches for pose estimation of a vehicle in out-

door scenes has been shown. The transfer of distance
values by RAPiD algorithm into the evaluation of the
Particle filter generates a multi modal probability den-
sity function, where the maximum describes the cur-
rent vehicle position. The utilization of the Kalman
filter prior to the Particle filter results in a limitation of
the scattering area. Finally the Particle filter provides
a solution for the kidnapping problem by vision-based
weighting calculation. Further work will increase the
degree-of-freedom of the Particle filter and optimize
the combined approach for more robustness and effi-
ciency.
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Fig. 6. The figures show the located particles.a) Initial random sample step of the Particle filter relating to GPS position. No particles
inside of building outlines,b) - f) Particle clustering after each filter cycle, wheref) additionally includes groundtruth position(green)
and best weighted particle (red)


