Reactive Real-Time Programming with
Distributed Agents

Gerhard Schrott

Technische Universitat Miinchen
Institut fiir Informatik
D-80290 Munich, Germany

Abstract. The proposed reactive real-time programming system is a
new approach to implement complex distributed heterogeneous real-time
applications. It is based on the notion of distributed multi—agent sys-
tems. The whole control task is decomposed top down into small execu-
tion units, called agents which communicate by sending and executing
contracts and are specified in a hardware independent language based
on states and guarded commands. At compile time the agents are dis-
tributed to specified targets. PC’s, micro-controllers, programmable logic
controllers and even programmable logic devices are supported. The sys-
tem automatically translates each agent to the particular code and real-
izes the communication including a bidding protocol between the agents
either on the same processor or within a network. Due to a strictly cyclic
processing of the agents exact response times can be guaranteed. Zero
delay agents can be implemented in hardware.

1 Introduction

Reactive programming of distributed systems connected by a field—bus is nowa-
days imperative in process control. Networks comprising PC’s and/or micro-
controllers are available at low prices and will replace the ”one for all” computer
solution based on conventional real-time operating systems and will solve its in-
herent problems: Micro-controllers dedicated to time—critical applications guar-
antee the needed reactiveness; the complexity of control applications is mastered
by a natural distribution of tasks; modern programming paradigms are used to
improve the flexibility and fault tolerance of the system.

1.1 Multi—agent systems

Agents [4] are small autonomous software units which are able to perceive, to
plan, to communicate with each other, to decide and to act. Multi—agent systems
(e.g. [1],[5]) are in many respects similar to distributed real-time systems. Tasks
correspond to agents, messages to contracts between agents, perception and
action are equivalent to the input/output of the technical process and planning
and deciding is implicitly programmed in intelligent autonomous applications. It
is obvious that the paradigm of an agent can easily be transfered to distributed
real-time systems and may give new impulses to the programming of distributed
process control.



1.2 Cyclic predictable scheduling

Cyclic scheduling was already used in the earliest real-time systems. It is still
applied to safety critical applications. Lawson [3] stresses that only cyclic systems
can be proved in their time behavior.

1.3 Synchronous programming

Synchronous languages as ESTEREL, LUSTRE or SIGNAL ([2]) provide state-
ments which allow a program to be considered as instantaneously reacting to
external events. Their behavior is also fully deterministic, however their com-
putational power is only equivalent to finite automaton. They create reactive
kernels which need additional layers for physical input/output, for data man-
agement and for communication between different kernels.

1.4 Real-time programming with distributed agents

Most available operating systems are based on the execution of parallel tasks
causing the known problems of scheduling and interrupt response times. In this
paper a new approach for programming distributed heterogeneous real-time ap-
plications is proposed based on the notion of distributed multi-agent systems.
The communication between these agents is transparent to the programmer. The
system guarantees response times by a strictly cyclic and therefore predictable
scheduling. Using a restricted subset of the system specification even the hard
real-time requirements of synchronous programming are met: the resulting code
is the definition of a finite automaton specified in VHDL.

2 MAD-RTS Specification

The proposed reactive multi-agent distributed real-time system (MAD-RTS,
[6]) combines specification and coding of the control programs in a top down
approach. It supports the definition of small agents which communicate with
each other by sending contracts to start activities of other agents. If more than
one agent can perform the needed activity, bids are sent and the ’cheapest’ agent
will get the contract. Each agent has a set of defined states and executes the
guarded actions of this state. It interacts via generic sub-agents with physical
input/output channels, timers and other specific hardware. As in object oriented
programming the agent executes the contract like a method without showing the
real implementation.

A complete MAD program starts with the declaration of the available target
processors and is followed by a number of agents (see examples in chapter 4).
The complete definition of an agent in MAD is divided into the following parts:

— Declaration of the target microprocessor, the agent will be executed on

— Instantiation of sub-agents used by the agent to interface to the hardware and
to special functions



— Declaration of bids for contracts
— Declaration of contracts, the agent will accept
— Action part

2.1 Target definition

The target processor chosen within the network to execute the agent is defined
after the keyword target. More than one agent may of course run on one pro-
cessor. The final distribution is determined both by the physical input/output
channels used by the agent and connected to the processor, and by the load
on one processor resp. the response time needed by the agent. This assignment
can be changed at any time; only recompiling is necessary to get a new running
system.

2.2 Sub-agents

At lowest level generic sub-agents are defined to realize the interface to the tech-
nical process (e.g. digital and analog input/output, timer, stepper motor, pid-
controller). They are instantiated in the decls definition of a MAD-program
with the actual i/o-address and mnemonic identifiers to enhance self documen-
tation of the program. Consequently, local variables and arrays are also declared
as sub-agents. Sub-agents written in C may be added to the libraries.

2.3 Contracts and bidding

The only interface between agents is the contract protocol. In the contracts
definition every contract which can be called by other agents is listed. A contract
transfers parameters and causes the execution of actions or in most cases a state
transition in the agents action part. Included in the communication system is
a contract net bidding protocol. If more than one agent can execute a contract
each agent sends its cost to perform the activity of the contract, computed by a
cost, function supported in the bids definition. The runtime system chooses the
‘cheapest’ agent and sends the contract to it.

Sending a contract only starts the activity of another agent but does not wait
for its completion. Therefore, deadlocks in contract calls cannot occur. It is the
duty of the programmer to avoid cyclic dependencies of calls to contracts e.g.
by using strictly hierarchical dependencies of contracts.

2.4 States and actions

The action part is subdivided into a set of states. Control tasks usually change
between different states of operation, e.g. at lowest level ’on’ or ’off’, at higher
level ’open’, 'closed’ or ’error’. One state is active and the actions comprising it
are executed. Each action is bound by a condition (guard) and only if it is true
the corresponding statements are executed. At lower level these conditions will be



signals from the controlled process, at higher level it may be timers or conditional
expressions on variables. There is also a special condition once to ensure that
the following statements are executed only once when entering the corresponding
state. All other conditions in one state are tested cyclically and all agents fixed to
one processor are executed one after the other to guarantee an exactly predictable
time behavior. Special agents may be defined for time consuming computations
which get a specified time slice per cycle. Two distinguished states are obligatory
on each agent: At start up the agent goes into the initial state, in case of
emergency the shutdown state is entered.

3 Implementation

The programming system MAD-RTS is hosted on a PC with MS-DOS. It con-
tains the compiler for MAD and code generators and run time systems for differ-
ent targets. The compiler is written in the object-oriented language C++. The
syntax of MAD-RTS is defined in YACC, for lexical analysis the tool "FLEX’,
for syntactical analysis the tool 'BISON’ is used. Therefore, the compiler can
easily be extended by additional language features as well as additional code
generators and sub-agents. The compiler uses the contract specification to gen-
erate automatically the code for the transmission of contracts between agents on
the same or on different targets. A small run time kernel is added which executes
sequentially all agents on one target and realizes the physical communication in
the network.

Code generators are available for Intel80x86, MC68HC11 and programmable
logic controllers; the communication link is implemented for RS 232 serial link
and the CAN-field-bus. If only digital input/output, no numeric expressions
and no parameter passing to contracts are used, a further code generator is
available which translates an agent program into a table of a finite automaton
[7] which can easily be transcribed into VHDL and put into the hardware of a
programmable logic device (PLD).

Figure 1 shows the generation of a MAD-RTS application, a small plant
with one robot, a machine tool and a conveyer belt. At source level the target
of each agent is defined. The agents are compiled into intermediate code which
is translated according to the target definition to the dedicated hardware and
linked with the run time kernel and the needed libraries. The resulting code
is then loaded into the target or burned into a PLD. The resulting distributed
multi-agent system is now ready to run; the agents communicate via CAN-Bus
or RS232.

No explicit programming of this communication between agents is necessary.
Each agent can be shifted to other hardware with only minor changes in the def-
inition part of the agent. Likewise, the communication links are automatically
altered without the need for changes in the application program. A contract
net protocol with simple bidding is embedded into the runtime system kernel.
Specification and coding of the control programs are closely related. The system
engineer can design the control application at first according to problem ori-



agent robot agent store agent mtool agent belt

target mcll target pcl amm target ti5 target C374

Source Code

Compiling
Generating code
Adding libraries

68HC11 C-Code ladder VHDL

Assembler : Description
Code I logic

Hosted on PC

Downloading
Burning

MC68HC11 Intel80x86 TI 525

PLC

Cypress
CPLD
robot

control

store
control machine
tool

belt
control

CAN-BUS

Multi-agent distributed System

Fig. 1. Generation of a MAD-RTS application

ented criteria and afterwards decide about the optimal hardware structure for
his application.

4 Programming examples

To test the MAD-System on a real platform we use a FischerTechnik model of
a twin elevator with four floors. The model has the complete functionality of a
twin elevator with all keys, switches, lamps, displays and motors. It is controlled
by one microprocessors MC68HC11 on each floor, one in each cage and one at
each motor platform, all connected via the CAN-field-bus (see figure 2).

4.1 Door agent

The implementation of the door agent shows an example of a MAD program.
Every agent may send the contract open in order to induce the door agent to
open the elevator door, wait for 10 seconds and close it again. If the light barrier
is interrupted during closing, the door is opened again. If the door is closed, the
contract start is sent to agent elevatorl.



Elevator 1 MC68 MC68 Elevator 2

CAN CAN

CAN—Bu7'/

MC68
CAN

floor 4

MC68
CAN

floor 3

MC68
CAN

floor 2

MC68
CAN

floor 1 i

MC68 MC68
CAN CAN

e

Fig. 2. Microprocessor network for twin elevator and a View of the model

targetdecl mc68hcll mcfloor2; % target definition
agent door2 target mcfloor2; Y door agent elevatorl, 2nd floor
decls % declaration of subagents

DigOut motor(outl,on,off);

DigOut direction(out2,open,close);

DigIn open_key(inl,on,off);

DigIn closed_key(in2,on,off);

DigIn light_barrier(in7,interrupted,ok);

Timer delay;

contracts % accepted contract
open do newstate opening;
states % start of action part
closed/shutdown:
once => motor.off;
opening:
once => {direction.open; motor.on;}
open_key.on => newstate waiting;
waiting:
once => {motor.off; delay(10000);}
delay.tout => newstate closing;

closing/initial:



once => {direction.close; motor.on;}
closed_key.on => {newstate closed; elevatorl.start;}
light_barrier.interrupted
=> {motor.off; newstate opening;}
endagent;

4.2 Bidding agent

There exist two similar agents each controlling one elevator motor. A contract
may be sent to both elevator agents if a cage is called from a certain floor. Both
elevator agents compute their actual cost to go to this floor based on their actual
state and the difference to the floor the cage is actually located. Of course, more
sophisticated cost functions are necessary to get a better strategy. The runtime
system will send the contract to the cheaper agent and it will send the cage
to this floor. The following example shows the relevant parts for bidding in the
definition of the contract:

targetdecl mc68hcll mcelevl; % target definition

agent elevatorl target mcelevl; ¥ motor agent elevatorl

decls % declaration of subagents
varinteger aktfloor; % for a local variable
arraybool(4) stop; % and a local array

bids % cost function for contract get

get (integer floor)
cost ((instate busy)*4 + abs(floor-aktfloor));
contracts % accepted contract
get (integer floor)
do stop(floor).set(true);

states % start of action part
busy: % motor busy
endagent;

An agent controlling the keys at the second floor will send the following
contract to call one of both elevators:

elevatorl | elevator2.get(2)

5 Results

Due to the strictly cyclic processing you get the advantages of a distributed
multi-agent programming system combined with the exact preview of the max-
imal delay time until the acceptance of a new signal. For hard real-time re-
quirements a ’hardware agent’ with zero delay can be created using the VHDL
code generator. The strict cyclic approach produces a minimum of overhead and



results in fast reaction times; on the micro-controller MC68HC11 (8 MHz) the
periodic execution time for the model elevator is between 3 to 10 msec, including
the transfer on the CAN-Bus. The produced code is very small, max. 20 KBytes
for one controller.

The complex program can be easily tested: A monitor shows the actual states
of each agent and the contracts sent between the agents. Reaction on errors can
be embedded into the guarded actions and fault tolerance can be realized by
distributing tasks on different hardware. Our experience showed that even severe
errors in one agent don’t lead to a total breakdown of the controlled process.

6 Conclusions

Reactive real-time programming with distributed agents covers a wide range
of distributed real-time applications, supporting conventional PC based appli-
cations, micro-controllers and programmable logic controllers, down to hard-
ware/software codesign. It introduces the notion of multi-agent systems, the se-
curity of state driven design and the flexibility of distributed multi—processing.
Because of its strictly cyclic execution, exact response times can be guaranteed.
Problems with priorities, task scheduling and interrupts don’t occur. A redesign
of the system is planned embedding the MAD-RTS into the object oriented lan-
guage JAVA. This promises more flexibility, portability and a wider acceptance.

References

1. S. Hahndel and P. Levi: A Distributed Task Planning Method for Autonomous
Agents in a FMS. Proc. IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Sys-
tems (IROS ’94) Sept. 12-16, 1994, Minchen, Germany. Los Alamitos, CA: IEEE
Computer Society Press, pp. 1285-1292, 1994..

2. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, Dordrecht 1993.

3. H.W. Lawson: Parallel Processing in Industrial Real-Time Applications. Prentice
Hall, Englewood Cliffs, NJ., 514 p., 1992.

4. J. P. Miiller: The design of intelligent agents. Lecture notes in computer science;
1177 : Lecture notes in artificial intelligence, Springer, Berlin, 227 p., 1996.

5. G. Schrott: An Experimental Environment for Task-Level Programming of Robots.
Proceedings of the 2nd Int. Symposium on Ezperimental Robotics, Toulouse, Juni
25-27, 1991. R. Chatila (Ed.), Lect. Notes in Control and Information Sciences 190,
Springer, Berlin, pp. 196-206, 1992.

6. G. Schrott: A Multi-Agent Distributed Real-Time System for a Microprocessor
Field-Bus Network. Proc. of 7th Euromicro Workshop on Real-Time Systems, Juni
14-16, 1995, Odense, Denmark. IEEE Computer Society Press, Los Alamitos, Cal-
ifornia, pp. 302-307, 1995.

7. G. Schrott and T. Tempelmeier: Putting Hardware-Software Codesign into Practice.
Proc. of 22nd IFAC/IFIP Workshop on Real-Time Programming, Sept 15-17, 1997,
Lyon, France, to be published.

This article was processed using the XTEX macro package with LLNCS style



