
Formal Modeling of Safety Requirements in the Model-Driven Development of
Safety Critical Embedded Systems

Dominik Sojer, Alois Knoll
Department of Informatics

Technische Universität München
85748 Garching bei München, Germany

{sojer,knoll}@in.tum.de

Christian Buckl
Cyber-Physical Systems

fortiss GmbH
80805 München, Germany

buckl@fortiss.org

Abstract—Safety requirements are a very important arti-
fact in the development of safety critical embedded systems.
They are usually identified during safety analyses and are
used by experts as a basis for the correct selection and
implementation of safety mechanisms. Various safety analysis
research groups have worked on formal modeling of safety
requirements with the goal of determining if a system can
meet these requirements. In this abstract, we propose the
application of formal models of safety requirements throughout
all development phases of a model-driven development process.
The safety requirements identified during safety analysis can
be used to automatically generate appropriate mechanisms
in the code generation phase and to verify the suitability
of this mechanisms in the verification phase. By establishing
safety requirements as a formal basis of all process phases, a
consistent development process can be achieved.

Keywords-model-driven development; safety analysis; em-
bedded systems; safety critical embedded systems

I. INTRODUCTION

During the development of safety critical embedded sys-
tems a very important step is the identification of hazards
and their analysis, which is called safety analysis. In this
phase, safety requirements are identified that have to be
met by the system under development for being “safe”. A
safe system is defined as being free of unacceptable risks.
During a conventional safety analysis, non-formal safety
requirements are identified and experts use them to decide on
mechanisms that should enhance the overall system safety.
However, during the last years, several research groups tried
to find formal ways of describing safety requirements with
the goal of formal verification [1].
In this abstract, we propose to go one step further by using
formally modeled safety requirements for system develop-
ment in model-driven software development. The informa-
tion embedded in formally modeled safety requirements can
be used to select and generate appropriate mechanisms and
to verify the resulting system.

II. APPROACH

Our approach is an extension of conventional safety
analysis processes and is performed in two steps: iden-
tification of safety requirements at component level and

system composition including selection of appropriate fault-
tolerance mechanisms. This two steps are explained in the
following.

A. Description of Components and Safety Requirements

Systems and their requirements can be described on the
system level or on a more granular component level. We
propose that safety requirements are so application depen-
dent that it is not useful to define a description methodology
for them on the system level. A description language for
this use case would have to be nearly as powerful as a
natural language because it would have to capture specifics
from a very broad spectrum of application areas, like “the
pressure pot is safe as long as the pressure sensor delivers
correct measurements at least every 5 seconds”. Therefore
we propose to use conventional safety analysis techniques
like fault tree analysis to refine the safety requirements to
a formally defined logical component level, like the actor
level of actor based systems.
Following the component based development approach of
actor based systems, safety requirements should only be
describable for inputs and outputs, to permit their compos-
ability. Moreover, for future analysis, it should be describ-
able which safety requirements an actor can provide as a
black box. This will be called “safety assurance” in the
following to prevent confusion. However, syntactically and
semantically, safety requirements are equivalent to safety
assurances.
This concept and the relationship of safety requirements and
safety assurances is visualized in fig. 1.
On the actor level, safety requirements can be described by

an extension of McDermid’s fault classes [2]. However, these
fault classes are too abstract for an application in model-
driven development, therefore we propose an extension to:

• wrong value with a concrete threshold
• wrong timing with a concrete threshold
• commission and omission
• wrong values of one variable in subsequent time steps
• wrong values of multiple variables at the same time



Figure 1. Safety Requirements and Safety Assurances

Wrong values and wrong timing have to be extended with
concrete thresholds so that it is possible to determine the
correctness of a variable in a concrete implementation. The
observation of “multi-errors” (multiple wrong values of one
variable in subsequent time steps and wrong values of mul-
tiple variables at the same time) is required because safety
related events often possess a very specific chronological
sequence and are often not limited to a single source of
error.
With the help of these fault classes, safety requirements for
inputs and outputs and safety assurances for actors can be
described.

B. System Composition

The composability of the approach can be handled in
a way that the input safety requirements of an actor can
be directly linked to the output safety requirements of its
predecessor. If the actor’s input safety requirements are
stricter that its predecessor’s output safety reqirements, then
the predecessor’s output requirements can automatically be
overwritten.
Moreover, the output safety requirements of a task can be
opposed to the safety assurances of the actor to determine
flaws in the actor’s safety assurances. The workflow of this
analysis will be described in the following.
The safety assurances of an actor can differ from the
safety requirements of one of its subsequent outputs in two
different ways: first, the actor may assure “safer” assurances
(e.g. the actor has a lower threshold for wrong values).
In this case, no additional measures have to be taken.
Second, the actor may assure “unsafer” assurances than its
subsequent output demands them. In this case, the actor has
to take measures so that it is able to fulfill the possessed
requirements.
The first step is to analyze the actor to gather information
about the hardware where it is executed. This is important
because only hardware faults can result in sporadic system
failures, whereas software faults are, according to gener-
ally accepted theorems [3], systematic faults that cannot
be handled via standard fault detection and fault handling
mechanisms.
In the second step, fault detection mechanisms have to be

generated that are able to detect hardware faults that result
in a violation of the subsequent output’s safety requirements.
This approach is well aligned with up-to-date safety stan-
dards like IEC 61508, which also try to handle hardware
faults by suggesting adequate fault detection mechanisms
for every hardware component of a computer system.
To achieve this, the fault detection mechanisms have to have
a formal description, consisting of

• affected hardware component types
• detectable fault classes
• resource consumption (e.g. execution time, memory

consumption, energy requirements,...)
The affected hardware component types and detectable
fault classes are necessary to select appropriate fault
detection mechanisms for a given safety requirement and
a given actor. The description of consumed resources is
not necessary to select an adequate mechanism on the
logical level, but it is very important when such a system
is realized. In this case, this information can be used to not
only simply select an adequate fault detection mechanism,
but also to select one that does not harm the system’s
non-functional requirements, like deadlines or memory
limitations.

III. CONCLUSION AND FUTURE WORK

We developed the approach, presented in this paper, and
will implement it in the future. The main problem that we
expect is that our approach generates a huge set of safety-
related mechanisms, which is probably highly redundant.
With the help of the mechanisms’ formal descriptions the
set of generated mechanisms can be optimized, for example
by minimizing the accumulated runtime of all mechanisms.
However, these optimization strategies will only be a future
step of our work. There is obviously no perfect optimization
strategy, because the individual parts of the descriptions can-
not be balanced against each other in general. For example,
some systems depend heavily on runtime whereas others
depend mainly on energy consumption. Therefore we will
define an optimization strategy that is highly customizable
so that it can be adjusted to as much application areas as
possible.

REFERENCES

[1] A. Joshi and M. P. E. Heimdahl, Behavioral Fault Modeling
for Model-based Safety Analysis, Proceedings of the 10th IEEE
High Assurance Systems Engineering Symposium, 2007.

[2] J. A. McDermid and D. J. Pumfrey, A Development of Hazard
Analysis to Aid Software Design, Proceedings of the Ninth
Annual Conference on Computer Assurance, 1994.

[3] T. Anderson et al., Software Fault Tolerance: An Evaluation,
IEEE Transactions on Software Engineering, vol. 11, no. 12,
pp. 1502-1510, 1985.


