
Synthesis of Fault Detection Mechanisms
TRACK: Real-Time, Embedded and Physical Systems

Dominik Sojer
Technische Universität München

Department of Informatics
85748 Garching bei München, Germany

sojer@in.tum.de

Abstract—Model-driven software development is one pos-
sible solution to the problem of increasing code size and
complexity in future safety-critical systems. The key is to
generate most of the required source code automatically. A
lot of research has been performed on this idea, however, as
this is a very broad field, some problems are still unsolved.
One of this unsolved problems is the synthesis of fault detection
mechanisms. This paper presents an approach for this synthesis
which consists of three contributions: meta-models and model-
transformations for the generation and scheduling of fault de-
tection mechanisms, a runtime environment for the online root-
cause analysis of occurred failures and model transformations
for the generation of required system documentation.

Keywords-model-driven development; safety; fault detection

I. INTRODUCTION

During the last years, Model-Driven Software Develop-
ment (MDSD) has been established as a valuable software
engineering paradigm in many different application domains.
However, in the area of safety-critical embedded systems,
the full potential of MDSD has not been exploited yet [4],
to solve the problem of increasing code size and complex-
ity. Code generation for non-functional system properties,
e.g. timing or safety, is still an active research topic and
commercial tool vendors have not adopted it yet.

This paper presents an approach for the integration of one
specific non-functional system property into MDSD, namely
the synthesis of fault detection functions.

Its three contributions are: (1) metamodels and model-
transformations to automatically generate and schedule fault
detection functions. These tasks are performed manually
conventionally. (2) A runtime environment for the online
root-cause analysis of occurred failures and (3) a model-
transformation to generate system documentation according
to certain safety standards.

Sec. II will present the background of this work in brief,
Sec. III will present the details of the approach, Sec. IV will
give references to related work, reviewing the state-of-the-
art in code generation for safety-critical systems, and Sec.
V will conclude the paper and discuss future work, which
has to be performed to realize the whole approach.

II. BACKGROUND

This work based on various research areas and the most
important of these will be presented in brief in this Section.

Model-Driven Software Development is a software engi-
neering paradigm that aims at speeding up the development
process while making it less error-prone at the same time [8].
This goal shall be accomplished by replacing source code as
the primary artifact in the development process by models.
Modeling languages are defined by meta-models, which
are again defined by meta-meta-models. This hierarchy is
exemplified in Fig. 1.

This work uses a model-driven approach to synthesize
fault detection mechanisms.

Meta-Modeling Language

Meta-Meta-Model

Meta-Modeling Language

Meta-Model

Domain Modeling Language

Model

StateMachine

State

Transition

1

*

1 *

to

from

start

A B

C

stop

specify

specify

Figure 1. Concept of Model-Driven Software Development
(http://w3.isis.vanderbilt.edu/projects/gme/meta.html)

Safety is a system state in which no unacceptable hazards
are imposed on the system’s environment. Research in this
area focuses either on the development of safe systems or
on the evaluation of a system’s safety. A comprehensive
overview of the most important terms and concepts of safety
is given by [1].

This work supports the design of safe systems by perform-
ing safety analyses on the system model and by introducing
software based fault detection mechanisms there. The safe-
guarding of systems by software is an established approach



[5].
Safety Standards describe the state-of-the-art in develop-

ing safe systems. Usually, they are very domain dependent
(e.g. [7]) and many of them are not limited to system
design but define the whole system lifecycle. This work is
developed with respect to IEC 61508 [7] to assure that it
takes the state-of-the-art into account.

III. APPROACH

The approach for synthesizing fault detection mechanisms
consists of four individual tasks, which will be presented
in this Section. Based on the generation and execution of
fault detection mechanisms, automated root cause analyses
for occurred failures can be performed. This analysis allows
the system to react to occurred failures in the most suitable
way, e.g. by helping to differentiate between a common
cause failure and two independent failures. To simplify the
adherence of coding guidelines and safety standards, these
tasks are accompanied by the generation of documentation.

A. Generation of Fault Detection Mechanisms

One of the key problems of this approach is the selection
of fault detection mechanisms, which should be generated.
Fault detection mechanisms are typically hardware specific
test functions that can detect various hardware defects. Many
safety standards (e.g. [7]) list a multitude of fault detection
mechanisms in their appendices.

1) Generation from a formally modeled Fault Hypothesis:
The fault hypothesis lists all faults that might occur in
the system. Therefore, fault detection mechanisms can be
derived from it if three entities are described in a formal way:
faults, component types (where faults may occur) and fault
detection mechanisms (listing detectable faults). With these
formal descriptions available, for every fault of the fault
hypothesis, an appropriate fault detection mechanism can
be selected. This mapping is depicted in Fig. 2. If multiple
fault detection mechanisms are available for a fault class of
a specific component, then the fault detection mechanisms
can be annotated with optimization criteria (e.g. execution
time) and the most fitting one can be determined by solving
a multi-dimensional optimization problem.

2) Generation from Formally Modeled Safety Require-
ments: Parts of the fault hypothesis can be generated au-
tomatically by using formally modeled, more abstract safety
requirements. A safety requirement can be described in a
formal way as a set of fault classes that are not allowed
to occur on a specific port of an actor in an actor-based
system model. As no actor can guarantee the correctness
of its results independent of predecessors, these safety
requirements have to be propagated in the reverse direction
of the data flow to other actors. During this propagation,
the set of faults, which are not allowed to occur, may
change according to the functionality of the actor. The
most common example for such a change is when a safety

Figure 2. Mapping of Detection Mechanisms and Fault Classes

requirement passes an actor, whose behavior is relevant for
system safety. An example for such an actor is a voter,
which can guarantee that it always outputs correct results.
Unfortunately, the actor level is too abstract to derive fault
detection mechanisms directly, because these mechanisms
are typically very hardware specific. Therefore another step
is required. All safety requirements have to be refined from
the actor level to the hardware level, by analyzing on which
hardware components an actor is executed. After this step,
fault detection mechanisms can be derived similar as in Sec.
III-A1.

B. Execution of Fault Detection Mechanisms

Three different groups of fault detection mechanisms
exist, which have to be treated differently regarding their
execution. In-schedule tests have to be executed at a very
specific point in the system schedule and their runtime is
typically very short. An example is the voting algorithm of
a multi-channel system. Runtime tests are very similar to
functional tasks. They have to be executed periodically with
a significant runtime. Proof tests have to be executed to
ensure that the system is in its initial state, usually right after
startup and after that in in very long intervals. Their runtime
can be quite high. An implementation of these different fault
detection mechanism types is depicted in Fig. 3.

+run()
+pause()

-WCET : int
-deadline : int

Task

-duration : int
-periodic : bool

InterruptPoint 1*
InScheduleTest

+injectFault()
-Type

Test
type := {RUNTIME_TESTS, PROOF_TEST}

Figure 3. Relation between Different Test Types



To schedule all required fault detection mechanisms
automatically, some assumptions have to be made about
the runtime environment of the system. The schedule of
this runtime environment is depicted in Fig. 4. This is a
cyclic schedule, which is not very uncommon in embedded
systems. Moreover, it is a two-layered schedule: on the
lower layer (the “minor cycle”), functional tasks and runtime
tests are executed. On the higher layer (the “major cycle”),
execution of proof tests alternates with multiple executions
of the minor cycle.

Proof Tests Tasks End of 
majorcycle?

no

yes

PT1 PTN

RT1 RTN

Test Abstraction

Test Abstraction

!RT1 !RTN

Start
T1 TN

Figure 4. Schedule of Runtime Evironment

Based on these assumptions, the schedule can be gener-
ated semi-automatically, if the task set is schedulable. Only
three decisions have to be made by the developer:

1) Are proof tests desired? If not, the functional tasks
and the runtime tests can be scheduled conventionally.

2) Should proof tests be executed transparently? If
yes, functional tasks and runtime tests can be sched-
uled conventionally and proof tests have to be sched-
uled in the slack time of this conventional schedule.

3) Should proof tests be executed redundantly? If
the system is designed with some redundancy, the
execution of proof tests can exploit this redundancy.
However, as redundancy is often used for system
safety, the impact of the proof test execution on safety
has to be analyzed.

If proof tests are desired in a non-transparent, non-redundant
way, then functional tasks and runtime tests can be scheduled
conventionally and the proof tests can be added to the re-
sulting schedule by the addition of a higher-level scheduling
cycle, which is depicted in Fig. 4.

C. Root Cause Analysis

Fault detection mechanisms are in most cases not able
to really detect a fault. An example is a RAM test, which
tries to find memory faults by performing write and read
operations on memory cells in a predefined order. So the
only piece of information that this test can extract is: the
actual content of a memory cell did not match its expected
content. This piece of information has not much in common
with the fault that might have occurred, e.g. a radiation-
induced bit-flip. According to theory, what most of the fault
detection mechanisms can detect are in fact errors [1]. By
adding application knowledge to the system and by analyz-
ing this knowledge at runtime, it is possible to reason about
root causes in a probabilistic way. Two additional pieces of
information are required for this: (1) The fault hypothesis
has to be made available at runtime and possible faults have
to be annotated with their probability of occurrence. (2)
Non-functional dependencies between these faults have to
be modeled, e.g. with the following expression:

dependency :=

(name, fault1, fault2, probability,

isBidirectional, isInstant)

A dependency between two faults (fault1, fault2) is there-
fore described by its name, its probability of occurrence, a
boolean value isBidirectional if the dependency applies
in both directions and a boolean value isInstant if the
dependency will result in both faults occur at the same time.

With this information available at runtime, it is possible to
reason about root causes of occurred events with techniques
like markov chains [9]. Moreover, it is possible to dynam-
ically react at runtime, e.g. by the dynamic scheduling of
fault detection mechanisms, to occurred events.

D. Generation of Documentation

When a development process is carried out according
to safety standard, e.g. IEC 61508 [7], one of the key
tasks is the documentation of all development phases, their
outcomes and design decisions. This need for documentation
can take up a significant share of the whole development
time, therefore even the introduction of a small amount of
automation can help to significantly reduce the development
time. By using a model-driven approach to synthesize fault
detection mechanisms, it is an obvious next step to use these
models not only for source code generation but also for the
generation of documentation. For example, it is possible to
automatically generate the answers to the following ques-
tions:

• What faults will be detected and how?
• How are the detectable faults linked with the fault

hypothesis and the safety requirements?
• What is the impact of fault detection on the system

schedule?



The specific details of this generation process depend on the
actual development process, which is followed. However, [6]
showed that large parts of the major safety standards are
overlapping and therefore this process is valuable in many
different domains.

IV. RELATED WORK

This paper is intended only to give a high level overview
of an approach to synthesize fault detection mechanisms.
This approach is a novel idea in the area of code generation
for safety-critical systems. A lot of work is therefore related
to it in some way and only the three most important ideas
are mentioned here. The reader is kindly referred to other
publications of the author for a more comprehensive and
detailed list of related work.

FTOS [2] is a tool for the model-driven development of
fault-tolerant real-time systems. It provides domain-specific
languages for describing different system aspects and a code
generation workflow for non-functional system aspects. The
main difference to the approach of this paper is that FTOS
focuses on fault tolerance and therefore fault detection is
handled on a more abstract level, making possible fault
reactions more coarse-grained.

EAST-ADL [3] is a domain-specific, tool-supported mod-
eling language for automotive embedded systems. The con-
necting factor to this paper’s approach is that the tool
environment of EAST-ADL uses application models for
both, system design and safety analysis. The main difference
however is that the safety analysis tools for EAST-ADL aim
solely at generating analyses and not at using the gained
information for altering the system design and automatic
source code generation.

The main idea of Software Encoded Processing [10] is to
encode the source code of a system automatically at compile
time with some arithmetic encodings, to reason about erro-
neous system states at runtime. Especially hardware faults
are virtualized in this way and can be detected by software
functions. Similar to the approach of this paper, the goal is
to handle hardware faults by software functions. However,
Software Encoded Processing suffers from a severe tradeoff:
the set of detectable faults depends on the selected arithmetic
encoding. Unfortunatelly, encodings with a high diagnostic
coverage are computationaly very complex.

V. CONCLUSION AND FUTURE WORK

This paper gave a brief overview of an approach for the
synthesis of fault detection mechanisms, by splitting up the
research question into three contributions: the generation
and execution of fault detection mechanisms, the root cause
analysis of occurred failures and the automatic generation of
documentation. Hence, the approach aims at the automation
of a process that has to be performed manually according
to the state-of-the-art. Moreover, it creates added value by
exploiting the potential of MDSD.

In the future, especially the automatic generation of docu-
mentation will be deepened by analyzing in detail its benefits
and limitations. Probabilistic techniques will be integrated
into the generation of fault detection mechanisms to lower
the overhead, which is introduced into a system by this
approach.

Moreover, a demonstrator from the automation domain
will be prepared to evaluate the feasibility of the whole
approach. The goal will be to ensure the functional safety
of the demonstrator by generating appropriate fault detection
functions.

ACKNOWLEDGMENT

This work was funded by the German Federal Ministry
of Education and Research (BMBF), grant “SPES2020,
01IS08045T”.

REFERENCES

[1] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and
Carl Landwehr. Basic concepts and taxonomy of dependable
and secure computing. IEEE Transactions on Dependable
and Secure Computing, 2004.

[2] C. Buckl. Model-Based Development of Fault-Tolerant Real-
Time Systems. PhD thesis, TU München, 2008.

[3] DeJiu Chen, Rolf Johansson, Henrik Lönn, Yiannis Pa-
padopoulos, Anders Sandberg, Fredrik Törner, and Martin
Törngren. Modelling support for design of safety-critical
automotive embedded systems. SAFECOMP, 2008.

[4] Philippa Conmy and Richard F. Paige. Challenges when using
model driven architecture in the development of safety critical
software. Proceedings of the Fourth International Workshop
on Model-Based Methodologies for Pervasive and Embedded
Software, 2007.

[5] Kypros Constantinides, Onur Mutlu, Todd Austin, and Valeria
Bertacco. A flexible software based framework for online
detection of hardware defects. IEEE Transactions on Com-
puters, 2009.

[6] Debra S. Herrmann. Software Safety and Reliability. IEEE
Computer Society, 1999.

[7] International Electrotechnical Commission. IEC 61508, func-
tional safety of electrical/electronic/programmable electronic
safety-related systems, April 2010.

[8] Thomas Stahl, Markus Völter, and Krzysztof Czarnecki.
Model-Driven Software Development: Technology, Engineer-
ing, Management. John Wiley & Sons, 2006.

[9] Max Walter, Markus Siegle, and Arndt Bode. Opensesame:
the simple but extensive, structured availability modeling
environment. Reliability Engineering and System Safety,
2008.

[10] Ute Wappler and Christof Fetzer. Hardware failure virtual-
ization via software encoded processing. Proceedings of the
5th IEEE International Conference on Industrial Informatics,
2007.


