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Abstract—The introduction of new propulsion technologies
such as electric or hybrid drives imposes fundamental changes
to the overall structure of the vehicle’s electric and electronic
system architecture. It also increases the need for cross-domain
functionality, such as centralized energy management or the
orchestration of mechanical braking and electric energy recu-
peration during deceleration. This leads to new challenges with
respect to architecture development as interconnections between
features are introduced that are not yet fully understood. The
vehicle’s system architecture evolves from towards a distributed
multi-functional control system. Component oriented, model
based approaches with multiple viewpoints have already proven
being suitable in other domains to manage the dependencies
between functionality by decomposing a system into a network
of functional entities encapsulated in components.

In this paper, we present a domain-specific component model
to describe functional interdependencies as well as non-functional
requirements needed to enable safe integration of software com-
ponents in a centralized automotive ICT architecture. The model
enables the composition of high-level functions and the definition
of compatibility constraints. The approach is then applied to
unveil feature interaction in a component architecture. This
forms the foundation of a sound development and integration
process for heavily interconnected functions. It also enables on-
line product validation mechanisms to ensure functional integrity
and safety as well as meeting of deployment constraints and
timing requirements.

I. INTRODUCTION

Over the past 30 years, information and communication
technology (ICT) has made possible significant innovations in
automotive construction from the anti-lock braking system in
1978 to electronic stability control in 1995 and emergency
brake assist in 2010. Accordingly, ICT, and especially its
software, has expanded significantly from about 100 lines of
code (LOC) in the 1970s to more than 100 million LOC
[1]. The introduction of new propulsion technologies such as
electric or hybrid drives imposes fundamental changes, not
only to the architecture of the powertrain, but also to the
overall structure of the vehicle’s electric and electronic system
architecture. This also changes the functional characteristics
of the vehicle. Limitations in battery capacity lead to the
introduction of cross-domain functionality such as centralized
energy management, or brake-blending which coordinates
energy recuperation and friction braking.

Additionally, the mechanical complexity of the powertrain
is massively reduced. The substitution of combustion engines
and their related aggregates with new electric engine concepts
is expected to have a positive impact on vehicle longevity.
The number of components prone to mechanical and thermal

wear is reduced and therefore, one of the main reasons for
terminal vehicle failure is minimized. This introduces the need
to apply upgrades to the vehicle software or even install new
functionality while the vehicle is already in the field. To
maintain an up to date driving experience and to adapt the
vehicle to the driver’s changing requirements, the manufacturer
might want to provide software updates or feature upgrades as
additional services.

The increase in size and complexity is also driven by the
increasing number of software-based features which emerge
from single stand-alone applications to a tightly interacting
distributed system. The high complexity and the distribution
of features over many different electronic control units (ECUs)
and bus systems leads to high cost for developing and testing
functionality. This complexity is additionally increased by
the introduction of technology like X-by-wire driven by the
demands to realize reliable highly and fully automated driving
functionality.

One approach to tackle the complexity of the resulting
system architecture is to partition applications and their mu-
tual dependencies into different functional domains as imple-
mented by AUTOSAR [2]. However, this partitioning is only
sufficient as long as these domains only rarely interact and
as long as the number of functions inside a domain stays
manageable. Having in mind applications like driver assistance
systems up to autonomous driving or generic brake blending
for all engine/brake combinations in the product line, access to
many functions located in different domains is necessary and
so the approach to partition these functions into domains is not
sufficient anymore [3]. In contrast, by partitioning the system
into different (network) segments, additional cross domain
gateways are required which again leads to an increase in
complexity by the introduction of obscured dependencies and
additional devices. This would also add new single points of
failure.

A second approach to reduce the complexity of systems de-
velopment is to introduce a suitable model-based development
methodology as already done in many domains. Established
modeling and development paradigms, e.g. SPES XT [4] are
based on the concept of multiple viewpoints on a system. The
most prominent viewpoints are the logical and the technical
architecture viewpoint.

A logical architecture describes the behavioral aspects of a
system, its structure and the communication channels between
logical components that encapsulate behavior. A technical ar-
chitecture focuses on the technical entities, such as computing
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Fig. 1. Distinction between technical and logical view on the architecture

nodes or communication interconnects over a network. This
distinction is made because the decomposition of the system
into parts is driven by different objectives depending on the
viewpoint. A decomposition based on the logical view might
not be suitable from a technical perspective and vice versa.

A. State of the Art

While there is already a distinction of logical and tech-
nical aspects established in current automotive development
methodologies, they usually only cover the properties of
an isolated component, not taking into account the global
structure of the architecture.

Across a vehicle’s overall E/E-architecture, the logical ar-
chitecture representing the partitioning of functionality into
software modules as well as the interconnection of these soft-
ware modules is highly influenced by the technical architecture
(physical network layout and available ECUs). This is driven
by the well established binding of software, hardware/ECUs
and the relationship of vehicle manufacturer and the variety
of different suppliers. Based on the tight coupling between
ECUs and functionality, the well established separation of
functionality by the AUTOSAR domains is perfectly suitable
for traditional systems as long as there are only few exceptions
to that paradigm. Due to the addition of more advanced soft-
ware functions, the cross domain communication evolves from
an exception to becoming the rule. This evolution successively
neutralizes the advantages of domain separation and turns them
into a major drawback for new developments in the sense of
complexity and maintainability.

B. Component and Feature driven Development

Today, developers focus on the technical infrastructure and
information flow between aggregates while developing and
integrating the vehicle system. This inhibits the application
of state of the art methods to describe and engineer a proper
logical architecture. Such methods are crucial to efficiently
develop future vehicles with the described characteristics:
Distributed multi-functional modular control systems.

In order to allow efficient development and a short time to
market, a transition from the infrastructure driven development
paradigm towards a feature and component driven develop-
ment methodology needs to be performed. This includes a

transition from a federated system architecture towards an
integrated approach. We leverage the advantages of compo-
nent based engineering according to [5] to develop a logical
component architecture view. It is extended by a functional
view carrying acceptance criteria for quality attributes of
the applications realized by the components and showing
dependencies between features.

C. Contributions

The goal of our activities is to decouple the technical and
logical architecture of the system as depicted in Figure 1. They
are currently aligned and limit modularity as well as flexibility.
At the platform level, a first step is to provide a generic runtime
environment like the one proposed in the RACE-Project [6]
as a foundation for an integrated system architecture. It also
includes an ARINC 653 [7] inspired automotive execution
environment. This software stack provides a safety and se-
curity aware, homogeneous execution environment that can
safely and securely be extended after an initial deployment.
The fundamental structural differences in this newly developed
technical platform enable the introduction of a distinct logical
software architecture paradigm and a suitable development
methodology.

Hence, the second contribution, which is the main contribu-
tion of this paper, is a component oriented model-based devel-
opment methodology and process that supports a descriptive
approach based on modeling functional entities (components),
their dependencies as well as their functional and extra-
functional properties. Integration is performed by describing
the required properties of vehicle features and mapping those
requirements onto the properties of the component network.
This enables continuous evaluation in early design stages
which avoids problems like unknown feature interaction [8].
Based on that, we can perform functional integrity verification
as well as the validation of required properties like Safety
Integrity Levels (SIL) [9] and timing constraints.

Having both of these contributions as a foundation, the
switch from a technically dominated system view towards an
engineering approach based on multiple views similar to [4]
can be performed and the advantages of component oriented
architecture engineering can be leveraged.



The remainder of this paper is structured as follows: In Sec-
tion II, the engineering methodology and its building blocks
are elaborated. In Section III, we apply the methodology to
discover feature interactions in the system under analysis.
Related work is discussed in Section IV and the paper is
concluded in Section V with a summary of the contributions
and an outlook for future work.

II. ARCHITECTURE ENGINEERING

The transition from a federated static architecture towards
a centralized dynamically extensible architecture implies a
paradigm shift in the automotive ICT architecture development
process. The first step towards an adapted process is a suitable
modeling and integration methodology for vehicle components
and features. The main architectural features of such ICT
architecture as proposed in the introduction are:

Virtualization and segregation of resources: allowing the
deployment of multiple software components of mixed criti-
cality on a single computing unit. It is enabled by the generic
RTE that provides time and space partitioning with guaranteed
computing resource and time budget.

Deterministic execution: based on the virtualization fea-
tures. This is accomplished by time-triggered execution using
a globally synchronous clock. Unlike traditional asynchronous
event-triggered systems, causality and deterministic behavior
are independent from the current deployment and schedule.

Transparent communication: decouples information flow
from the actual deployment of a software component. Regard-
less whether two components are deployed on the same or on
different computing units, software interfaces and communi-
cation behavior are identical.

Distinct technical architecture: describes solely technical
and implementation related properties of sensors, actuators
and generic computing units and how these resources are
physically interconnected.

These features are provided by the platform developed in
the RACE-Project [6]. To leverage the features of the new
platform approach, we need to introduce fundamental changes
to the development process, stepping away from its focus on
infrastructure and the isolated development of functions. It has
to take into account the abstraction of software components
from their former dedicated ECUs and has to ensure that there
is no implicit hidden data flow between those components that
might be dependent on a specific deployment. In upcoming
section II-A, the developed meta models for features and
components are introduced. In addition, we explain how a
connection between the two different views on a system can
be established and how the development process can benefit
from that.

A. Models for Features and Components

Initially, a method to describe the objectives of a vehicle
system is needed, modeling its (customer visible) functional
features, which come with certain quality attributes such as

SIL requirements or reaction times. In addition, the logical
software components have to be modeled. This is necessary
as the components contain the behavior and interfaces that
realize the described features. The component model includes
a description of component interdependencies modeled as
data-centric publish subscribe (DCPS) ports, adapted from
DDS (Data Distribution Service) [10]. Feature as well as
component models are parts of the overall system model, the
system’s manifest. This manifest provides information about
the components, the communication requirements and ports as
well as details about the components themselves by providing,
e.g. worst-case execution times. This description forms the
foundation for a consistent, system-wide representation of all
models and enables the discovery of connections between
components and features. While the feature model holds
requirements and constraints, the component model holds
characteristics of actual architecture elements.
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Fig. 2. Feature Meta Model

1) Feature Meta Model: System features contain criteria
the component architecture has to comply with in order to
fully realize a feature. A feature in our sense is not an actual
implementation, but a container for quality requirements that
the network of logical components that realize the feature have
to fulfill. As described in Figure 2, generic quality constraints
are defined regarding for instance overall reaction time or SIL.
A reaction time constraint denotes the allowed time delay for
the system to react on a defined output port upon the reception
of an excitation of a specified input port. With respect to SIL,
the ISO 26262 [9] standard defines a set of safety integrity
levels for vehicle features. As certification is performed at the
feature level, a minimum SIL to be realized by the component
architecture is defined as an attribute of the feature. The
standard also includes a set of rules about how safety integrity
levels of a single component in combination with its adjacent
components affect the overall feature SIL.

Features are realized by components, but components are
not exclusively dedicated to a specific feature. Therefore, the
association between feature and component in the model is
non-exclusive. This enables modular reuse of components



and the composition of features from components of differ-
ent sources. In order to be successfully mapped onto the
component architecture, a feature has to explicitly reference
at least one component. The model can be enriched by
adding additional, implicit dependencies that emerge through
data flow dependencies in the component architecture. Those
additional dependencies are not static, but depend on the set
of features to be included in the vehicle product. Because of
that, the dependency discovery has to be performed for every
feature configuration.

2) Component Meta Model: The main purpose of the
component model is to describe dependencies between compo-
nents. Those dependencies need to be defined explicitly and in
an unambiguous manner. The modeled data dependencies are
not referring to a specific instantiation of data source or sink.
Instead, a rich type-system is defined in a domain-specific data
dictionary to allow for data-centric definition of data produced
(published) or consumed (subscribed) by a component. The
data dictionary contains definitions of semantic data types. A
semantic data type, called topic, contains a technical data type,
e.g. in form of a data structure definition, and a set of attributes
that add a specific meaning to the type. Attributes can for
instance define a physical unit, the position of the sensor that
uses the data type or the measurement accuracy. To support
a distributed yet centrally managed development process, this
data dictionary is managed by a central administrator. This
ensures compatibility at the technical and semantical level.
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Fig. 3. Component Meta Model

As Figure 3 shows, the model covers not only external
dependencies described using data publications and subscrip-
tions, but also internal transfer behavior between component
inputs and outputs. For each outgoing port, there exists a
causality relation that defines which input ports have an effect
on this specific output. This was introduced for two reasons:
First, internal processing delay is different for each individual
relation between input and output. Second, without this infor-
mation we have to assume full internal interconnection leading
to a number of n×m for n inputs and m outputs. Causality
relations can significantly reduce the complexity of the sub-
sequent discovery and analysis. We deliberately designed the

model without support for further decomposition into logical
subcomponents as we focus on deployable software units and
integration-related properties in this view.

Apart from data flow related information, properties re-
garding the implementation of the component include local
timing behavior such as execution frequency and safety related
properties such as the component-specific SIL.

Together with the network of components that is generated
by “wiring” compatible input and output ports, the properties
of the resulting logical component architecture can be mapped
onto the modeled features. This step is explained in the
upcoming section.

B. Feature Dependency Discovery

Assuming that all data dependencies can be non-
ambiguously satisfied, the result is a network of connected
components or a component architecture. At this point, solely
relying on that architecture, we cannot determine if the system
will act as desired if deployed onto the technical architecture.
The information in the feature models define quality and
safety requirements the architecture has to fulfill, so if these
features can be mapped onto the component architecture, the
conformance to these criteria can be verified.

The first step is to evaluate the relationship between the
component architecture elements and the features. Apart from
the components that are explicitly required by the feature,
there are usually several components in the architecture
the feature also (implicitly) relies on. Those components
act as direct or indirect data sources or sinks for explicitly
required components. As the component architecture is a
graph network, we can employ algorithms such as depth first
search (DFS) [11]:

Vertices: do not equal components, but rather their ports.
This enables us to also take relations within the component
into account.

Edges: are data flow connections between ports. These
can either be connections between components based on
publish/subscribe or connections within components in the
form of causality relations modeled as transfer behavior.

Causality 
Relation 

Causality 
Relation 

Logical Route 

Logical Route 

Fig. 4. Logical routes between and causality relations within components

The combination of logical routes between components and
causality relations within a component, as depicted in Figure 4,
enables the discovery of only the relevant components that
have actual data dependencies. Simply relying on channels
between components would lead to many false positives as
not all outputs usually rely on all input ports.



Figure 5 shows an arbitrary component architecture where
a feature explicitly references component C1. In order to
discover all components that might be relevant for the feature,
we have to traverse the connected components and follow their
inner causality relations. This has to be performed in both
directions: Backwards from the input ports of C1 toward the
system boundary and forwards toward the systems outputs.
As displayed in the figure, discovered data dependencies are
shown by highlighted arrows, the corresponding components
that are now known to be relevant for the realization of the
feature are highlighted with thick borders. The algorithm is
also capable of discovering cycles, primary sinks and sources.
A primary sink is defined as a system output, modeled by
a specific transfer behavior containing no component output
port. Similarly, a primary source originates from a compo-
nent output port that has a corresponding transfer behavior
modeled. Deployment related issues such as mapping of log-
ical primary sources/sinks and their corresponding technical
entities in the form of sensors and actuators are part of the
engineering methodology, but are beyond the scope of this
paper.

C1 

Fig. 5. Feature Mapping

C. Architecture Validation

Having discovered all implicit component dependencies of
the feature, we are able to perform a variety of acceptance
tests relying on the requirements modeled at the feature level
and the properties modeled on the component level. Basic SIL
validation forces all involved components to reach at least the
minimum SIL of the feature. However, extended SIL analysis
can take into account additional properties such as component
redundancy or voters to allow the integration of components
with lower SIL.

Timing constraints are crucial for the reactive behavior of
the system, especially for control applications. This constraint
is specifically defined for data flows of the feature that control
the reactive process, usually between sensors and actuators.
Set values and parameters do not have to meet the same strict
constraints as the control loop. Timing constraints and phase
synchrony are analyzed based on individual data flows, taking
into account the transfer delays between components and
the processing delay within a component. The deterministic
time-triggered model of execution allows timing calculations

based on the global clock without taking into account a
specific schedule or deployment. The transparent communica-
tion feature of the platform assures deployment independent
communication behavior, therefore we can compute the over-
all delay independent from a concrete technical architecture
deployment.

Another application of this approach as a method for
architecture validation is presented in section III. Here, the
approach is used to discover feature interaction from compo-
nents shared between features.

III. DISCOVERY OF FEATURE INTERACTION

The discovery of implicit component dependencies is per-
formed for each feature that is modeled. How this can be used
to validate the fulfillment of safety or timing requirements
was introduced in the preceding section. This validation is
performed by evaluating each feature isolated from other
features. A huge issue in automotive architectures though,
as stated in [8] is the discovery of unintentional interactions
between features.

Not every interference is problematic. Two features sharing
a primary source, usually a sensor, can be a good example
for successful reuse of components that reduces cost and
development time allowing a more efficient architecture and
deployment. Problematic interferences arise if a feature is
behaving differently in presence of another feature [12]. To
ensure the safety and integrity of the vehicle, each revealed
feature interaction has to be examined manually, especially
discovered interferences such as in the example.

Figure 6 shows components C1 and C2 which are ex-
plicitly referenced by two different features. The remaining
components belong to other features that might be developed
by a different supplier, so elaborate specifications beyond
the component models might not be available. Dependency
discovery is performed for both features. Apart from the addi-
tional components that are now implicit parts of the respective
feature, some components are used by both features. From the
analysis of the transfer behavior within the components, we
can also derive that these components are not only relevant
for the integration of both features, but that there is actual
interference between the features. A system sink, highlighted
in the rightmost circle, is a termination point of the data flow
of both features.

Mapping and assessing the revealed feature interactions on
the component level allows the developer also to gain an
overall view on the quality of the component architecture with
respect to modularity and the impact of changes, e.g. the effect
of adding or removing a feature from the vehicle product.
For future Plug & Play capabilities, it is crucial to integrate
feature interaction discovery and mitigation into the automatic
configuration process.

IV. RELATED WORK

Component models are widely used in many fields to
describe dependencies between architecture elements and to
allow for flexible adding and installing new components into
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an existing architecture. In many common environments, such
as a Linux-System or an IDE, there are no (safety-)critical
non-functional requirements to be considered. As soon as, e.g.
control applications are described, there are far more aspects
to consider such as timing, safety and the complex deployment
constraints introduced by a distributed system [5].

Bures [13] proposes a first approach for the automotive
domain. UML-MARTE [14] provides an extensive description
language for embedded systems modeling. It also provides
a generic component model and methods to describe high-
level functions (high-level application modeling). With respect
to MARTE as a generic method, our approach is a domain-
specific solution tailored to the automotive domain.

RUNES is a component based middleware ranging from
small resource constraint sensor nodes up to high performance
desktop PCs. It provides a run-time reconfigurable modular-
ized system consisting of a middleware kernel and services.
The middleware consists of two major parts. The foundation
is a language-independent, component-based programming
model that is sufficiently minimal to run on any of the devices
typically found in networked embedded environments. On top
of this foundation layer, the middleware functionality is im-
plemented by different, self-contained modules providing the
functionality. By composing these modules, the middleware
can be individually assembled for each deployment [15], [16].
In comparison to our approach, RUNES is missing the notion
of features implemented by an assembly of modules containing
the application logic. As a consequence, feature interaction and
feature driven system analysis is not possible.

The well established AUTOSAR standard [2] describes a
platform which allows implementing future vehicle applica-
tions and minimizes the current barriers between functional
domains. It will be possible to map functions and functional
networks to different control nodes in the system, almost
independently from the associated hardware. In contrast to
AUTOSAR where no tool support for component / feature
mapping and component architecture analysis is provided, our
approach supports the user during development, validation and
system assembly.

V. CONCLUSION AND OUTLOOK

Motivated by new challenges in automotive ICT architecture
development, we introduced a distinction between technical
and logical architecture in the automotive domain and
presented a domain-specific component model and defined
compatibility constraints at the feature level as a foundation
of a sound development and integration process for heavily
interconnected functions. By mapping logical software
components and vehicle features, we enable the verification
of feature requirements against the properties of their
realizing components. This enables continuous evaluation
in early design stages which avoids problems like unknown
feature interaction and allows for functional integrity
verification as well as the validation of required properties
such as Safety Integrity Levels.

The development of well designed logical architectures
using discovery, evaluation and mitigation of feature inter-
actions is a main subject of our future work. An important
topic in this scope is also the evaluation and classification of
interactions. Similarly to the logical component architecture, a
feature dependency graph can be a useful tool to cover feature
dependencies and feature interactions. A long term goal is the
formalization of a functional architecture and the integration of
logical, functional and technical view into a consistent method-
ology. Implementing these concepts in a tooling environment
can help system architects as well as engineers to cope with
the newly introduced architecture complexity. Apart from
this analytical approach, we are investigating a constructive
approach to optimize architecture engineering with respect
to modularity and verifiability of feature requirements by
introducing a reference software architecture for centralized
automotive ICT systems.
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