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Abstract— Surgical tool tracking is an important key func-
tionality for many high-level tasks in both robot-assisted and
conventional minimally invasive surgery. Though the fields
of application are similar in both surgery techniques (i.e.
visually servoed instruments, workflow analysis or augmented
reality), the kind of available information about the position and
orientation of the surgical tool differ. In conventional laparo-
scopic surgery additional information to the images provides
by the endoscopic camera can only be obtained by an external
tracking system. In contrast, robotic systems provide angular
informations from encoder readings that allow for a sufficient
pose estimation and initialization of an image-based tracking
algorithm. Our approach utilizes both encoder readings and
visual information, in order to stabilize tracking in image
space. The image-based tracking is supervised by means of the
kinematic information and reinitialized in case of conflicting
results. As tracking modality we utilize the Contracting Curve
Density (CCD) algorithm that looks for maximal separation of
local color statistics along the contour of a model.

I. INTRODUCTION

In the last years, robot-assisted minimally invasive surgery
(MIS) has attracted many researches and significant efforts
have been made in the development of surgery systems
and instruments. Because MIS is performed through small
incisions or ports in the body, patients considerably benefit
from reduced tissue trauma, recovery time and pain, com-
pared to conventional “open” surgery. Reduced dexterity and
perception, known from long instruments with fewer degrees
of freedom (DoF) and missing force or tactile feedback in
non-robot assisted procedures have been replaced by tele-
operated slave manipulators that are commanded from a
master console. These systems seek to restore the feel of
a regular surgery by providing the surgeon an intuitive in-
terface, including 3D imaging and advanced tools, providing
fully six degrees of freedom manipulation. Although robotic
surgery systems such as DaVinciTM[1] are in wide use for a
variety of abdominal, pelvic, and thoracic procedure, delicate
maneuvers are still cumbersome and time-consuming, even
the systems provide additional support with features such as
tremor filtering to alleviate the handling.
Recently, automation of error-prone and recurrent (sub-)
tasks that yield to a quick fatigue of surgeons and account
noticeable for a higher overall surgery time have drawn the
attention of researchers. Given that knot-tying occurs fre-
quently during surgery, automating this challenging subtask
is tackled by several groups (e.g. [2], [3], [4]). Furthermore,
techniques for assisting the surgeon with visually guided

instruments ([5], [6], [7], [8]) and autonomously navigated
endoscopic cameras have been developed (e.g. [9], [10]).
For the reason of documenting and benchmarking surgical
interventions, and to anticipate potential mistakes in the
surgical workflow, modeling and analyzing these procedures
has become an active field of research [11], [12].
Despite the manifold of challenges in minimally invasive
surgery and the above mentioned achievements in partly
autonomous navigation and manipulation, the visual iden-
tification, segmentation, and tracking of operated surgical
tools during surgery is a crucial requirement for developing
techniques that assist the surgeon. As most of the methods
require pose information of the surgical instrument, a robust
and precise automatic detection is the first step towards
higher level functionality. Many of the proposed instrument
tracking approaches rely on image processing techniques that
use either pure color information or additional geometrical
knowledge. Wei et al. [9] analyzed the typical color distri-
bution in laparoscopic images to identify an adequate color
that can be used for optical markers that are attached at the
distal end of the instrument. The marker is segmented in
HSV color space and background noise is filter at a rate
of 17Hz. Uckert et al. [13] includes additional geometrical
shape information about the shaft to fit a bounding box to
the color-classified pixels. Two different shapes are used, a
trapezoidal for near-field cases and a rectangular for far-
field cases. In [14] it was taken advantage of the metallic
appearance of the shaft to track gray regions by joint hue
saturation color features. A seeded region growing method
was implemented, operating at 13fps. Therefore, the fulcrum
is estimated with a series of images in order to project
an approximated instrument direction and shape into the
image. Voros et al. [15] also reduces the search space by
considering the insertion point of the instrument. At the
beginning of the procedure, the fulcrum has to be visible
in the image and is marked with a “vocal mouse”. They
state that any kind of surgical instrument can be detected
since no color information is used, but only the gradients
of the instrument edges, constrained by the incision point.
To enhance the computation speed, the image resolution is
reduced to 200×100 pixels. The precision of the predicted tip
position ranges around 11 pixels. The Center for Computer
Integrated Surgical Systems and Technology (CISST, Johns
Hopkins University, Baltimore) deals with the articulated
DaVinciTMinstruments. Burschka et al. [16] used template
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images of the instrument to detect the position of the forceps
in stereo images, enriched with additional information and
orientation information derived from the trajectory provided
by the robot. The method works in real-time, but they report
that the kinematic data suffers from significant rotational
and translational errors. More recently, the CISST reported
a general purpose articulated object tracker [17] and demon-
strated its application to surgical scenarios. The geometry and
kinematics of the objects have to be known a priori. The
appearance of different body parts is modeled by a class-
conditional probability and compared with the image after
rendering the target object geometry. So far, images are hand
segmented to train the appearance model and computation
time is around 5sec per frame at a resolution of 640× 480.

II. SYSTEM SETUP

Hardware and software of the system itself have already
been introduced to the research community [3]. Therefore,
we constrict the following description to an extent necessary
for understanding the subsequent sections.

A. Robotic System

Fig. 1. Hardware Setup. Ceiling mounted robots with surgical instruments

As illustrated in Figure 1, the slave manipulator of the
system consists of four ceiling-mounted robots which are at-
tached to an aluminum gantry. The robots have six degrees of
freedom and are equipped with either a 3D endoscopic stereo
camera or with minimally invasive surgical instruments,
which are originally deployed by the DaVinciTMsystem. The
surgical instruments have 3DoF. A micro-gripper at the distal
end of the shaft can be rotated and adaption to pitch and
jaw angles is possible. Fast and easy interchangeability is
ensured by a magnetic clutch which releases in case of
forces at the instruments exceeding a certain limit (e.g.
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Fig. 2. Software Architecture. The software of the system is distributed
to 3 PC’s that communicate via network connections

during a collision). To measure forces during operation
the instruments are augmented with strain gauge sensors.
The master-side manipulator is mainly composed of a 3D
display, some foot switches for user interaction (like starting
and stopping the system or executing the piercing process)
and of the main in-/output devices, two PHANToMTMhaptic
displays. On one hand, the devices are used for 6DoF control
of the slave manipulator and on the other hand provide
a 3DoF force feedback derived from the measurements at
the instruments. The control software of the system realizes
trocar kinematics, whereby all instruments will move about
a fixed fulcrum after insertion into the body. For computer
vision tasks a NVIDIATMQuadro FX 580 graphics card is
used for acceleration.

B. Distributed Software Environment

The software architecture of our system is distributed
over 3 standard PC’s. It is partitioned into a simulation and
control part, a vision part and one computer is connected to
a CAN network (cp. Fig. 2). The commands for the servos-
motors that control the joints of the instrument as well as the
data that is provided by the amplifiers of the strain gauge
sensors are communicated between the simulation PC and
the PC that is connected to the CAN network. The GUI of
the simulation environment comprises an interface to a 3D
model of the scene, which can be manipulated in real time.
Parameters of each model can be adjusted and joint angles
of the robots can be altered this way. New trajectories can be
generated by means of a key framing module, incorporating
a collision detection. On one hand, joint data can directly
be sent to the robot hardware, on the other hand the poses
of the instruments and robots are synchronized with the
“Vision PC” for further processing. For this reason, enough
computing power can be provided for image analysis, i.e.
instrument tracking, visual servoing or augmented reality.
Most of the image processing tasks run in individual threads
that have access to an image database, which holds up-to-
date images provided by the stereoscopic endoscope.
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Fig. 3. Edge detection. The images show edge detection results of the
Sobel (left) and the Canny (right) filter. In both cases the tool shaft can
hardly be distinguished from background noise.

III. TRACKING SUPPORTED BY KINEMATIC PREDICTION

The tracking of surgical tools is particular challenging
due to the changing appearance of the background (i.e.
background movement through organs, non-uniform and
time-varying lightning conditions, smoke caused by electro-
dissection and specularities), but also due to the partial
occlusion of the instrument and body fluids that may change
the appearance of the instrument itself. In many cases
of surgical tool tracking the tracking is constricted to a
sequential “frame-by-frame detection” (also referred to as
detection), rather than including a motion model. Accord-
ingly, no optimization of the configuration space or pose
prediction is performed over time. In a Bayesian prediction-
correction context, the state of the object is updated by
integrating posterior statistics and therewith knowledge about
time-depending characteristics of the movement. This “in-
telligence” within our tracking pipeline is provided by a
Kalman Filter that is running on the output of a contour
tracker, known as contracting curve density algorithm (CCD),
based on separation of local color statistics [18], [19]. The
separation takes place between the object and the background
regions, across the projected shape contour of a CAD model
under a predicted pose hypothethis. The processing flow of
the tracker is shown in Fig. 5.
Bayesian tracking involves a detection step to initialize
the system in the very first frame or after encountering a
track loss. Instead of relying upon visual data, we take the
object pose, given by the kinematic measurement from robot
sensor readings. The precision of this coarse approximation
is limited due to the absolute accuracy of our system (and
also of most complex robotic systems) by 1) the mounting
of the robots on an aluminum gantry which is afflicted
by several intrinsic aberrations, 2) instruments that exhibit
imprecise calibration and unpredictable play, 3) the magnetic
clutch that couples the instruments to the robot flange, and
4) limitations of the robotic hardware itself. To attain the
best possible result, a precise overall system calibration has
been performed [20]. The idea of integrating joint angle
measurements for tracking purpose was i.e. also used by Ruf
et al. [21] to track a polyhedral tool and simultaneously adapt
inaccuracies in the static calibration of the robot. To restrict

the initial search from the first frame to a specific region is
computational more efficient than a complete image analysis
and can also be motivated by biological considerations:
Biologically inspired algorithms seek to direct the attention
rapidly towards a ROI, using an attention-based type of filter,
and only process a smaller amount of the visual input data
[22]. Bottom-up approaches compute visual salient features,
such as regions of high contrast, local scene complexity or
high scene dynamics. The second type of visual attention
is often referred to as top-down attention, as the attention
is controlled from higher areas of cognition. Kinematic
measurements, which are fed to the visual information pro-
cessing by another software component (thus, a higher area
of cognition), can guide the attention directly to a region
of interest. This idea is directly applicable to the proposed
method, independent of the utilized type of feature matching.

Fig. 4. The CCD algorithm tries to maximize the separation of color
statistics between two image regions. The algorithm first samples pixels
along the normals for collecting local color statistics.

A. Model Building

Our system is equipped with the EndoWristTMneedle
driver tools that are originally deployed with the
DaVinciTMsystem. The instruments are composed of a long
grayish shaft, a wrist joint and two brackets. It is represented
as a polygonal mesh model with 6DoF (3 rotations, 3 trans-
lations) in word coordinates by a 4×4 transformation matrix.
As our main interest is visual servoing, we need a tracking
in the image domain. Therefore, a simple rectangular model
can be used as target to represent the projection of the
shaft cylinder. The pose parameters of the 3D instrument
are reduced to a planar roto-translational pose s with scale
in image space.

s = (tx, ty, h, θx) (1)

where the rotation θx has to be determined newly for the 2D
projection. As the 3D pose is given, this can be performed
by calculating the intersection angle of the edge contour of
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Fig. 5. Tracking Pipeline. The camera pose can be obtained after calibrating the extrinsic parameters and the overall system. The kinematic measurement
of the instrument in 6 degrees of freedom is transfered to a 2D model with 4 DoF (tx, ty , h, θx). It is used to (re-)initialize the Contracting Curve Density
algorithm.

the shaft projection and the coordinate system of the image
domain. The position information can directly be projected
to image space.

B. Tracking with CCD

As already mentioned above, tracking in the context of
MIS procedures is exacerbate by changing environment
conditions. Simple color segmentation approaches often fail
due to varying lightening conditions of different light sources
or need a sophisticated fine tuning of parameters. Algorithms
that are based upon edge detection suffer from the large
amount of feature edges from the background. Figure 3
shows a typically intra-operative scene with an artificial heart
and tissue in the background. Neither the Sobel- nor the
Canny operator can distinguish the instrument shaft reliable
from the background.
The amenity of the CCD modality is that the appearance of
the model is adjusted over time, since local color statistics are
computed in every tracking cycle and maximized according
to the shape of the model. Therefore, the method can be
applied to marker-based as well as markerless tracking. After
setting the initial pose, the Kalman filter generates a prior
state hypothesis s−t by applying a Brownian motion model
to the previous state (st−1).

s−t = st−1 + wt (2)

with w being a white Gaussian noise sequence.
The CCD modality requires a sampling of good features
for tracking from the object model under the given pose
s−t and camera view. As a first step, the visible internal
and external edges from the polygonal mesh model have
to be identified under the current pose hypothesis. In our
case, we use the silhouette of a 2D rectangle to represent
the shaft. Alongside of this contour a set K of uniformly
distributed sampling points {h1, . . . , h2} is taken to collect
color statistics around each sample position on each side
of the contour. The basic idea of CCD is to maximize the
separation of local color statistics between the two sides
of the object boundaries (object vs. background) [18]. The
grayish shaft of the instrument supports this idea by strongly
varying from red tissue and organs. Contemporaneously,

the algorithm can account for small change of the shaft
appearance over time (e.g. from body liquids), since the
statistics are updated in every iteration.
We first sample points along the respective normals, sepa-
rately collect the statistics, and afterwards blur each statistic
with the neighboring ones (cp. Fig. 4). From each contour
position hi, foreground and background color pixels are
collected along the normals ni up to a distance L (that is
manually defined and fix), and local statistics up to the 2nd

order are estimated

v
0,B/F
i =

D∑
d=1

wid (3)

v
1,B/F
i =

D∑
d=1

widI(hi ± Ldni)

v
2,B/F
i =

D∑
d=1

widI(hi ± Ldni)I(hi ± Ldni)T

(4)

with d ≡ d/D the normalized contour distance, where the ±
sign is referred to the respective side, and image values I are
3-channel RGB. The local weights wid decay exponentially
with the normalized distance, thus giving a higher confidence
to observed colors near the contour.
Single line statistics are afterwards blurred along the contour,
providing statistics distributed on local areas

ṽ
o,B/F
i =

∑
j

exp(−λ |i− j|)vo,B/F
j ; o = 0, 1, 2 (5)

and finally normalized

I
B/F

i =
ṽ
1,B/F
i

ṽ
0,B/F
i

(6)

R
B/F

i =
ṽ
2,B/F
i

ṽ
0,B/F
i

in order to provide the two-sided, local RGB means I and
(3× 3) covariance matrices R
The second step involves computing the residuals and Jaco-
bian matrices for the Gauss-Newton pose update. For this

749



purpose, observed pixel colors I(hi + Ldni) with d =
−1, . . . , 1 are classified according to the collected statistics
(7), under a fuzzy membership rule a(x) to the foreground
region

a(d) =
1

2

[
erf

(
d√
2σ

)
+ 1

]
(7)

which becomes a sharp {0; 1} assignment for σ → 0;
pixel classification is then accomplished by mixing the two
statistics accordingly

Îid = a(d)I
F

i + (1− a(d))I
B

i (8)

R̂id = a(d)R
F

i + (1− a(d))R
B

i

and color residuals are given by

Eid = I(hi + Ldni)− Îid (9)

with covariances R̂id.
Finally the (3 × n) derivatives of Eid can be computed by
differentiating (7) and (9) with respect to the pose parameters

Jid =
∂Iid
∂s

=
1

L

(
I
F

i − I
B

i

) ∂a
∂d

(
nTi

∂hi
∂s

)
(10)

which are stacked together in a global Jacobian matrix Jccd.
The state is then updated using a Gauss Newton step:

s = s+ ∆s (11)
∆s = J+ccdEccd

The optimization is done until the termination criteria is
satisfied (∆s ≈ 0).

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS

A. Experimental Results

The evaluation has been performed on a Intel Xeon
QuadCoreTM2.4Ghz system. Images were taken and pro-
cessed in real-time with full PAL resolution (768 × 576)
from the framegrabber.
As a first step, the precision of the instrument projection into
image space, taken from the kinematic data, was tested. The
data is transmitted via network and applied to the geometrical
CAD model of the instrument. The pose of the camera is
set in a similar fashion. The projected shaft does not have
to overlay the image perfectly, but a good match supports
a fast initialization of the tracking. Also, the search length
along the normals of the sampled contour points can be kept
smaller. The search length was determined experimental and
has to be set once. Figure 7 depicts the shaft overlay as well
as the first tracking steps during the alignment of the model.
We provide some experiments, showing the performance of
the tracking system for different, more or less crucial poses
of the instrument. The tests have been performed twice: with
an instrument that has an attached color marker at the distal
end, and without any additional markers. The first row of Fig.
8 shows the result of the tracking with marker. Concerning
robustness against varying lightning conditions, partial occlu-
sion and reinitialization it outclasses the markerless tracking
(Fig. 8, second row). The major problem during markerless

tracking is a drift of the rectangular model along the shaft
(Fig. 8, second row, last picture). Since statistics are eval-
uated at all contour edges, also the two edges that actually
belong to the shaft get included in the computation. At those
edges, no differentiation between object and background can
be achieved. Hence, the computation is not unique and the
model starts drifting away. Only at the foremost edge (at the
distal end) a classification is possible.
Another problem is the limitation to only one scaling factor
for the model. Allowing an independent scaling of both
sides of the rectangle could prevent a misalignment, such
as depicted in Fig. 8, first row, last image. Since the tip of
the shaft is still detected correctly, this kind of error does
barely affect the tracking.
Fig. 6 provides a comparison between the kinematic predic-
tion and the tracking result. In general, a good agreement of
the movement can be observed between measurement and
kinematic estimation.
By considering more challenging situations, we also per-
formed tests with fast changing lightning conditions and
partial occlusion of the marker have been performed (please
see the video file, corresponding to this paper).

B. Conclusion and Future Work

In this paper, we have presented an approach to track
surgical instruments during robot-assisted minimally invasive
surgery, based on kinematic pose prediction and image anal-
ysis. For the image-based tracking, the Contracting Curve
Density algorithm was used. For initializing and in case of
tracking loss, the instrument pose was estimated via the
kinematic chain and projected into image space. During
experiments, instruments with applied markers showed ro-
bust tracking performance with respect to varying lightning
conditions and partial occlusion. During markerless tracking
the detection of the shaft was possible most of the time.
However the model could not always be matched with the
instrument tip, but was drifting on the entire shaft length. In
regions with very dark background, the grayish shaft could
not be separated correctly and tracking was lost. To improve
this situation, a more complex model could be used. On one
hand, only edges at the outer side of the shaft as well as
the edge pointing towards the instrument tip should be used
to sample feature points. On the other hand, an articulated
model that introduces a second segment, representing the
silver-colored brackets, might correct the drifting issue and
fixate the model permanently at the instrument tip during
tracking.
Also a different motion model or the fusion of kinematic
prediction and feature-based measurement could further im-
prove the robustness of the tracking.
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Fig. 6. Tracking results vs. kinematic readings (angle, x- and y-position). The x-axis denotes the time step, the y-axis denotes the position in pixels and
the rotation in degrees. The left picture shows the tracking result with the marker applied to the instrument tip. The right plot illustrates the markerless
tracking. Conspicuously, the angle still matches the kinematic prediction, but x- and y-coordinates drift apart from time to time. In particular in between the
time steps 220 and 430 the position differs from the kinematic readings, while the angular part still matches. This happens, as the rectangular model moves
up and down the shaft and does not “snap” to the tip. Please note that a natural displacement of some pixels exists between the kinematic measurement
and the tracking, as the marker is not position at the very distal end, but the kinematic outputs the end of the shaft.

Fig. 7. Initialization of the tracking. The first frame shows the overlay of the kinematic projection with the endoscopic image. It is precise enough for a
first pose estimation. The following images are frame numbers 1, 2, 3 and 5 and show how the shape is adjusted to the shaft.

Fig. 8. Top row: Tracking with marker. In certain positions the scaling does not exactly fit to the marker, but the tip of the instrument is still recognized
(last frame). Bottom row: Tracking without marker. A major problem is the drifting of the marker along the instrument shaft (images 2 and 5).
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