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Abstract— We propose a hierarchical data segmentation
method from a 3D high-definition LIDAR laser scanner for
cognitive scene analysis in context of outdoor vehicles. The
proposed system abstracts the raw information from a parallel
laser system (Velodyne system). It extracts essential information
about drivable road segments in the vicinity of the vehicle and
clusters the surrounding scene into point clouds representing
static and dynamic objects which can attract the attention of
the mission planning system.

The system is validated on real data acquired from our
experimental vehicle in urban, highway and cross-country
scenarios.

I. INTRODUCTION AND MOTIVATION

Increasing density of urban traffic (Fig. 1) results in a high
complexity of traffic patterns presented to the driver. Systems
which support the driver in difficult decisions are becoming
increasingly common in cars. They support the navigation
of a vehicle detecting possible drive paths through a terrain
and support the driver in recognizing dangerous situations.

Fig. 1. A complex traffic situation.

The DARPA Grand Challenge was an important step to
have autonomous ground vehicles that can navigate and drive
across open and difficult terrain from city to city [4], [5].
Basic navigation tasks in an off-road or highway scenario
can be solved solely based on the geometry of the terrain.

The next big leap will be an autonomous vehicle that can
navigate and operate in urban traffic, a far more complex
challenge for a ’robotic’ driver. For such a system it is not
sufficient to reconstruct the geometry of the terrain in order
to avoid collisions, but it needs to understand the behavior
of the objects in the surrounding world.

Fig. 2. 3D LIDAR scanner: (left) the experimental vehicle, (right) raw
data from an urban scene.

A. Related Work

Some early work on laser data analysis for navigation
is [11]. The method developed there is somewhat similar
to the idea of occupancy grids [12], and thus has some
limitations when the observed scenes are not planar. More
recent approaches to using laser scanner data for navigation-
related tasks have been described in, e.g., [9] or [10]. The
algorithms developed therein mostly focus on detection and
tracking of road boundaries, and in order to achieve this, rely
on the presence of road curbs. Our approach is substantially
different from that idea, because we simply try to identify
areas that are ”flat enough” for the car to drive on. Thus, we
are also able to use the methods detailed herein for navigation
on offroad terrain.

B. System Architecture

The laser range finder uses 64 lasers which radiate in
different elevation angles, covering a total vertical range of
approximately 25 degrees (Fig. 2). The lasers are also shifted
horizontally by some degrees relative to the apparatus’
rotational angle. To obtain data from the whole environment,
the LIDAR scanner rotates at a speed of 10 Hz.

A data packet from the LIDAR system consists of the
rotational angle of the scanner itself, the distance and the
intensity measurement of each laser. From this data, a
complete scan of the environment can be computed.

Our goal is now to use the information extracted from
the LIDAR scanner in such a way that path planning is
made possible. In our approach, we preprocess the data
we get from the scanner to deskew distortion which is
caused by the movement of the car during the scan. Then, a
classification of the drivable road takes place. Afterwards, a
clustering algorithm is run on the points which are not part
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Fig. 3. The architecture of the system.

of the drivable surface. The resulting clusters represent the
obstacles whose feature points are used as an input for the
ego-motion computation algorithm. Two consecutive frames
are processed and the ego-motion of the vehicle from one
to the next frame is computed and non-stationary objects
are detected. The ego-motion estimation, which can also be
done by evaluating the IMU data, is now used to correct the
next frame. A schematic overview of the process is shown
in Figure 3.

II. APPROACH

A. Data processing

While our algorithms work mainly with Cartesian coordi-
nates, the sensor readings deliver spherical point coordinates,
so the first step is transforming that data into Cartesian space.
The resulting set of 3D points which belong to a 360◦ scan
is also called a frame.

We choose the Cartesian coordinate system such that its
origin coincides with the center of the laser scanner, the x-
axis points in forward driving direction, the z-axis points
upwards, and the y-axis completes the axes such that they
form a right-hand-system.

Denoting the elevation angles of a laser beam with θ, the
rotational angle with φ and the distance measurement for that
beam with r, the computation of the Cartesian coordinates
is straightforward: x

y
z

 = r

 cos(θ) cos(φ)
cos(θ)(− sin(φ))

sin(θ)


Points which have been measured with only a low intensity

are considered non-reliable and thus discarded. Knowing the
position of the LIDAR scanner on the car, we can basically
determine the point position relative to the car itself.

Due to the motion of the vehicle and the fact that the
scanner takes a non-negligible amount of time to complete
one rotation, the observed 3D point cloud will be distorted.
Using information about the ego-motion of the car (see
section II-D), we are able to level out the distortion. The
resulting frame is an approximation of how the environment
would have looked like if the car had not moved.

The scanner is rotating with a frequency of 10 Hz, so we
can calculate the time elapsed in seconds for a data packet
with rotational angle φ as t = φ

20π . Furthermore, from the
rotation matrix R̃ we can extract the roll, pitch and yaw
angles αframe, βframe and γframe as described in [3].

To deskew the point positions, the rotation and translation
for the time t of the point measurement have to be com-
puted. The roll angle at a time t is approximated by linear
interpolation as α(t) = 10t · αframe, the other angles β(t)
and γ(t) are computed analogously.

From these angles, the rotation matrix R̃(t) can be derived.
To find the trajectory ~x(t) of the car, we proceed as follows:
We assume that the car moves in x-direction (relative to the
car’s coordinate frame), so the rotated coordinate system’s
base vector

R̃(t)

 1
0
0

 =

 cos(α(t)) cos(β(t))
sin(α(t)) cos(β(t))

− sin(β(t))


is the tangent-vector to the trajectory ~x(t). The speed of the
car is then described as

~v(t) = vcar · R̃(t) · (1, 0, 0)T

And finally, the trajectory can be computed by integration:

~x(t) =
∫

~v(t) dt

After evaluating this integral, there are two unknowns left,
namely vcar and the integration constant. The two constraints
of the trajectory ~x(0) = ~0 and ~x(0.1) = ~T can be used to
solve for these two unknowns. Now the trajectory ~x(t) can
be used to calculate the translation vector ~Ti(t).

Having computed rotation and translation for each data
packet, the undistorted coordinates p′ij of a point pij in
the can be calculated as p′ij = R̃(t)(pij − ~T (t)) where pij

denotes the j-th point of the i-th data packet.

B. Drivable road estimation

After computing the undistorted frame, we estimate the
drivable surface. Obviously, this is useful for deciding where
the car can go safely without crashing into obstacles.

But the information is also required for our clustering
procedure: Having a 3D point cloud from a laser range finder,
all objects that are located on the road and the road itself
seem to form one connected structure. If there are, e.g., two
trees on opposite sides of the road, they should obviously be
detected as seperate objects. But because there is a stretch
of road between them, the trees and the road would seem to
belong to one connected component. By removing the road
from the scene, the connected structure is broken up into the
single obstacles of interest.

The algorithm used to estimate the drivable road classifies
each point of the frame. A point can therefore be marked as a
surface point or an obstacle point. Surface points can further
be refined in flat surface points and critical surface points,
which belong to the supporting plane below the vehicle, but
not to the road surface. This is important because we need to
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Fig. 4. Profile plot, points are classified into obstacle (red) and surface
(green) points. Blue points are drivable road, lying behind obstacles. The
height axis in the picture corresponds to the z-axis of the car’s coordinate-
system, the distance axis points in a certain rotational direction.

know all of the points that belong to the supporting plane in
order to be able to decompose the scene into seperate point
clusters. The criteria for marking a point is the distance of
the point to the estimated road. If the distance is below a
certain threshold, the point is marked as a surface point.
Furthermore, the point is marked as a critical surface point
if the distance exceeds the threshold but lies under a second
threshold, which is chosen depending on the car’s offroad
abilities. Otherwise the point is marked as an obstacle point.
Moreover, the z-coordinate of the obstacle points are checked
to refine these points. If the value lies above the car’s height,
the related obstacle point doesn’t affect the cars ability to
move but is of interest when clustering the obstacles.

The classification algorithm does the calculation for each
set of points of a certain rotational angle. The algorithm
considers the 64 points from the 64 different lasers pointing
in some direction, originating from the frame’s center, which
is the center of the LIDAR scanner system.

So as input for the algorithm we are given a point set
{pi}; i = 1, 2, ..., 64. These points all lie on a plane that can
be thought of as a profile cut from the point cloud (see Figure
4). The coordinates of the points in the plane are calculated
as pixplane =

√
p2

ix + p2
iy and piyplane = piz . This set of

points is sorted in ascending x-component direction.
In this set of points, we now search for line segments.

Beginning with the first point p1 in the set, a certain number
of consecutive points is used to do a least squares linear
regression for finding a model for a line segment. The
parameters a and b for the line segment y = ax + b are
computed as

a =
∑n

i=1 (xi − x̄)(yi − ȳ)∑n
i=1 (xi − x̄)2

, b = ȳ − bx̄

where x̄ and ȳ denotes the mean value of the points x and
y component.

The obtained line model has to fulfill several properties to
be accepted as a representation for the surface: The gradient

Fig. 5. Top down view on a frame, points are classified into obstacle (red)
and surface (green) points, blue points are drivable road behind an obstacle.
The + symbol in the middle marks the scanner’s position.

must not exceed a certain value, i.e., the line must not be too
steep. Then also the quality of the line fitting is examined,
which should not fall below a certain threshold. If the line
passed these initial tests, subsequent points of the set will be
examined and added to the line if they do not deviate too
much from it. Whether a point should belong to the line or
not is determined by computing its distance to the line. This
process will be repeated until the line does not fulfill the
above mentioned criteria any more or a new included point
does not belong to the line model. The index of the last point
of a segment will be stored. Then the algorithm starts again
for the next line segment, beginning with the last point used
in the previous run, and is repeated until the last point of the
set is reached.

As result we get a set of line segments and the index of
the starting point for each segment. For classification of the
points, we compare the line segments to the corresponding
point sets, from the marked beginning point up to the marked
point of the next line segment. There are a few thresholds
for the distance from the points to the line which indicate
whether a point is a surface point, a critical surface point or
an obstacle. If no lines were found, all points of the set are
considered obstacle points.

Furthermore, the surface points that lie behind an obstacle
(viewed from the center of the LIDAR scanner) are classified
separately. These surface points are not used for finding
drivable areas for the car, but they should obviously be
excluded from the clustering procedure.

All in all, we obtain a matrix with the classification of
each point of the frame, where the indices of each entry
correspond to the same indices of the corresponding point in
the data array mentioned in section II-A. A top down view
shows the computed drivable road and the obstacle points in
figure 5.

C. Clustering

After estimating the drivable road and removing the points
classified as passable environment, the clustering of the
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Fig. 6. Top down view on a frame, different colors indicate different
clusters.

obstacles can be done. The criterion for deciding whether
points belong to the same cluster is simply the Euclidean
distance between those points.

As described in section II-A, the points are stored in a
data array. If this array is interpreted as a gray scale image,
we obtain a 360 degree picture of range information of
the environment. In this representation, we would intuitively
expect that all points of a cluster are neighboring pixels or
at least quite close to each other.

Hence, we can do the clustering by using an approach
similar to a region-growing-algorithm instead of exhaustively
comparing points pairwise to check whether they belong to
the cluster or not.

The algorithm works as follows. The data array is read
line-wise starting from the index (0,0) of the data array. Note
that this is the nearest point to the car at rotation angle zero
degree. We assume that around the car and especially in front
of the car, there will be usable road and therefore we start
at this point.

When a not yet visited obstacle point is found, we start a
new cluster, and search for points belonging to the cluster in
the neighborhood of the obstacle point. In a first step, only
the four-point-neighborhood is examined. As criterion for
adding a point to the cluster, the Euclidean distance from the
current point to the point in consideration is used. If the point
has been classified as belonging to the cluster, the search
continues with this point in a recursive manner. On the other
hand, if none of the neighboring points belong to the cluster,
we will not abort the search yet. Instead, a certain amount of
points lying in the current search direction are checked for
whether they can be added to the cluster, according to the
Euclidean distance of the previously added point. This step is
necessary for several reasons: sometimes, it is possible that
the laser range finder fails to deliver measurements. Also, it
is possible that the laser looks through an object, e.g. the
wheel of a bike, so the cluster would be divided by parts of
the estimated usable road.

A result of the clustering algorithm can be seen in figure 6,
a top down view of the same frame used in the previous sec-
tions, different colors have been used to distinguish clusters.

D. Ego-motion detection and estimation
The basic idea of our ego-motion estimation is as follows:

If we knew the movement of the stationary objects in the
scene relative to our vehicle, we would obviously be able to
deduce the ego-motion of the car itself. To accomplish this,
there are two problems that need to be solved: First of all,
we need some way to identify feature points and establish
correspondences between these points in consecutive frames.
When correspondences have been found, we still need to
classify feature points as moving or non-moving.

Currently, we are using two different types of feature
points: The centroids of point clusters, and intersections
between planes in the scene. Computation of the centroids
is straightforward, but using these simple features for the
motion estimation introduces errors. Extraction of planes
from the scene is more complicated and time-consuming,
but yields very stable features.

The errors when using cluster centroids can be explained
as follows: The underlying assumption made is that a cen-
troid is stationary if the corresponding object is stationary.
But that is not realistic: Under different viewpoints, different
portions of the object will be visible to the laser, and the
centroid is computed based only on the visible portion. This
means that the centroid might move if the viewpoint changes.

When feature points and correspondences have been es-
tablished, a RANSAC [2] algorithm is used to classify points
as moving or non-moving. The model used in the RANSAC
approach is a least-squares fitting of 3D-point sets suggested
in [1] to estimate the motion from one to the next frame.

1) Corresponding feature points: Computation of the
cluster centroids is straightforward. As mentioned above,
errors are introduced when using this simple technique,
but in practice, it turns out the error is mostly tolerable.
A more advanced technique is the identification of planar
surfaces in the scene, and then using the intersection points
of those planes as landmarks. This yields very stable features,
although of course it only works when enough planes (at least
three, and all non-parallel) are present in the scene.

Planes are extracted using an approach similar to that ex-
plained in section II-B, adapted for searching planes instead
of line segments. Not necessarily all points of the cluster
belong to a plane, so a RANSAC approach is used to choose
the points belonging to a plane without including outliers.

A plane is represented by its normal vector and the
centroid of the points. To compute these parameters, the
approach described in [8] is used, which is just a standard
method for fitting a plane to a point of clouds. The average
error used in the RANSAC algorithm for identifying outliers
is the average distance of the points to the plane.

After the planes have been found, we still need to compute
feature points, which are derived by computing intersection
points between planes. Generally, three pairwise non-parallel
planes will have exactly one intersection point.

The correspondences between features identified in two
successive frames are found by comparing the Euclidean
distances. For a point in the landmark set of the first frame,
we assume that the closest point in the landmark set of the
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Fig. 7. The estimated planes in a frame. The triangle indicates the centroid
of the points, the thin line the normal vector of the plane. The red circles
are the intersection points.

repeat N times
• choose a random subset of corresponding points and

calculate R̃ and ~T as described in section II-D.3
• compute the consensus set by applying the calcu-

lated rotation and translation to all points of Oframe1

and then computing the distance to the correspond-
ing points of set Oframe2, add points whose distance
is below a certain threshold

• save the consensus set if its size is bigger than a
certain number

end
If at least one consensus set is found, use the one with
the most elements and calculate from these points the
rotation R̃ and translation ~T . If no consensus set is found,
the algorithm fails.

Fig. 8. The RANSAC algorithm for finding static objects and doing ego-
motion estimation.

second frame is its corresponding point. The resulting set
of point corresponences is used as input for the RANSAC
algorithm.

2) RANSAC: An overview of the algorithm is shown in
figure 8. We denote with Oframe1 and Oframe2 two point sets
containing features of two consecutive frames.

The computed rotation R̃ and translation ~T are applied to
all corresponding points of the set Oframe1 (see II-D.1). If
the distance of the transformed points to the corresponding
points in Oframe2 is below a threshold, the cluster belonging
to these points is classified as a static.

All other points in Oframe1 that have a corresponding point
in Oframe2 belong to moving objects. Feature points without
corresponding points in the other set can obviously not be
classified.

Fig. 9. The trajectory of the car, drawn in the current frame.

TABLE I
PROCESSING TIMES OF THE SYSTEM’S COMPONENTS.

data processing 0.55s
drivable road estimation 0,49s
clustering 0,09s
motion estimation 0,015s

3) Computing rotation and translation: The rotation R̃
and translation ~T between point of two consecutive frames
is computed with the algorithm introduced in [1]. The
algorithm involves the following steps:

1) Compute centroids p and p′ of the two point sets.
2) Shift the points such that point sets qi = pi − p and

q′i = p′i − p′ are established.
3) Compute a 3x3 covariance matrix H =

∑N
i=1 qiq

′T
i .

4) Using a singular value decomposition H = UΛV T , the
rotation matrix will be R̃ = V UT and the translation
is given as ~T = p′ − R̃p.

Figure 9 shows an example run. Clusters are shown with
different colors and the centroids of the clusters marked with
crosses. Centroids marked with a rectangle indicate that these
centroids are static objects and can be used for calculation of
the ego-motion. The triangle indicates the start of the route.
The black line represents the estimated trajectory of the car.

III. RESULTS

Data has been recorded using a 3D laser range finder, a
high definition LIDAR system from Velodyne1. The scanner
is mounted on top of an experimental vehicle, a VW Touareg,
as pictured in Figure 2. Movement data is available from an
Inertial Measurement Unit (IMU) which is also mounted on
the car. The system was tested on an Intel CoreDuo@2GHz
laptop computer running a Linux operating system. Com-
puting times for each component of the system are shown in
table I.

1www.velodyne.com/lidar
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Fig. 10. The trajectory of the car from the motion estimation (black) and
the car’s IMU (red).

We tested the system with data from several trial runs on
the university campus and some runs on forest tracks. The
drivable road estimation generally gave good results, also
on difficult surfaces like untarred roads. Figure 10 shows an
example of a trajectory (black line) generated from a tour on
the campus of the university. The triangles are placed at the
respective estimated starting points, relative to the current
reference frame. For comparison, the trajectory generated
from the car’s IMU data is shown as a red line. The distance
covered is approximately 40 meters.

IV. CONCLUSION AND FUTURE WORK

In this work we have shown how the raw data of a
3D high definition LIDAR laser range finder can be used
to classify the immediate environment of the vehicle into
drivable road and obstacles. By using the static objects, ego-
motion estimation is done, which can be used to deskew the
data from the LIDAR scanner, distorted due to the vehicle’s
motion. Afterwards, obstacles can be classified into static
and moving objects.

In actual applications, we want the system to run in real
time for the LIDAR scanner’s frequency of 10 Hz, so we have
to improve on the running times of parts of our algorithms.
Furthermore, we have to be able to cope with laser failures,
because it happens that the LIDAR scanner fails for a range
of about 10 degrees, so clusters are possibly divided in this
area. Two problems arise in this case: No correspondences
using centroids of clusters can be found, or a static object
could be classified as a moving object. This fact will have
to be taken into account when classifying objects into static
and non-static, as described in section II-D.

For now, we only use cluster centroids and plane intersec-
tions as landmarks, which results in a notable error in the
ego-motion estimation. To improve on that situation, it would

certainly help to develop algorithms for finding different and
hopefully more reliable static landmarks.

In the motion estimation, we assume that static objects
like buildings or trees are present and distinguishable at all
times. This is not always a valid assumption: On a highway
with several lanes, e.g., where the vehicle is surrounded
by moving cars and not many static land marks are seen,
it seems likely that the RANSAC algorithm will fail. It
is also difficult to drive on forest tracks, where the road
is surrounded by dense trees and bushes that cannot be
distinguished from each other easily, and thus may appear as
just one big connected cluster to our system, which makes
it very difficult to extract useful feature points.

Furthermore, it would be nice to be able to track the
dynamic objects, estimating their trajectories or even de-
formations. Object recognition would also be an extremely
useful feature, allowing for classification of clusters as, e.g.,
other moving cars, pedestrians, trees etc.
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