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Efficient visual homing based on Fourier transformed panoramic imagesI
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Abstract

We present a fast and efficient homing algorithm based on Fourier transformed panoramic images. By continuously comparing Fourier
coefficients calculated from the current view with coefficients representing the goal location, a mobile robot is able to find its way back to known
locations. No prior knowledge about the orientation with respect to the goal location is required, since the Fourier phase is used for a fast sub-pixel
orientation estimation. We present homing runs performed by an autonomous mobile robot in an office environment. In a more comprehensive
investigation the algorithm is tested on an image data base recorded by a small mobile robot in a toy house arena. Catchment areas for the proposed
algorithm are calculated and compared to results of a homing scheme described in [M. Franz, B. Schölkopf, H. Mallot, H. Bülthoff, Where did
I take that snapshot? Scene based homing by image matching, Biological Cybernetics 79 (1998) 191–202] and a simple homing strategy using
neighbouring views. The results show that a small number of coefficients is sufficient to achieve a good homing performance. Also, a coarse-to-
fine homing strategy is proposed in order to achieve both a large catchment area and a high homing accuracy: the number of Fourier coefficients
used is increased during the homing run.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The ability to return to known places is important for most
animals and also for mobile robots. Snapshot or template-based
models have been developed to explain the homing behaviour
of insects, for instance honey bees [1,2] and desert ants [3].
In order to estimate the “home direction”, the current image is
continuously compared to the image (“snapshot”) obtained at
the goal location (“home”) and stored in memory. It is assumed
that only low-level image processing operations are required.

Although visual homing is confined to a certain region
around the snapshot location called “catchment area” [2], large
areas can be covered by using several snapshots taken at
different locations. Between neighbouring positions, one can
then move using visual homing.
I Supported by the Deutsche Forschungsgemeinschaft, SFB 550 and
STU 413/1-1.
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In this paper we address the following fundamental aspects
of view-based homing:

• size of the catchment area, i.e. region of the environment in
which visual homing using a single snapshot succeeds —
the larger the catchment area of snapshots the smaller the
number of images that have to be stored;

• accuracy, i.e. final distance to the goal location;
• memory usage of a single snapshot — since many snapshots

usually have to be stored for navigation in large cluttered
environments, this can be a limiting factor;

• computational effort for the estimation of the “home vector”,
i.e. the direction to the goal.

1.1. Connection and comparison to other work

Several homing algorithms can be found in the literature;
for reviews, see [4–8]. Probably the most parsimonious model
is the average landmark vector (ALV) model [9,10], where
only two vector components have to be stored. Like some
other algorithms, e.g. [11–13], the ALV approach assumes that
the current orientation relative to the goal position is known
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(e.g. by using a compass). This is a reasonable assumption
since a compass sense has been found in many animals, e.g.
in desert ants and honey bees which use the polarisation
pattern of the sky1 or pigeons which have a magnetic sense;
see [14–17]. However, relying on a compass limits the usage
of these algorithms on mobile robots to applications where the
orientation can be estimated by other means.

Several researchers have used image-based localisation
combined with principal component analysis to reduce memory
usage and to speed up image comparison, e.g. [18,19]. In the
paper by Jogan and Leonardis [20] an orientation invariant
localisation method is described that can also deal with a
high degree of occlusion in images. Recently, Menegatti
et al. [21] use Fourier transformed images for image-based
localisation. The number of Fourier coefficients is chosen
according to the required accuracy. Pajdla and Hlavac [22]
proposed an orientation invariant representation for panoramic
images based on the phase of the first Fourier coefficient
(“zero phase representation”) to allow for image comparison
without knowledge of relative orientation. In this paper we
take a different approach. In the first step the orientation is
estimated using more than one coefficient. Then the similarity
is calculated for the estimated orientation.

The homing algorithm proposed in this paper can be
understood as an extension of the algorithm of Franz et al. [23]
to the Fourier or frequency domain. The main advantages are:

• significantly faster estimation of home direction and relative
orientation (with sub-pixel accuracy);

• efficient memory usage, since only a few Fourier coefficients
are necessary to achieve good homing performance.

To achieve fast estimation of home vectors, approximations
are used that may result in smaller average catchment area
compared to the algorithm of Franz et al. [23].

2. Theoretical framework: Derivation of the Fourier-based
homing algorithm

2.1. Image difference function

As a similarity measure of two images consisting of N
pixels, IA/B

= (I A/B
[0], I A/B

[1], . . . , I A/B
[N − 1])>, we use

the sum of squared differences (SSD),

EI(IA, IB) =

∑
i

(
(I A

[i] − Ī A)− (I B
[i] − Ī B)

)2
, (1)

where the mean pixel value ( Ī A/B) is subtracted in order to
account for possible changes in brightness. In the following,
only panoramic images consisting of a one dimensional (1D)
array of gray values are considered. The image acquisition is
shown in Fig. 1. Like many other robotic systems, we apply
a catadioptric sensor consisting of a video camera directed
towards a convex mirror to achieve a large field of view
[24–26].

1 The “Sahabot 2” of Lambrinos et al. (2000) uses a custom-build
polarisation compass [9].
Visual homing using images is based on the assumption that
the place, where the image difference reaches its minimum, is
the goal position.2 This can be described mathematically as
finding (with respect to the current pose) position x∗, y∗ and
orientation difference ς∗ that minimise EI

(
Ih, I(x, y, ς)

)
. The

superscript ‘h’ denotes the image at the goal position (“home”).

2.2. The homing algorithm of “Franz et al., 1998”

The homing algorithm described in [23] can be understood
as replacing I(x, y, ς) by hypothetical or expected images
Ie(x, y, ς). These images are calculated from the current image
using the assumption that all surrounding objects have the
same distance to the agent.3 This “equal distance assumption”
allows estimation of the home direction without having to
compute distances to objects explicitly or having to search
for correspondences of image patches or image features;
see [8] for a detailed discussion. Although it may be a very
coarse approximation to the actual distance distribution of the
surrounding scene, it has been shown that the error due to this
approximation decreases with decreasing displacement from
the goal position [23].

If the current (continuous) panoramic image is given by
I (φ), then by means of simple trigonometry (Fig. 2) the
expected image can be computed according to

I e(φ|x, y, ς) =

I
(
φ + ς − arcsin

( x

R
sin(φ + ς)−

y

R
cos(φ + ς)

))
, (2)

where R denotes the assumed equal distance.4 Even without
any knowledge about the magnitude of R, the direction
described by the parameters ξ = x/R and η = y/R can be
estimated by the algorithm using

I e(φ|ξ, η, ς)

= I (φ + ς − arcsin (ξ sin(φ + ς)− η cos(φ + ς))). (3)

This can be simplified using an approximation for ξ2
+η2

� 1,
i.e.

I e(φ|ξ, η) ≈ I (φ − ξ sinφ + η cosφ). (4)

Put together, the home vector is estimated according to

(ξ∗, η∗) ≈ arg min
ξ,η,ς

ẼI

(
I h(φ), I e(φ|ξ, η, ς)

)
(5)

= arg min
ξ,η,ς

∫ π

−π

(
(I h(φ − ς)− Ī h)

− (I e(φ|ξ, η)− Ī e)
)2

dφ. (6)

2 Other constraints can also be considered, e.g. that image difference should
be below a certain threshold.

3 If distances are known, images at all positions of a convex environment, i.e.
an environment without occlusions, can be calculated from a single image —
with the precision limited only by the resolution of the vision sensor. Of course,
this is also true for the calculation of distances; see [28].

4 To simplify notation, we assume that images are 2π -periodic functions.
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Fig. 1. a: Koala robot with panoramic vision. Image processing and control of the robot is performed by a PC/104 on-board computer (Pentium III, 700 MHz). On
top of the vision sensor a reflective target is mounted which allows for high precision position and orientation estimation by a tracking system (A.R.T., http://www.ar-
tracking.de). b: Panoramic stereo sensor consisting of two separate mirrors. A hole in the lower mirror permits imaging via the upper mirror. For further details,
see [27]. The stereo information is not used for image-based homing described in this paper. c, d: The image part, where the ±5◦-region around the horizon is
mapped to, is converted into an array of N = 360 gray values. An unwarped version of the image created by the lower mirror is shown in e.
For pixel images, Franz et al. estimated the minimum over ς
simply by testing all possible integer pixel shifts, i.e. ς =

2π
N s,

s = 0, 1, . . . , N − 1:

(ξ∗, η∗) ≈ arg min
ξ,η,ς

EI

(
Ih, Ie(ξ, η, ς)

)
(7)

= arg min
ξ,η,s

∑
i

(
(I h

[(i − s) mod N ] − Ī h)

− (I e
[i |ξ, η] − Ī e)

)2
. (8)

Also, for (ξ, η), a discrete set of P positions {(ξp,

ηp)}p=0,1,...,P−1 is evaluated. For fast calculation of the
expected images, we use a discrete version of approximation
(4),

I e
[i |ξp, ηp]

≈ I

[
rint

(
i − ξp sin

(
2π
N

i

)
N

2π
+ ηp cos

(
2π
N

i

)
N

2π

)]
, (9)

where ‘rint( )’ means “round to nearest integer”. The pixel
index on the right side of Eq. (9) can be easily computed
using a look-up table of size P × N . In our experiments we
found no negative effect of this approximation on the homing
performance of our robots. Since the SSD is evaluated for
all N possible orientations, the number of operations for the
algorithm of Franz et al. is of order O(P × N 2).
Fig. 2. Derivation of Eq. (2), i.e. the calculation of an expected image I e(φ′)

at position 2 based on the current image I (φ) at position 1 for a heading
difference ς (the heading of the robot is marked by thick lines; the black
point depicts an object in distance R to the robot). From the drawing we find
(r ′ cos(φ′

+ ς) + x, r ′ sin(φ′
+ ς) + y)> = (R cosφ, R sinφ)>. Solving for

φ yields φ = Φ(φ′) = φ′
+ ς − arcsin(x/R sin(φ′

+ ς)− y/R cos(φ′
+ ς)).

Hence, the expected image can be calculated using I e(φ′) = I (Φ(φ′)), which
is identical to (2) after renaming φ′

→ φ.

2.3. Transformation to Fourier space

In this section we will first express Eq. (6) in the Fourier
domain, which will then lead – by means of approximations –
to an efficient homing algorithm.

http://www.ar-tracking.de
http://www.ar-tracking.de
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Since gray values are real numbers, we use the following two
real-valued Fourier representations of images (“sine–cosine-
representation” and “amplitude-phase-representation”):

I (φ) ≈
1
2
a0 +

K∑
k=1

ak cos(kφ)+ bk sin(kφ) (10)

=
1
2
a0 +

K∑
k=1

Ak cos(kφ + ψk), (11)

where K ≤ N/2 is the number of frequencies used in
the approximation of I (φ).5 The coefficients, amplitudes and
phases can be calculated according to

Ak cosψk = ak =
2
N

∑
j

I [ j] cos
(

k
2π
N

j

)
, (12)

−Ak sinψk = bk =
2
N

∑
j

I [ j] sin
(

k
2π
N

j

)
. (13)

Using Parseval’s theorem [29], the image difference function
(1) can be transformed into (see footnote 5)

EI(IA, IB) ≈
N

2
EI(IA, IB, K ), (14)

EI(IA, IB, K ) =

K∑
k=1

(aA
k − aB

k )
2
+ (bA

k − bB
k )

2. (15)

EI(IA, IB, K ) is a similarity measure for the first K Fourier
coefficients of two images. Thus, Eq. (6) can be replaced by

(ξ∗, η∗) ≈ arg min
ξ,η,ς

EI

(
Ih, Ie(ξ, η, ς), K

)
(16)

= arg min
ξ,η,ς

(∑
k

(ah
k(ς)− ae

k(ξ, η))
2

+ (bh
k(ς)− be

k(ξ, η))
2

)
, (17)

where ak(ς) = ak cos(kς)+bk sin(kς), bk(ς) = bk cos(kς)−
ak sin(kς). If an estimation ς0 of the relative orientation exists,
i.e. ς = ς0 + 1ς , then for k|1ς | � 1 we can use the
approximations

ah
k(ς) ≈ ah

k(ς0)+ bh
k(ς0)k1ς, (18)

bh
k(ς) ≈ bh

k(ς0)− ah
k(ς0)k1ς. (19)

Note that the constraint k|1ς | � 1 restricts the use of high
frequencies.
To simplify further, we consider a linearisation of Eq. (4):

I e(φ|ξ, η) ≈ I (φ)− ∂φ I (φ)(ξ sinφ − η cosφ). (20)

Since the derivative of I (φ) can be calculated easily,
substituting (10) on both sides of Eq. (20) leads to

ae
k(ξ, η) = ak + ax

k ξ + a
y
kη, (21)

5 The approximations in Eqs. (10) and (14) differ from true equality due to
the number of reconstructing frequencies (K ) and sampling effects.
be
k(ξ, η) = bk + bx

k ξ + b
y
kη, (22)

ax
k =

1
2
[−(k − 1)ak−1 + (k + 1)ak+1], (23)

a
y
k =

1
2
[(k − 1)bk−1 + (k + 1)bk+1], (24)

bx
k =

1
2
[−(k − 1)bk−1 + (k + 1)bk+1], (25)

b
y
k =

1
2
[−(k − 1)ak−1 − (k + 1)ak+1]. (26)

Using Eqs. (18), (19), (21) and (22), we obtain

EI

(
Ih, Ie(ξ, η, ς), K

)
≈ E1(ς0)+ E2(ξ, η,1ς |ς0), (27)

where

E1(ς0) =

∑
k

[ah
k(ς0)− ak]

2
+ [bh

k(ς0)− bk]
2 (28)

=

∑
k

(Ah
k)

2
+A2

k − 2Ah
kAk cos(ψh

k − ψk + kς0), (29)

E2(ξ, η,1ς |ς0)

=

∑
k

2[ah
k(ς0)− ak][b

h
k(ς0)k1ς − ax

k ξ − a
y
kη]

− 2[bh
k(ς0)− bk][a

h
k(ς0)k1ς + bx

k ξ + b
y
kη]

+ [bh
k(ς0)k1ς − ax

k ξ − a
y
kη]

2

− [ah
k(ς0)k1ς + bx

k ξ + b
y
kη]

2. (30)

In (27) the similarity function EI is split up into two parts:
E1 depends only – however non-linearly – on the relative
orientation, and E2 consists only of expressions up to second
order in the positional parameters ξ, η and the orientation
correction 1ς , assuming that a coarse orientation estimate ς0
is known. This representation can be used to minimise EI in a
computationally efficient way.

Algorithm for Fourier-based home vector estimation
For an efficient estimation of the home vector ξ∗, η∗ and

the relative orientation ς∗

0 , we propose the following two-step
procedure:

1. Minimise E1(ς0) with respect to ς0 using a fast rotation
estimation (with sub-pixel accuracy) based on Fourier
phases described in Section 2.4. This yields an estimation
of the orientation difference ς∗

0 .
2. Minimise E2(ξ, η,1ς |ς∗

0 ) with respect to ξ, η,1ς . As can
be seen from Eq. (30), this leads to a system of linear
equations. The solution of this system is the estimated home
vector ξ∗, η∗ (and an orientation correction 1ς∗, i.e. the
estimated total orientation difference is ς∗

= ς∗

0 +1ς∗).

Steps 1 and 2 can be iterated easily using the update ak +

ax
k ξ

∗
+ a

y
kη

∗
→ ak , bk + bx

k ξ
∗

+ b
y
kη

∗
→ bk . The estimated

home vector is then the sum of all shifts:
∑Nit+1

i=1 ξ∗

i ,
∑Nit+1

i=1 η∗

i ,
where Nit is the number of iterations.6

6 Alternatively, one could start with small K for orientation and home vector
estimation, and iterate while increasing K . This approach has not yet been
investigated.
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Since the number of calculations needed in steps 1 and 2
are of the order O(K ), the proposed algorithm needs O((Nit +

1) × K ) operations. In addition, K Fourier coefficients have
to be calculated resulting in an overall complexity of O((N +

Nit + 1) × K ). Due to the approximations, smaller catchment
areas are expected for the Fourier-based homing compared to
the algorithm of Franz et al. [23]; see Section 4.

2.4. Fourier phase-based correlation and orientation
estimation7

To estimate the relative orientation of two images, we
consider the dependence of their correlation on image shift ς8:

CI(IA, IB(ς)) =

∑
i

(I A
[i] − Ī A)

(
I B
[

i +
N

2π
ς

]
− Ī B

)
(31)

(∗)
≈

N

2
CI(IA, IB(ς), K ), (32)

CI(IA, IB(ς), K ) =

K∑
k=1

AA
k A

B
k cos(ψA

k − ψB
k − kς). (33)

In (∗), Eq. (11) and I [i] ≈ I ( 2π
N i) have been substituted.

In Fig. 3, Eq. (33) is illustrated using two images recorded
by the Khepera robot (see Section 4) at the same position
but with a different heading. Note that, in Fig. 3a, there are
local maxima in addition to the global maximum, preventing an
orientation estimation using simple gradient descent. In Fig. 3b,
the maximum of correlation differs for K = 1 by more than 10◦

from the real image shift. The reason for this is probably sensor
noise and the occluded 12◦ image region (see Section 4). Thus,
for a better orientation estimation, more coefficients have to be
used.

To estimate the optimal shift ς∗, we have to solve

∂

∂ς
CI(IA, IB(ς), K )

=

∑
k

AA
k A

B
k sin(ψA

k − ψB
k − kς)k = 0. (34)

If the difference in IA and IB is mainly due to the orientation
difference ς , then (for all k): AB

k ≈ AA
k and

ψA
k − ψB

k − kς + 2πnk ≈ 0, (35)

where nk is an integer number. Therefore, an estimation of ς
can be found for each frequency:

ς ≈ ςk =
ψA

k − ψB
k + 2πnk

k
. (36)

7 An earlier version of this section using a different notation has been
published in [30].

8 Since EI(IA, IB(ς)) =
∑

i (I
A

[i] − Ī A)2 + (I B
[i |ς ] − Ī B)2 −

2 CI(IA, IB(ς)), the rotation estimation by minimising the SSD leads to the
same result as maximising the correlation.
Fig. 3. a: First five terms Ck (ς) = AA
k A

B
k cos(ψA

k −ψB
k −kς) of the sum in Eq.

(33) for two panoramic images with an orientation difference of approximately
120◦ (C3(ς) and C5(ς) have very small amplitudes). The scaling constant of

the y-axis is NI =
2
N

√
CI(IA, IA)CI(IB, IB). The dashed curve shows the

dependence of the correlation, Eq. (31), on the image shift ς . b: Maximum of
the correlation for different numbers of Fourier coefficients.

However, a unique solution with ςk ∈ [0, 2π) exists only for
k = 1; see Fig. 3a. Substitution of (35) into (34) yields9

0 ≈

∑
k

AA
k A

B
k k(ψA

k − ψB
k − kς + 2πnk) (37)

⇐⇒ ς ≈ ς̄ =

∑
k
AA

k A
B
k k(ψA

k − ψB
k + 2πnk)∑

k
AA

k A
B
k k2

(38)

(36)
=

∑
k
AA

k A
B
k k2ςk∑

k
AA

k A
B
k k2

=

∑
k
wkςk∑

k
wk

, wk = AA
k A

B
k k2. (39)

Algorithm for fast orientation estimation
In order to arrive at a correct estimation of ς from Eq. (38)

or (39), the integers {nk} have to be known for frequencies k >
1. To achieve this, we propose the following “coarse-to-fine”
algorithm for orientation estimation with sub-pixel accuracy:

ς̄1 = ς1 = ψA
1 − ψB

1 , w1 = AA
1 A

B
1 , (40)

for k = 2, 3, . . . , K do:

nk = rint

(
ψA

k − ψB
k + kς̄k−1

2π

)
∈ Z, (41)

9 For ψA
k −ψB

k −kς+2πnk +π we get the minima of the image correlation,
since cos(π + 2πn) = −1, n ∈ Z.



W. Stürzl, H.A. Mallot / Robotics and Autonomous Systems 54 (2006) 300–313 305
ςk =
ψA

k − ψB
k + 2πnk

k
, wk = AA

k A
B
k k2, (42)

ς̄k =

k∑
l=1
wlςl

k∑
l=1
wl

=

(
k−1∑
l=1

wl

)
ς̄k−1 + wkςk

k−1∑
l=1

wl + wk

(43)

endfor

‘rint( )’ in (41) means – as in Eq. (9) – “round to nearest
integer”. The estimated shift ς̄K can now be used to calculate
the image correlation, Eq. (33).

The algorithm depends on a roughly correct estimation of
ς1. Therefore, although occurring rarely (since images usually
have high spectral power in low frequencies; see Section 4.1.1),
very small and noise-prone amplitudes AA

1 , AB
1 are critical. If

w1 = AA
1 A

B
1 is smaller than a certain threshold (0.1 1

K

∑
k wk

in the current implementation), we compute a second estimate
of ς starting with ς̄ ′

1 = ς̄1 + π . The shift with the larger
correlation is then assumed to be the correct estimation.10

However, individual small values of wk , k > 1 are not critical,
since ς̄K is calculated as a weighted sum. Of course, the
weights wk can easily be substituted by a different weighting
function. wk = AA

k A
B
k k2 has been derived directly from

maximising image correlation.

3. Experiments with “Koala” robot

We performed several homing runs on a mobile robot
(“Koala”, K-team, http://www.k-team.org) in an office envi-
ronment; see Fig. 1. In the following, we denote the algo-
rithm of Franz et al. [23] by hs ei (homing strategy using
expected images) and the algorithm derived in Section 2 by
hs Fi (homing strategy based on Fourier transformed images).

First, an image Ih was recorded at the goal position (and
Fourier coefficients {ah

k, b
h
k} were calculated). Then the robot

was driven manually to several places in the environment. From
each starting position, a homing run was performed by the robot
according to the following procedure:
(1) take image at current position (calculate {ak, bk} for

Fourier-based homing) and estimate home vector (ξ∗, η∗)
(2) if (ξ∗)2 + (η∗)2 < ε stop (ε = 10−4)
(3) rotate by ϕ = atan2(η∗, ξ∗) and move by l =

min[lmax, Rtyp
√
(ξ∗)2 + (η∗)2] (Rtyp was set to a typical

distance to surrounding objects, i.e. Rtyp
= 3 m; translation

was limited to lmax
= 0.3 m in order to reduce the influence

of a single wrong estimate.11)
(4) goto 1.

Fig. 4 shows homing runs for different goal positions using
the proposed algorithm hs Fi with K = 5 spatial frequencies
and no iteration. Fig. 4b also shows homing runs performed by
means of algorithm hs ei (size of pixel array N = 360) which
seems to have a larger catchment area (see next section).

10 If, in addition tow1, successive weightswk , l = 2, 3, . . . are small, a larger
number of starting estimates for ς would have to be considered.
11 Of course, other values of Rtyp are possible — a smaller value would lead

to more homing steps
Fig. 4. Homing runs of the Koala robot using the Fourier-based algorithm
hs Fi with K = 5 coefficients, no iteration (room size ≈7×5 m2). Also, some
unsuccessful trials (corresponding start positions are not in catchment area)
are plotted leading away from the goal or to a different position (label “local
minimum”). a: Homing trials for three different goal positions. The symbols
O, �, ∗ indicate homing runs to different goals, which are marked by large
circles. Start positions are marked by small circles. b: Comparison of homing
runs using hs Fi (indicated by �) with homing runs using the algorithm of
Franz et al. hs ei (indicated by ∗) for approximately the same goal position.

As a coarse measure of the performance of both algorithms,
we measured the time needed to compute a single home vector
estimate on the Koala’s PC/104 (Pentium 3,700 MHz). We
found the following computation times:

• approximately 100 ms using the algorithm hs ei (current
implementation: N = 360 pixel, P ≈ 200 test positions
{(ξp, ηp)} with ξ2

p + η2
p < ( 2

3 )
2);

• approximately 1 ms using the proposed Fourier-based
algorithm hs Fi (K = 5, Nit = 0).

4. Evaluation using image data sets

To evaluate the homing performance in a more systematic
way, two data sets (1250 images each; size of the extracted
gray value arrays is N = 72 pixel) were autonomously
recorded by a small Khepera robot in a toy house arena
on two consecutive days; see Fig. 5. Illumination conditions
and recording positions were approximately the same but,
due to sensor noise and the limited accuracy of the tracking
system, corresponding images of the two sets differ slightly. In

http://www.k-team.org
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Fig. 5. Recording of image data sets. a: Top view of the toy house arena
(140 cm × 120 cm) seen by the tracking camera at the ceiling. Superimposed
are the recording positions (dots) which lie on a rectangular grid (cell size
2.5×2.5 cm2). b: Position and heading of the Khepera robot (∅ ≈ 5.5 cm; H ≈

13 cm) was measured by a tracking system using two light-emitting diodes
(accuracy: position ≈3 mm; heading ≈2◦). On the left, the cable can be seen
that connects the robot to an external computer where image processing and the
control of the robot is done.

addition, the cable to an external computer occluded part of the
image (≈12◦ horizontally). The corresponding pixel values are
estimated using linear interpolation between the neighbouring
gray values.

Using these image data sets, different homing algorithms can
be compared easily based on identical input data. Since they
allow off-line computation of home vectors, catchment areas –
which are difficult to investigate using homing runs of a mobile
robot – can be estimated; see Section 4.4.

4.1. Properties of the image sets

We first discuss two properties of the image sets that are
relevant for the Fourier-based algorithm.

4.1.1. Power spectrum
The power spectrum of the image data sets is shown in

Fig. 6. As in most natural images, low frequencies have high
amplitudes [31,32]. This fact is usually described by a power
law, i.e. 〈A2

k〉 ∝ k−α . For the 1D images in the toy house
arena, we find α ≈ 1.8. This finding supports the use of only a
few coefficients (low frequencies) for rotation and home vector
estimation.

4.1.2. Change of Fourier coefficients and phases with distance
To estimate the influence of the approximations used for

the derivation of hs Fi, we computed the change of Fourier
coefficients with distance, i.e.

Ek(l) = (ah
k − ak(l))

2
+ (bh

k − bk(l))
2. (44)

In Fig. 7a the mean value of Ek(l) is shown for different k. If
the linearisation in Eqs. (21) and (22) were exact, one would
get 〈Ek(l)〉 ∝ l2. As can be seen, this is true in a wider range
of l for lower frequencies. Therefore, one expects better home
vector estimations using only low frequencies if the distance to
the goal is large.
Fig. 6. Frequency power spectrum for image data sets of toy house arena (error
bars show standard deviation).

Since, in the first step of hs Fi, the orientation relative to the
goal is estimated based on Fourier phases, we also calculated

Ψk(l) =

 (ah
k, b

h
k)

>√
(ah

k)
2 + (bh

k)
2

−
(ak(l), bk(l))>√
(ak(l))2 + (bk(l))2

2

(45)

= ((cosψh
k , sinψh

k )
>

− (cosψh
k (l), sinψh

k (l))
>)2 (46)

= 2
(

1 − cos
(
ψh

k − ψk(l)
))
, (47)

which is a measure of phase change with distance. The mean
value of Ψk(l) for different k is plotted in Fig. 7b. 〈Ψk(l)〉
increases much more strongly for high frequencies and soon
reaches the point where phases are unrelated, i.e. 〈Ψk(l)〉 ≈ 2,
since 2(1 − 〈cos δψ〉δψ ) = 2.
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Fig. 7. Change of Fourier coefficients with spatial distance (all 1250 positions
of the image data were evaluated using the same image orientation). a: Shown
is 〈Ek (l)〉 = 〈(ah

k − ak (l))
2

+ (bh
k − bk (l))

2
〉 for k = 1, 2, 3, 5, 10, 20. The

dash–dotted curve shows the sum
∑N/2

k=1〈Ek (l)〉 (scaled by the factor 1/5)

which is equal to 2
N 〈EI(Ih, I(l))〉. The small offset at l = 0, visible for

k = 1, is due to the use of two image data sets. b: Change in Fourier phase
〈Ψk (l)〉 = 2(1−〈cos(ψh

k −ψk (l))〉) for different k. The large offset for k = 20
is due to the use of two image sets and the limited accuracy of the tracking
system – an orientation difference of 1ς ≈ 2◦ results in δψ20 ≈

2π
9 ; see Eq.

(36), and 2(1 − cos δψ20) ≈ 0.5.

4.2. Orientation estimation

The dependence of the error in the first step of hs Fi, i.e.
the orientation estimation based on Fourier phases (described
in Section 2.4), on the distance between two images is shown
in Fig. 8. All possible combinations of image position were
evaluated and the circular standard deviation [33] calculated.
For small distances, the error decreases with the number of
coefficients12 (better signal to noise ratio); for larger distances
a smaller K results in a slightly smaller error. The reason
for this is that the rotation estimation was derived assuming
only orientation differences (and no position differences), and
Fourier phases for high frequencies usually change more
rapidly with position (see Fig. 7b).

12 The error value of σϕ ≈ 1.5◦ for l = 0 is already below the accuracy of the
tracking system that was used to determine the orientation differences of the
images.
Fig. 8. Error of orientation estimation, depending on distance for different
numbers of Fourier coefficients: K = 1 (O), K = 2 (∗), K = 3 (©),
K = 5 (�) and K = 15 (♦) (plots for K ≥ 10 are indistinguishable
from the K = 15 curve at this resolution). The dash–dotted curve shows
the result if all integer shifts for the SSD are tested, i.e. ς∗

= 2π/N s∗,
s∗

= arg mins
∑

i (I
A

[i] − Ī A)(I B
[(i + s) mod N ] − Ī B).

4.3. Home vector estimation

An example of home vectors calculated using the proposed
Fourier-based algorithm is shown in Fig. 9. Most vectors
point into a direction that locally increases the image
similarity. The appearance of local minima shows clearly the
limitations of view-based homing (and also of appearance-
based localisation).13 A homing trial started from an arbitrary
position may end at the wrong place. The similarity in the
neighbourhood of these locations is sometimes much higher
than at locations inside the catchment area of the true goal
location, making it difficult to find a threshold with respect to
image similarity that prevents such failures without reducing
the catchment area significantly. However, it may be possible to
detect a mistake by using a threshold for the image similarity at
the final position. Of course, some coarse metric information,
e.g. from path integration, can help to avoid this problem. The
high image similarity at “wrong places” is caused by the low
number of pixels used, and also by the regular layout of the toy
house arena.

4.3.1. Quality measure “average homeward component”
(AHC)

Since the homing procedure described above is an iterative
process, a single home vector estimate does not have to be very
accurate. Deviations can be corrected easily in the following
steps. However, it is important that (at least in the majority
of steps) the estimated home vector has a component in
the direction of the true home direction. If the home vector
is estimated continuously, the agent will get closer to the
goal position as long as the angle between the estimated
and the true home directions (v∗

= (cosϕ∗, sinϕ∗)> =
1√

(ξ∗)2+(η∗)2
(ξ∗, η∗)> and vh, respectively) is less than

13 Increasing the amount of sensor input (image size) will of course reduce
the probability of high image similarity at different places.
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Fig. 9. Fourier-based home vector estimation (hs Fi with K = 5, Nit + 1 = 3) using image data sets from the toy house arena (uniform gray areas depict positions
of toy houses where no images were recorded; see Fig. 5). The gray values code the difference, Eq. (15), of the image at each position compared to the image at the
home position (marked by a square). The white curve shows the borders of the catchment area. Note the local minima in other parts of the arena.
90◦. Therefore, the dependence of the “average homeward
component” (AHC) on the distance l to the goal can be used
to assess the quality of the calculated home vectors:

AHC(l) = 〈v∗(l)vh
〉 = 〈cos(ϕ∗(l)− ϕh)〉, (48)

where v∗ has a component along vh
⇐⇒ v∗vh > 0.

Fig. 10 shows AHCs for different numbers of Fourier
coefficients K and iterations Nit. From 10b it can be seen
that a few iterations can improve the estimation of the home
direction. It is obvious that a small K , i.e. using only low spatial
frequencies, leads to higher AHC for larger distances, but to
lower AHC for close positions. Reasons for this are:

• Fourier phases for low spatial frequencies vary less with
position than do high frequencies, which leads to a
smaller error in rotation estimation (which assumes identical
positions); see Section 4.2.

• Linearisations in Eqs. (20)–(22) and (18), (19) have a larger
valid range for low frequencies; see Section 4.1.2.

• A larger number of coefficients yields better signal to noise
ratio close to goal, where linearisation errors are small.

The linearisations are also responsible for smaller AHCs
of hs Fi compared to hs ei for distances in the range of
15 cm < l < 25 cm.

The strong decrease in the AHC for small distances for
hs ei is mainly due to the use of a fixed grid of positions
where expected images are calculated (increasing the number of
positions on the grid close to the current position will therefore
improve the AHC for small l). In addition, the direction of the
estimated home vector is very sensitive to noise close to the
goal, since the length of the vector tends towards zero.

4.4. Catchment areas of simulated homing runs

In order to estimate the size of catchment areas, homing runs
were simulated using the image data sets. To adapt the homing
Fig. 10. Average homeward component depending on distance to the goal for
hs Fi and hs ei (gray curve), averaged over all 1250 home positions of one
set of images. The “current” images are taken from the other set (bin width
is 2.5 cm). a: Dependence on number of coefficients for hs Fi (no iteration):
K = 1 (O), K = 2 (∗), K = 3 (©), K = 5 (�) and K = 10 (♦). b: Dependence
on the number of iterations for hs Fi (K = 2 and K = 10): Nit+1 = 1 (black),
Nit + 1 = 2 (dashed), Nit + 1 = 5 (dotted), Nit + 1 = 10 (dash–dotted).
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Fig. 11. Mean size of catchment area (average of 1250 homing runs) for hs Fi

(Nit + 1 = 3) for different numbers of Fourier coefficients: K = 1 (O), K = 2
(∗), K = 3 (©), K = 5 (�) and K = 10 (♦). The gray curve shows the mean
catchment area for hs ei. The vertical line marks ldah

= 10 cm; see Fig. 12.
The steps appearing at ldah

≈ 2.5 cm stem from homing runs that stopped at a
position in the direct neighbourhood of the goal.

procedure described in Section 3 to the discrete grid of image
positions, some modifications had to be made:

(1) calculate home vector at current position (parameters set to
Rtyp

= 50 cm, lmax
= 5 cm)

(2) move to grid position closest to estimated home vector
(3) stop homing run if

• no change in position,
• number of homing steps >30,
• distance to a position on grid >2 cm (“obstacle”)

(4) goto 1.

Although the catchment area can be defined simply as the
area where homing succeeds, one has to specify what accuracy
is needed for a homing run in order to be counted as successful.
Due to sensor noise, small misalignment of the mirror, minor
changes in the environment or in illumination, etc., it may
happen that a homing run does not end exactly at the goal
position but at some distance to the goal. For the simulated
homing runs we define the dependence of the mean size of the
catchment area (MCA) on the accepted maximum deviation ldah

as the mean number of grid positions (out of 1250) for which
the distance to the goal position after the homing run is below
ldah. The area belonging to one position on the grid is (2.5 cm)2.
For each of the 1250 goal positions of one image set, homing is
started for all 1250 positions of the other image set.14

Fig. 11 compares the mean catchment area of hs ei to
hs Fi for different numbers of Fourier coefficients. If no
homing run is performed, that is, when ldah is simply the
distance from the starting position to the goal position, one
expects that the mean catchment area increases according to
MCA ∝ (ldah)2; see dashed curves in Fig. 11. Since the size
of the environment is limited, this is true only for small ldah

(of course, the limit is MCA = 1250 for ldah & 145 cm). As

14 If a position, visited in a previous homing run, is encountered, the current
homing run is stopped and the final deviation to the home is copied.
Fig. 12. Dependence of the mean size of the catchment area (ldah
= 10 cm)

on the number of iterations Nit for different K . The values for Nit + 1 = 3
correspond to the values along the dash–dotted line in Fig. 11.

Fig. 13. The dependence of the mean size of the catchment area on the final
deviation from the goal for hs Fi (Nit + 1 = 3) for different combinations of
frequencies: K = 2 (∗), K = 2, 4 (©), K = 2, 4, 10 (�), K = 1, 2, 4, 10 (�),
K = 10, 4, 2 (♦). For better comparison, the gray curve shows the result again
for hs ei (as in Fig. 11).

could be expected from the AHC results, the homing accuracy
increases with the number K of Fourier coefficients. However,
for medium level accuracy, smaller K can lead to larger MCA.

Fig. 12 shows the improvement in the mean catchment
area if the Fourier-based algorithm is iterated. The allowed
maximum homing error is set to ldah

≈ 10 cm. In addition to
the fast estimation of home vectors, another advantage of the
Fourier-based algorithm (hs Fi) is now obvious: for K = 3,
only six real numbers have to be stored.

The approximations used for hs Fi cause (at least using the
image data sets) a smaller average catchment area (≈ −20%)
compared to hs ei. This effect can easily be compensated for
by storing more Fourier images, e.g. using K = 3 frequencies
(i.e. 6 coefficients {ak, bk}) and float variables (4 bytes), three
images can be stored, which have the same size (72 bytes) as
a 72 pixel gray image using unsigned char (1 byte) but –
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Fig. 14. Example of coarse-to-fine homing using hs Fi for a single goal position (marked by a square; the position of highest image similarity is marked by a circle
if different). Left: Image similarity (gray coded) and estimated home vectors (black arrows) for different numbers of Fourier coefficients, i.e. K = 2, 4, 10 (from top
to bottom). At the position 3 grid units above and 4 grid units to the left of the goal position, there seems to be a “larger error” in the image data set, probably caused
by an accidental switching on of an additional light source during the recording of one of the image data sets. Right: Catchment area and distance after homing run
ldah (gray coded). Usually, catchment areas decrease with K whereas the homing accuracy increases.
depending on the selection of the recording positions – can have
a larger “effective catchment area”.

5. Coarse-to-fine Fourier-based homing

With the results presented in the previous section in mind
– especially the dependence of the AHC and the MCA on the
number of Fourier coefficients and the distance to the goal – we
propose the following approach in order to achieve both a large
catchment area and a small deviation from the goal position:
“Start homing with a small number of Fourier coefficients (low
frequencies) and increase the number as the distance to the goal
decreases”. Since the absolute distance to the goal may not be
easily estimated, one has to rely on other measures, e.g. the
change in image similarity. For our experiments, we tested an
even simpler approach: “Start with small K (low frequencies);
when homing stops, increase K and continue”.
Fig. 15. Total catchment area for “coarse-to-fine homing” using the sequence
“K = 2, 4, 10”. For all starting points inside the catchment area (white) the goal
grid cell is reached (no home vectors are shown since their directions depend
on K , i.e. there is no unique vector at each position).
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Fig. 16. Plots of image similarity function in the vicinity of the goal (position as in Fig. 14). Top centre: The arrows mark different transects for which the image
difference is shown on the left. The dashed rectangle highlights the part of the arena for which the image difference function is plotted on the right (the gray arrow
indicates the viewing direction). Left: Transects of the image similarity function for (from top to bottom) K = 2, 4, 10. Home position is at l = 0. Right: Three
dimensional plot of image similarity function for K = 2, 4, 10. Home position is marked by a rectangle.
The catchment areas achieved by this coarse-to-fine strategy
using hs Fi are shown in Fig. 13. By comparison to Fig. 11,
it is clear that this approach enhances the average size of
catchment areas. Part of the improvement is due simply to
the increased number of homing steps. However, comparison
of the sequence “K = 2, 4, 10” and the reverse sequence
“K = 10, 4, 2” shows that the coarse-to-fine approach achieves
a much higher homing accuracy.

Fig. 14 shows an example of home vector fields and
catchment areas for the different stages of “K = 2, 4, 10”.
For each grid cell of the catchment area, the distance after
the homing runs is shown gray coded on the right side. While
homing accuracy increases with K , the catchment area becomes
smaller. The “combined coarse-to-fine catchment area” is
shown in Fig. 15. As can be seen, both a large catchment area
and a small deviation from the goal is achieved. Transects and
three dimensional plots of the image difference function are
shown in Fig. 16. With increasing K , the minimum becomes
more pronounced and steeper.
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To our knowledge, it is not yet clear if insects use a similar
mechanism for visual homing. However, it has been suggested
by Cartwright and Collett [2] that honey bees use images
that are filtered according to object distances: image parts
containing distant objects can be used when the bee is far away
from the goal. While approaching the goal, closer image parts
are added to achieve a more accurate estimate of the home
direction.

6. Extensions of the Fourier-based homing scheme and
future work

We have presented a Fourier-based homing algorithm that
uses 1D images representing a 10◦ region around the horizon.
As long as the vertical field of view is small, this algorithm
can be directly applied row-wise to two dimensional images.
However, for a larger field of view, vertical image motion has
to be taken into account when calculating expected images.
We also work on an extension to non-planar ground and
movements in three dimensions. This will allow the study
of homing performance in natural environments. Interestingly
– although biologically inspired – most homing algorithms
have been tested only in simulations or on mobile robots in
man-made environments. The recent work of Zeil et al. [7],
who investigated catchment areas of outdoor scenes, showed
that view-based homing can be quite reliable in natural
environments which are usually very cluttered and – e.g.
because of wind or movement of the sun – non-static. With
respect to the proposed coarse-to-fine strategy, the depth
structure of the scene is also of interest. As mentioned in the last
section, segmenting image parts according to the distance of
the imaged objects could improve homing performance further.
For navigation in complex environments, the visual homing
algorithm will be integrated in a navigation system that uses
a graph-like internal representation of the environment also
containing metrical information estimated from odometry or
optical flow [34].
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