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Abstract—The community-based generation of content has
been tremendously successful in the World-Wide Web—people
help each other by providing information that could be useful to
others. We are trying to transfer this approach to robotics in order
to help robots acquire the vast amounts of knowledge needed to
competently perform everyday tasks. ROBOEARTH is intended to
be a web community by robots for robots to autonomously share
descriptions of tasks they have learned, object models they have
created, and environments they have explored. In this paper, we
report on the formal language we developed for encoding this
information and present our approaches to solve the inference
problems related to finding information, to determining if in-
formation is usable by a robot, and to grounding it on the robot
platform.

Note to Practitioners—In this paper, we report on a formal
language for knowledge representation that is used in the
ROBOEARTH system, a web-based knowledge base intended to be
like a “Wikipedia for robots.” The objective is to enable robots to
share information about how to perform actions, how to recognize
and interact with objects, and where to find objects in an environ-
ment. The developed language allows to store such information
in a format that supports logical inference, so that robots can for
example autonomously decide if they have all prerequisites needed
for performing a described action. In laboratory experiments,
the system has been applied to the exchange of pick-and-place
style activities between two mobile manipulation robots. We are
currently extending the representation towards more fine-grained
action specifications.

Index Terms—Knowledge representation, knowledge exchange,
service robotics.

I. INTRODUCTION

T HEWeb 2.0 has changed the way howweb content is gen-
erated. Instead of professional editors, it is now often the

users who fill web sites with content, forming a community of
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people helping each other by providing information they con-
sider useful to others. The free encyclopedia Wikipedia grew up
to millions of articles, sites like cooking.com or epicurious.com
collect tens of thousands of cooking recipes, and ehow.com and
wikihow.com offer instructions for all kinds of everyday tasks.
“Crowdsourcing” the generation of web sites made it possible
to create much more content in shorter time with shared effort.
In our research, we are trying to employ this approach to

improve the performance of our robots. On the one hand, we
aim at enabling robots to use the large amount of information
that can already be found on the Web to accomplish their tasks,
for instance, by translating written instructions from web pages
into robot plans [1]. On the other hand, we are working towards
a similar “World-Wide Web for Robots,” called ROBOEARTH
(Fig. 1), that intends to create a web-based community in
which robots can exchange knowledge among each other.
Understanding information that was originally created for
humans is still challenging and rather costly, but once one robot
has done it, it can share this newly gained information with
other robots, which then do not have to go through the difficult
conversion process again. We hope to speed up the time-con-
suming knowledge acquisition process by enabling robots to
profit from tasks other robots have already learned, from object
models they have created, and from maps of environments they
have explored.
If such information is to be autonomously generated and used

by robots, that is, without human intervention, it has to be repre-
sented in a machine-understandable format. In this respect, the
approach has much in common with the Semantic Web [2], in
which computers exchange information among each other: The
meaning of content needs to be represented explicitly, be sep-
arated from platform-specific aspects, be described in terms of
logical axioms that a computer can understand, and these log-
ical axioms need to bewell-defined, for example, in an ontology.
An explicit representation of the semantics is important to en-
able robots to understand the content, i.e., to set single pieces
of information into relation. Only if they know the semantics
of the exchanged information, robots can decide if an object
model will be useful to perform a given task, or determine if
all required sensors are available. In particular, the representa-
tion language provides techniques for describing the following.
• Actions and their parameters, object poses in the environ-
ment, and object recognition models.

• Meta-information about the exchanged data, e.g., types,
file formats, units of measure, coordinate frames.

• Requirements on components a robot needs to have in
order to make use of a piece of information.
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Fig. 1. Overview of the ROBOEARTH system: A central database provides information about actions, objects, and environments. The robot can up- and download
information and determine if it can use it based on a semantic model of its own capabilities.

• Self-models of a robot’s components and capability con-
figuration.

• Methods for matching requirement specifications to a
robot’s capabilities to identify missing components.

In this paper, we describe our approach to creating a semantic
representation language for the ROBOEARTH system. It is an ex-
tended and updated version of a paper presented at ICRA 2012
[3], describing more recent experiments on two heterogeneous
robots in two environments as well as more detailed informa-
tion about the language elements. Its main contributions are: 1)
a semantic representation language for actions, objects, and en-
vironments; ) the infrastructure for using this representation to
reason about the applicability of information in a given context
and to check if all required robot capabilities are available; and
3) mechanisms for creating and uploading shared knowledge.
These technical contributions are validated by an experiment
including two physical robots performing a serving task in two
different environments based on information retrieved using the
described methods. The second robot thereby applied informa-
tion the first one had shared via ROBOEARTH.
The rest of this paper is organized as follows. We start with

an overview of related work, introduce the ROBOEARTH system,
and describe the representations of actions, object models, and
semantic environment maps. We then explain the matching be-
tween action requirements and robot capabilities, the commu-
nication with the ROBOEARTH database, and the application of
downloaded information during task execution.We finish with a
description of our experiments and a discussion of the system’s
capabilities.

II. RELATED WORK

As a platform for knowledge exchange between hetero-
geneous robots, ROBOEARTH requires very expressive and
highly semantic representations that provide a robot with all
information it needs to select information from the knowl-
edge base, adapt it, and reason about its applicability. Earlier
research on knowledge representation for actions or objects
usually did not deal with this kind of meta-information needed
for autonomously exchanging knowledge. Hierarchical Task
Networks (HTN [4]) and related languages for plan repre-
sentation [19] or workflow specification [18] are similar to

the action representation used in ROBOEARTH, but focus on
the description of the task itself, i.e., its subactions, goals,
and ordering constraints. The Planning Domain Definition
Language (PDDL) [20] follows a different approach describing
actions as first principles from which plans are constructed
during run-time using AI planning techniques. XABSL [5],
mainly used in the RoboCup soccer context, describes actions
in terms of hierarchical finite state machines. AutomationML
[6] is a standard for describing task information and spatial
configurations, mainly used in industrial applications. The
FIPA [7] standard primarily deals with the definition of com-
munication standards for software agents. Object description
formats like the proprietary DXF [8] or the open Collada [9]
standard describe objects by their meshes and textures, but
without further specifying semantic properties. The Knowledge
Interchange Format (KIF) [21] is a very expressive generic
exchange language that aims at a self-contained representation.
The high expressiveness however comes at the cost of limited
reasoning support. For ROBOEARTH, we chose a shared on-
tology as pragmatic solution. We are not aware of any other
system that integrates task descriptions, spatial information,
semantic information about object types and meta-information
about the exchanged data in a common language supporting
abstract reasoning.
Related work on sharing knowledge among robots focused

either on sharing a common belief state in multirobot systems
[10], or on fundamental aspects like how heterogeneous robots
can autonomously acquire and share symbols created from per-
ceptual cues [11]. Our interest is rather on creating a system for
exchanging complex manipulation task-related information, so
we simplify some of these aspects by assuming that a common
base ontology is shared by all parties and that perception is done
using the provided object models which are linked to the classes
in the ontology.
The ROBOEARTH system as a whole is complemented by

other efforts to create cloud-based robotic applications. Other
systems investigate aspects like remote sensor data processing
[12], teleoperation via the Internet [13], service-oriented in-
terfaces for robot components [14], as well as distributed
architectures for task execution and coordination [15]. Our
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approach to capability representation and matching is inspired
by work on web services in the semantic web context [16], [17]
that face similar problems in web service discovery and com-
position, though precondition checks are usually rather shallow
in these systems and rely on service descriptions specified by a
programmer.

III. THE ROBOEARTH SYSTEM

The work presented in this paper is part of the ROBOEARTH
project [22] which targets at building a Wikipedia-like plat-
form for sharing knowledge about actions, objects, and envi-
ronments between robots. The project covers different aspects
like the generation and execution of task descriptions, object
recognition methods, learning, and the realization of the central
web-based knowledge store. Parts of ROBOEARTH have been re-
leased as open-source ROS packages.1 In this paper, we focus
on the methods for representing and reasoning about the ex-
changed knowledge. The source code is available in the ROS
packages re comm and re ontology and the knowrob stack. For
technical details regarding the implementation of the presented
techniques, we refer to the documentation of these software
packages.
Fig. 1 illustrates how knowledge can be exchanged via the

ROBOEARTH platform: On the left is the central ROBOEARTH
knowledge base, containing descriptions of actions (called
“action recipes”), objects, and environments. These pieces
of information have been provided by different robots with
different sensing, acting and processing capabilities, and there-
fore have different requirements on capabilities a robot must
have in order to use them. The ROBOEARTH language provides
methods for explicitly describing these required capabilities and
for matching them against capabilities available on the robot,
visualized by the different shapes of puzzle pieces. Each robot
has a self-model consisting of a description of its kinematic
structure, including the positions of sensors and actuators, a
semantic model of its parts (describing, e.g., that a group of
parts forms a gripper), and a set of software components like
object recognition systems. We apply the Semantic Robot De-
scription Language (SRDL) [23] to describe these components
and the capabilities they provide, and to match them against
the requirements specified for action recipes. Section VII
explains the process in more detail. The robot can connect
to the ROBOEARTH knowledge base using interface methods
that perform information encoding and communication (see
Section VIII).
The representation language is realized as an extension of

the KNOWROB [24] ontology, which is also used for grounding
the downloaded descriptions on the robot (Section IX). In
KNOWROB, knowledge is described in Description Logic using
the Web Ontology Language (OWL). OWL distinguishes
between classes, instances of these classes, and properties that
can either be described for single instances or for whole classes
of things. Classes are arranged in a hierarchical structure,
called an ontology, allowing multiple inheritance. KNOWROB’s
ontology is derived from the OpenCyc ontology [25] and itself
serves as the basis for the ROBOEARTH ontology. We extended
the KNOWROB ontology with concepts that are especially

1Available at http://www.ros.org/wiki/roboearth.

required for the exchange of knowledge: Meta-information
about the data to be exchanged like units, coordinate systems,
its resolution, algorithms that were used for creating data, and
requirements that are needed for interpreting it.
For the sake of clarity, we will present most of the language

constructs in terms of graphical visualizations instead of source
code. A more detailed description of the language capabilities
can be found in a related technical report [26]. A formal spec-
ification of the language elements is provided by the ontology2

and the OWL files imported by roboearth.owl.

IV. ACTIONS AND TASKS

Actions are specified by deriving a subclass from one of the
action classes in the KNOWROB ontology, which currently con-
tains about 130 action classes (Fig. 2), and extending the de-
scription of this subclass with task-specific properties. For in-
stance, an action of type TransportationEvent should have the
properties fromLocation and toLocation as well as an objec-
tActedOn. The specification of properties a class needs to have
is called a “class restriction” in OWL.
Actions can be arranged in a temporal hierarchy describing

the composition of complex actions frommore basic ones, in ad-
dition to the generalization hierarchy in Fig. 2. As an example,
the action PuttingSomethingSomewhere for transporting an ob-
ject from one position to another involves picking up an object,
moving to the goal position, and putting the object down again.
These subactions are described in the following OWL code ex-
ample:

Class: PuttingSomethingSomewhere

SubClassOf:

Movement-TranslationEvent

TransportationEvent

subAction some PickingUpAnObject

subAction some CarryingWhileLocomoting

subAction some PuttingDownAnObject

orderingConstraints value SubEventOrdering1

orderingConstraints value SubEventOrdering2

The ordering of subActions in a task can be specified by par-
tial ordering constraints which describe the relative pairwise or-
dering between the actions.

Individual: SubEventOrdering1

Types:

PartialOrdering-Strict

Facts:

occursBeforeInOrdering PickingUpAnObject

occursAfterInOrdering CarryingWhileLocomoting

Individual: SubEventOrdering2

Types:

PartialOrdering-Strict

Facts:

occursBeforeInOrdering CarryingWhileLocomoting

occursAfterInOrdering PuttingDownAnObject

2http://ias.cs.tum.edu/kb/roboearth.owl.
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Fig. 2. Excerpt from the ROBOEARTH action ontology that describes different kinds of actions in terms of a taxonomic structure. Each of these classes is further
annotated with its semantic properties. Similar ontologies exist for classes of objects and environment models.

Fig. 3. Representation of a “serving a drink” task, called “action recipe” in the
ROBOEARTH terminology, which is composed of five subactions that themselves
can be described by another action recipe.

Fig. 3 visualizes an action recipe for serving a drink to a pa-
tient in bed. In this picture, action classes are represented as
blocks, properties of these classes are listed inside the block, and

ordering constraints among the actions are shown as arrows be-
tween the blocks. There are three levels of hierarchy: The recipe
for the ServeADrink action includes theGraspBottle action that,
by itself, is defined by an action recipe (shown on the right
side) consisting of single actions. Both recipes consist of a se-
quence of actions that are described as task-specific subclasses
of generic actions, like Reaching or Translation, with additional
parameters, like the toLocation or the objectActedOn. This spec-
ification can be transformed into appropriate calls to executable
components for executing the task. Before execution, the ab-
stract descriptions of objects and locations need to be grounded
in concrete locations using the perception methods and the en-
vironment model (Section IX). The action recipe lists depen-
dencies on components that have to be available on the robot
in order to successfully perform the task, in this example some
object recognition models that are necessary to recognize all
objects in the task. Additional dependencies are inherited from
higher level action classes, exploiting the hierarchical structure
of the action ontology. The dependency on an arm motion capa-
bility, for example, is specified for all subclasses of Reaching at
once and therefore does not have to be specified in each action
recipe.

V. OBJECT MODELS

Object models in ROBOEARTH describe classes of objects by
their semantic properties, including information on how to rec-
ognize and how to articulate them. Fig. 4 exemplarily shows a
model of a cabinet in a mock-up hospital room. The upper part
describes an instance of an object recognition model, including
links to pictures and a CAD model as well as information about
the creation time and the algorithm that can use the model. The
recognition model instance refers to a description of the object
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Fig. 4. Object model representation. The object model instance refers to bi-
nary data for a model as well as to a detailed description of the object class to
be exchanged. In this case, the model describes a cabinet composed of several
articulated doors connected with hinges to the cabinet’s frame.

class IkeaExpeditShelf2x2 that consists of articulated parts,
namely, doors connected to its frame via hinges. The relative
poses of the hinges with respect to the body of the cabinet
can be estimated [27] and stored in the class description. This
way, the information about their locations and properties can
be applied to other instances of the same type of cabinet. Once
the cabinet has been recognized using the model ObjModel-
ExpeditShelf2x2, the relative coordinates are transformed into
global coordinates based on the estimated pose of the cabinet.
All coordinate frames are explicitly described, and all numeric
values can be annotated with their unit of measure from the
QUDT ontology3, allowing transparent conversion of, e.g.,
lengths from meters to feet.
After downloading an object model, the robot sends the

linked recognition model file to its perception system and loads
its OWL description into its local knowledge base. Based on the
set of available object models and their links to object classes,
the robot can determine whether it can recognize a certain kind
of object or if a model needs to be downloaded.

VI. ENVIRONMENT MODELS

ROBOEARTH supports various kinds of environment maps
(topological and metric maps, two- and three-dimensional,
created using different sensors like 2D laser scanners, tilting
lasers or cameras, etc.). Fig. 5 describes their representation
in the ROBOEARTH language: Each map is annotated with an
OWL description specifying its type and some basic properties.
The map content can either be described in the same OWL
file, which enables the system to reason about it, or be linked

3http://qudt.org/.

Fig. 5. Environment model representation. Different types of maps are sup-
ported and either described completely in the ROBOEARTH language, or in a
linked binary file. A spatial hierarchy of room, building, street, city, etc. de-
scribes which environment the map belongs to and allows to search for suitable
maps in ROBOEARTH.

as external (binary) files. The latter is often used for maps for
which established file formats exist or where logical inference
would not make sense (e.g., occupancy grid maps).
In order to exchange these maps, they need to be annotated

with information about which environment they describe so that
a robot searching for information can find them in the data-
base. The approach chosen for the ROBOEARTH language is
similar to the human way of describing an address: Maps are
annotated with the city, street, building, floor, and the number
or type of room they describe, as shown in the right side of
Fig. 5. These elements are linked by a transitive part-of rela-
tion. This allows to query for combinations of these levels, e.g.,
to search for all maps of a kitchen in Karlstrasse, Munich, or for
all rooms on the third floor of Karlstrasse 45. It further allows
to combine labels, such as room numbers, with types of rooms
(since private homes usually do not have room numbers) and
to attach multiple labels to the same physical entity (Karlsplatz
and Stachus are two names for the same square in Munich).
This flexible representation supports both the spatial hierarchy
(city—street—building), the semantic/generalization hierarchy
(room—kitchen), and different labels for the same room.

VII. MATCHING REQUIREMENTS TO CAPABILITIES

In order to find out if the robot has all prerequisites for exe-
cuting a recipe or, if not, whether missing components can be
downloaded from ROBOEARTH, the systemmatches the require-
ments of the action recipe to the robot’s capability model. While
this procedure cannot guarantee successful task execution, it
can at least determine if components are missing and need to be
retrieved. The matching process is realized using the Semantic
Robot Description Language (SRDL) [23] and visualized in
Fig. 6. The robot first queries for an action recipe and, together
with the query, sends a description of its own capabilities to the
inference engine, which then checks whether all requirements
of the recipe are available. At first sight, the robot may find the
EnvironmentMap to be missing, as it is neither available on the
robot nor in the ROBOEARTH database. Using knowledge that
both a 2DLaserScannerMap and a 3DLaserScannerMap are
specializations of an EnvironmentMap, it can infer that both
can be used to fulfill the dependency. It recursively checks
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Fig. 6. Matching requirements of action recipes against robot capabilities to
determine which further information is still missing and has to be downloaded.
The matching becomes more flexible by taking the robot’s knowledge into ac-
count and selecting the 2DLaserScannerMap to fulfill the general requirement
on an EnvironmentMap.

their dependencies and finally selects the 2DLaserScannerMap
whose dependencies are available on the robot. The matching
process is continued until the system finds a combination of
action recipes, object- and environment models that does not
have any unmet dependencies, or until all alternatives are
exhausted and no solution could be found.
This matching procedure is realized by a set of Prolog rules

which read all available components by searching along the
robot’s kinematic structure (comp available(Robot, CompT)),
and all capabilities which are either asserted to be available on a
class of robots or a robot instance, or inferred to be available be-
cause they solely depend on available components or capabili-
ties. The following code examples have been slightly simplified,
the full source code is contained in the mod srdl package.4

cap available(Cap, Robot) :-

owl has(Robot, hasCapability, SubCap),

owl subclass of(SubCap, Cap).

cap available(Cap, Robot) :-

rdfs individual of(Robot, RobotT),

class properties(RobotT, hasCapability, SubCap),

owl subclass of(SubCap, Cap).

cap available(Cap, Robot) :-

4http://ros.org/wiki/mod_srdl

forall(class properties(Cap, dependsOnComp,
CompT),

comp available(Robot, CompT)),

forall(class properties(Cap, dependsOnCap,
SubCap),

cap available(SubCap, Robot)).

The required comp predicate collects the set of components that
the action itself, any of its subactions, or any required compo-
nents or capabilities depend on (analogous for capabilities):

required comp(Act, Comp) :-

plan subevents recursive(Act, SubAct),

class properties(SubAct, dependsOnComp, Comp).

required comp(Act, Comp) :-

required cap(Act, Cap),

class properties(Cap, dependsOnComp, Comp).

Based on these rules, missing components and capabilities can
be defined as “required and not available,” and the feasibility
of an action as “does not depend on any missing capabilities or
components”:

missing comp(Act, Robot, Comp) :-

required comp(Act, Comp),

not(comp available(Robot, Comp)).

action feasible on robot(Act, Robot) :-

not(missing cap(Act, Robot, )),

not(missing comp(Act, Robot, )).

These rules appear very simple because they make use of the
specialization hierarchy (inherited dependencies) and composi-
tion hierarchy (dependencies of subactions) in the action rep-
resentation as well as transitivity of the sub component pred-
icate operating on the robot’s kinematic structure. While the
above matching example only requires information about the
asserted subclass hierarchy, the actual matching procedure sup-
ports dependency specifications that make full use of the expres-
siveness of OWL class restrictions which are evaluated by the
owl individual of and owl subclass of predicates.

VIII. COMMUNICATION WITH THE ROBOEARTH
KNOWLEDGE BASE

Once the missing pieces of information have been de-
termined, the robot searches for them in the ROBOEARTH
knowledge base. A communication module provides methods
for up- and downloading information using HTTP requests
and encapsulates the communication with the web-based
ROBOEARTH knowledge base. The communication package
further provides methods for updating existing knowledge, for
instance an environmental map with updated object positions
or an improved action recipe. There are different possibilities
for sending queries to the knowledge base: If the identifier of
an action recipe, object model or environment map is known,
e.g., because another recipe refers to it, this item can directly be
accessed. Otherwise, queries are sent as a logical specification
of the properties a recipe or model needs to have. For example,
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the robot may search for a recipe that describes a Serving task
with a Bottle as objectActedOn, and, as a result, get all recipes
describing specializations of such a task.

IX. EXECUTION OF ACTION RECIPES

Having downloaded abstractly specified instructions from
ROBOEARTH, the robot has to ground them in calls to executable
program code. Complex tasks are decomposed into more and
more basic actions until executable primitives for the actions
are available. There is intentionally no predefined level of
granularity at which this transition takes place to let the system
support large, monolithic implementations of functionality as
well as setups with a large number of small components. The
same high-level recipe can be executed in different setups by
downloading more fine-grained action recipes until executable
primitives are available for each action.
The execution of action recipes can be realized using dif-

ferent techniques; system integrators can create their own ex-
ecution engine interpreting the task descriptions in an action
recipe. We created a reference implementation of an execution
engine [28] based on the Cognitive Robot Abstract Machine
framework (CRAM) [29]. In this implementation, action recipes
are translated into robot plans described in the CRAMPlan Lan-
guage (CPL). Compared to the OWL-based language for action
recipes that is optimized for reasoning and for integrating infor-
mation sources, CPL specializes on the execution of plans. The
CRAM system offers sophisticated techniques for failure moni-
toring and recovery and for choosing suitable action parameters.
In action recipes, parameters like the locations where objects are
to be placed are described using abstract specifications like “in
reach of the patient.” CRAM provides methods for generating
metric positions that comply with the abstract specification [30].

X. EVALUATION

This paper describes a system for representing, exchanging
and reasoning about high-level task descriptions, object models,
and semantic environment maps in a common semantic frame-
work. A quantitative evaluation of such a system is hardly pos-
sible: Most task-related performance measures, like the execu-
tion time, rather describe the performance of external factors
like the hardware of the executing robots than the representa-
tion language. The times needed for download and inference
depend on the size and complexity of the task description and
the robot model. In our experiments with the PR2 (whose model
describes 158 components) and the drink-serving task, finding
the recipe in the database including capability matching took
about 1.41 s, its download another 1–2 s. The system can fur-
ther be evaluated on qualitative criteria: Is the representation
expressive enough to encode all important kinds of informa-
tion? Are all of the necessary reasoning tasks supported? Which
level of autonomy can be achieved? We thus investigated how
the ROBOEARTH language can enable robots to perform tasks in
a previously unknown environment. The experiment included
two heterogeneous robot platforms, a PR2 and an Amigo robot,
operating at two different locations that were previously un-
known to them. Using information fromROBOEARTH, they were
supposed to serve a drink to a patient in bed, which involved

navigating to a cabinet, opening it, taking the drink out of it,
and handing it to the patient.
Although both environments had a different spatial layout,

they shared common pieces of furniture, for instance the same
type of cabinet. This allowed sharing object-related informa-
tion across environments: When the first robot performed the
task, it did not know about the articulation properties of the
cabinet door. It thus estimated the type and pose of the joint,
attached this information to the object model and uploaded it
to the ROBOEARTH knowledge base. While an object instance
is environment-dependent, the model is self-contained and can
therefore be applied to objects in different scenes, which al-
lowed the second robot to open the door. Without this model, it
would not have been capable of doing that since it did not have
a compliant arm. The upper part of Fig. 7 shows the environ-
ment maps that were downloaded from ROBOEARTH. The fol-
lowing query was used to download the map information using
the SeRQL [31] query interface5 offered by the ROBOEARTH
knowledge base:

select source from context source

kr:describedInMap ;

kr:roomNumber

where N like “3001”

using namespace

http://ias.cs.tum.edu/kb/knowrob.owl# ;

Based on this map, the robots (Fig. 7 bottom) could navigate
to the appropriate positions and locate the objects required for
the task. The action recipe to be used was selected using the
following query:

select source from context source

rdfs:label “serve a drink”^^xsd:string

using namespace

http://www.w3.org/2000/01/rdf-schema#

The action recipe was then matched against the robots’ capa-
bilities with the result that all required capabilities were avail-
able, but some recognition models for some of the objects men-
tioned in the task were missing (namely, the bottle and the bed),
which had to be downloaded, including the CADmodels shown
in Fig. 7. The following CPL plan was then generated from the
action recipe:

(def-top-level-plan serve-a-drink ()

(with-designators (

(bottle1 (object ’((name bottle1)

(type drinking-bottle))))

(bed1 (object ’((name bed1)

(type bed_piece-of-furniture))))

(hand-pose-handover1 (location ’((on, bed1))))

(robot-pose-handover1 (location ’((to reach)

(side :right)

(loc, hand-pose-handover1))))

5http://api.roboearth.org
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Fig. 7. Top: Semantic environment maps of the two hospital rooms, down-
loaded from ROBOEARTH based on the address and room number. Bottom: PR2
and Amigo robots opening the cabinet and picking up the drink to be served.

(arms-at101 (action ’((type trajectory)

(pose, hand-pose-handover1)

(side :right))))

(unhand-action102 (action ’((type open-gripper)

(side :right))))

)

(achieve ’(object-in-hand, bottle1 :right))

(at-location (robot-pose-handover1))

(achieve ’(arms-at, arms-at101))

(achieve ’(arms-at, unhand-action102))))

XI. DISCUSSION

Since the first version of this paper, the described methods
have been applied to other tasks and domains, for example to
enable robots to interact with customers in a convenience store
[32]. The implemented recommendation tasks did not involve
mobile object manipulation, but other challenges like interac-
tion with customers and question answering based on the robot’s
knowledge about objects and on the semantic environment map.
ROBOEARTH has been used for exchanging the required task-,
object-, and environment knowledge. Especially the behavior
definition in a recipe (instead of compiled program code) and
the modularity of spatial, semantic and action-related knowl-
edge was very important in this scenario to facilitate the modi-
fication of robot behavior and deployment on several robots.
While we have so far focused on the technical realization of

the representation language and reasoning modules described
in this paper, there are several open research issues related to
the ROBOEARTH vision of a World-Wide Web for robots. For
example, the current language for action recipes is limited to
symbolic action descriptions. Describing lower level motions,
accelerations and forces would however allow the exchange of
novel actions that are not available as executable modules on
the target robot. One option that we are currently exploring is to
include symbolic motion constraints that can be interpreted by
a motion controller [33].
Once ROBOEARTH grows to many users, scalability will also

become an issue—not only regarding the infrastructure, but also

for managing the quality of the stored information: Which mea-
sures are needed to keep a large crowdsourced database struc-
tured? Which kinds of information do users actually want to
share? Is the language expressive enough for all of them? Can
the quality and safety of the information in the database for
example be ensured by a rating system based on robot experi-
ences? Are human moderators needed? How does a robot rank
and select information if there are multiple alternatives, e.g.,
hundreds of models for different kinds of cups and bottles?
These research questions are not yet addressed by the cur-

rent version of the system, though solutions to at least many
of them will be needed for a usable and scalable crowdsourced
robot knowledge base. The relevance of the individual aspects
will also become clearer once first experiences in larger settings
and with more robots have been collected. We hope that tech-
niques that proved successful for human crowdsourcing can be
applied in a modified form, also exploiting opportunities par-
ticular to the robot setting. For example, ratings of downloaded
information can be automatically given, and robots can upload
a detailed record of their experiences with executing a task.
Another interesting research opportunity that will arise once

the ROBOEARTH system includes a substantial amount of data
is learning on the database. Massive amounts of data about en-
vironments, objects and action log data could enable robots to
learn typical object locations, success models of plans given
the context, common execution failures, timing information, or
promising plans for a given robot platform.

XII. CONCLUSION

In this paper, we discussed the requirements of a formal lan-
guage for representing robot knowledge with the intention of
exchanging it, and presented our approach to realizing such a
language. The language allows to describe actions, object recog-
nition and articulation models, as well as semantic environment
maps, and provides methods to reason about these pieces of in-
formation. Using the language, robots can autonomously decide
if they lack any capabilities that are needed to perform an ac-
tion, and if so, see whether they can download software to ac-
quire them. ROBOEARTH thereby acts as a complement, not a
substitute of existing control structures: If applicable informa-
tion can be found, it will help a robot with its tasks—if not, its
queries will fail and it will be in the same situation as without
ROBOEARTH.
The language and the accompanying reasoning methods have

successfully been used to exchange tasks, object models, and
environment maps among physical mobile manipulation robots
and to execute the abstractly described task. The experiments
showed that the presented methods enable robots to download
the information needed to perform a mobile manipulation task,
including descriptions of the actions to perform, models of the
objects to manipulate, and a description of the environment,
from the ROBOEARTH database on the Internet.
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