
Using the Functional Mockup Interface as an Intermediate Format in
AUTOSAR Software Component Development

Bernhard Thiele*, Dan Henriksson+
*German Aerospace Centre (DLR), Institute for Robotics and Mechatronics, Germany

+Dassault Systèmes AB, Ideon Science Park, Lund, Sweden
Bernhard.Thiele@dlr.de, Dan.Henriksson@3ds.com

Abstract

This paper shows how the recently developed Func-
tional Mockup Interface (FMI) standard for model
exchange can be utilized in the context of AUTO-
SAR software component (SW-C) development. Au-
tomatic transformations between the XML schemas
of the two standards are utilized to convert FMI
models to AUTOSAR. An application example is
demonstrated, where a Modelica controller is ex-
ported through FMI, converted to an AUTOSAR
SW-C and then imported into an AUTOSAR tool.
The presented approach, with FMI as an intermediate
format, should be an attractive alternative to provid-
ing full-fledged AUTOSAR SW-C export.

Keywords: FMI; AUTOSAR; model-based design;
embedded software

1 Introduction

During the last two years, an open standard for ex-
change of simulation models, the Functional Mock-
Up Interface (FMI), has been developed within the
European ITEA2 research project MODELISAR.
This standardized interface supports exchange of
models that are described by differential, algebraic
and discrete equations with time-, state- and step-
events. The first official version, 1.0, of this standard
was released on January 26, 2010.

Apart from the obvious improvements for model
exchange between different tools and vendors, the
interface is also well suited, and designed, for soft-
ware components in embedded control systems.
Since one of the major industrial driving forces be-
hind the MODELISAR project is within the automo-
tive industry, interoperability of the lightweight FMI
with the comprehensive AUTOSAR standard for
automotive E/E applications is of high interest. This
paper examines the applicability of using FMI within

an AUTOSAR-based software component develop-
ment process.

The paper is organized as follows. Details of the
FMI and AUTOSAR standards are given in Sections
2 and 3, respectively. A mapping and conversion
between FMI and AUTOSAR is then described in
Section 4. An example application involving the
Dymola [1] and AUTOSAR Builder [2] tools are
presented in Section 5. Finally, Section 6 gives the
conclusions.

2 Functional Mockup Interface

Integration of components delivered by many dif-
ferent suppliers is a common task in modern product
engineering. To reduce costs, control complexity,
and accelerate development it is desirable to allow
this integration task to be done using a virtual repre-
sentation of the product, i.e., to build a digital mock-
up. Besides spatial integration of the different com-
ponents in a CAD tool, it is also required to let the
dynamic behavior of the product to be predicted and
checked by means of (physical) simulation.

Very often suppliers already have dynamic sys-
tem models of their particular component, developed
within their preferred simulation tool. However, in-
tegrating the various component models (possibly
each developed with a different simulation tool) into
an overall system model for joint simulation has
proven to be a rather difficult, time-consuming, and
numerically fragile undertaking.

The intention of the Functional Mockup Interface
(FMI) is that dynamic system models from different
tool vendors can be coupled together to form an
overall system model with minimal effort and high
numerical quality. To achieve that goal, the FMI de-
fines an open interface that needs to be implemented
by tools in order to import or export FMI system
models. In FMI terminology a system model that
implements the interface defined by the FMI specifi-
cation is called a Functional Mockup Unit (FMU).

Figure 1 from the MODELISAR project profile de-
scription shows a use-case from an automotive
OEMs perspective.

Figure 1: A functional mock-up of a vehicle consisting
of several coupled Functional Mockup Units (source:
www.itea2.org)

3 Introduction to AUTOSAR

AUTOSAR is an automotive standard, which aims to
decouple hardware and software and to separate
communication from function. It achieves that by
introducing several layers of abstraction with stan-
dardized interfaces.

The development partnership AUTOSAR
(http://www.autosar.org) has released version 4.0 of
the AUTOSAR standard in December 2009. How-
ever, since most commercially available tools to this
date not yet support the 4.0 release, the following
discussion concentrates on the 3.1 release of the
standard.

The actual functional behavior (e.g. a model-
based control algorithm) is encapsulated in AUTO-
SAR Software Components (SW-Cs). These compo-
nents are decoupled through standardized interfaces
from specific characteristics of Electronic Control
Units (ECUs) and the given communication mecha-
nism (e.g., automotive buses like CAN, FlexRay,
LIN or inter-process communication if several soft-
ware components interact on the same ECU).

The benefit of this decoupling is that the software
components can be moved without adaption between
different ECUs. The interconnections between the
software components are handled by the Virtual
Functional Bus (VFB). The VFB is the sum of all
communication mechanisms and essential interfaces
to the basic (hardware-dependent) software provided
by AUTOSAR on an abstract level to software com-
ponents (see Figure 2).

Figure 2: Basic AUTOSAR approach for configuration
of an AUTOSAR system (source: [7], p. 9).

The mapping of the software components to the

physical ECUs, as well as the mapping of the soft-
ware component’s communication ports to the phys-
ical communication mechanism (e.g., CAN, Flex-
Ray, LIN, or shared memory) is provided in a later
configuration step. This allows starting the develop-
ment of the logical software functions independently
from the decision of the target platform (following
the concept of separation of logical system architec-
ture from the technical system architecture [3] [4]).

After that configuration, an AUTOSAR tool can

deduce what software/communication functionality
is required on a particular ECU and will be able to
generate the needed source code for the particular
ECU (target platform). This means that the abstract
communication connections modeled on the VFB
level are transformed to concrete communication
connections on the ECUs. The software layer that
provides the VFB communication services for the
SW-C is called AUTOSAR Runtime Environment
(RTE) and needs to be generated by the tool for
every ECU.

4 FMI to AUTOSAR Software Com-
ponent conversion

The development of the FMI is primarily intended to
provide a standardized exchange format for physical

http://www.autosar.org/

simulation models [1]. Nevertheless the intention to
use that standard also for software components in
embedded control systems is already stated in the
abstract of [6].

Compared to AUTOSAR, the FMI standard is
much smaller and more straightforward, and support
of the FMI standard is a more manageable task1.
Thus, a conversion from FMI to AUTOSAR SW-Cs
could be a cost effective alternative to providing ded-
icated AUTOSAR code generators (especially if
support for FMI is already available or planned).

4.1 Establishing a relation between FMI and
AUTOSAR software component specifica-
tion methodology

Both FMI and AUTOSAR use XML documents
for capturing the information about the (software)
model (see [6] and [7]). In each case, the structure of
the XML documents is defined in an associated
XML schema [8]. A notable difference is that the
AUTOSAR 3.1 schema occupies about 1000KB,
while the FMI 1.0 schema is limited to about
25.5KB.

Mapping between different XML schemas is a
common IT task and dedicated standards and tools
are readily available. The Altova MapForce [9] pro-
gram is a tool that allows defining mappings between
XML schemas in a graphical manner. Figure 3
shows an excerpt of a mapping from FMI to AUTO-
SAR 3.1 developed in MapForce which was utilized
in the first prototype mapping2.

There is no univocal relation between FMI and
AUTOSAR elements. Therefore design decisions
about the available alternatives need to be made.

1 In particular the import of AUTOSAR SW-Cs is much
more complex, than that of importing an FMU. The reason
for this is the great flexibility of the AUTOSAR standard
to define SW-Cs, which needs to be managed by an im-
porter. So using FMI as interchange format for embedded
software components could also facilitate the exchange of
embedded software.
2 In later versions the mapping in MapForce was dropped
in favor of a mapping developed in Scala [10] and Java
utilizing auto-generated XML data bindings from the Al-
tova XMLSpy tool [11]. The reason for that was the per-
ceived need for more flexible language expressiveness as
the mapping became more complex.

Figure 3: Excerpt of the mapping between the FMI
and AUTOSAR schema.

4.2 Mapping FMI inputs/outputs to AUTOSAR
SW-Cs Ports

The interaction between AUTOSAR Software
Components and other parts of the system (including
other AUTOSAR Software Components) is realized
over a set of ports with standardized interfaces.
Figure 4 shows the graphical representation of an
AUTOSAR SW-C with different ports at its interface
boundary.

Figure 4: Graphical representation of software-
components in AUTOSAR (source: [12], p. 20).

There are basically three kinds of port interfaces
supported by AUTOSAR:

 Client-server: The server is the provider
of operations and several clients can in-
voke those operations.

 Sender-receiver: A sender distributes in-
formation to one or several receivers, or
one receiver gets information (events)
from several senders.

 Calibration: Using or providing (static)
calibration data

A port can either be a “PPort” or an “RPort”. A
“PPort” provides the elements defined in a port in-
terface. An “RPort” requires the elements defined in
a port interface.

The FMI standard collects all visible/accessible
variables within one central data structure (in the
“ModelVariables” element). That element contains a

sequence of elements of the type “fmiScalarVari-
able” as shown in Figure 5.

Figure 5: Structure of the fmiScalarVariable element

The information whether a variable is an input or

output to the component (and therefore interface re-
levant) is coded in the optional attribute “causality”
(condition: “causality = input/output”). Parameters
for potential calibration of the component are identi-
fied through the “variability” attribute (condition:
“variablity = parameter”). FMI inputs/outputs map
to the AUTOSAR sender-receiver port interface (in-
put maps to “RPort” and output maps to “PPort”).

 AUTOSAR supports different flavors of sender-
receiver port communication (explicit/implicit com-
munication, queued or un-queued communication,
sending/receiving of data or events). There is no
counterpart for these options in the FMI standard.
Consequently, the desired mapping needs to be de-
cided at the FMU import. For the further discussion
we assume that FMI inputs/outputs are mapped to
explicit, un-queued, data communication ports.

4.3 Mapping of FMI parameters to AUTOSAR
calibration ports

In FMI a parameter is identified by the condition
“variablity = parameter” within the variable defini-
tion (see above). Parameters can be set before initial-
izing the FMU. After initialization they are fixed and
may not change during runtime.

In embedded automotive software design, ma-
nipulation of parameters is termed calibration.
AUTOSAR provides flexible support for manipulat-
ing calibration parameters.

 Port-based calibration: Parameters are
explicitly visible on the VFB. This me-
chanism is meant for public parameters
of a SW-C (e.g. in Figure 8 the parame-
ters for the PI-controller are port-based,
public parameters).

 Private calibration parameters: These re-
side internally within a SW-C. They are
not explicitly visible on the VFB level.

The rationale for differentiating between “private”
and “public” parameters is that a supplier might want
to indicate which parameters are safe to be calibrated
by the OEM and which parameters the OEM should
better not touch. Additionally, AUTOSAR allows to
specify whether parameters may be calibrated on-
line (while the software function is running), or only
before initialization.

Like the previous mapping of FMI inputs/outputs
to AUTOSAR ports, there is no univocal mapping
from FMI parameters to AUTOSAR calibration pa-
rameters. However, it seems to be reasonable to map
FMI parameters to “public” calibration ports, explic-
itly visible at VFB level3.

4.4 Wrapping the FMU C-code into an AUTO-
SAR Runnable Entity

Through its ports, the AUTOSAR SW-C specifies
which information it requires from and provides to
other components. The actual implementation of a
component consists of a set of “runnable entities” (in
short runnable4), which are code sequences in the
SW-Cs that are activated through events, like timers
or the receiving of data.

In order to execute an FMU as an AUTOSAR
SW-C, it is necessary to wrap the C-function calls to
the FMU into an AUTOSAR runnable.

Every runnable entity provides an entry point and
an associated set of data. For components imple-
mented using C or C++ the entry point of a runnable
is implemented by a function with global scope de-
fined in the source code of the software component.
The RTE is the sole entity that can trigger the execu-

3 The current limitation of the FMI standard to allow pa-
rameters only to be set before initialization is in contrast
to the well-established practice of online-calibration of
controller algorithm parameters. Hopefully, future ver-
sions of the FMI standard will deal with that limitation.
4 A runnable runs in the context of a task. The task pro-
vides the common resources to the runnables such as con-
text and stack-space. On the operating system level a task
can be realized as either a full process or as a light-weight
thread.

tion of a runnable. In [13], p.141 the signature of this
function is defined as

<void|Std_ReturnType> <name>([IN RTE_Instance <instance>],
[role parameters])

AUTOSAR provides various events that can trig-

ger a runnable (e.g. TimingEvent, DataReceived-
Event, DataReceiveErrorEvent, DataSendComp-
letedEvent, etc.). For using Modelica/FMU control-
ler models in AUTOSAR applications the cyclic in-
vocation plays the most important role. For that pur-
pose the TimingEvent is used as activation method
for FMU models.

Since the AUTOSAR activation of runnables is
targeted at discrete controllers it does not support the
concept of a solver, which is of course needed in the
FMI specification. As a consequence, an adequate
FMI solver must be wrapped inside the runnable
functions. A design decision is needed whether
FMUs with continuous states (“numberOfContinu-
ousStates > 0”) shall be supported by the AUTO-
SAR importer, or if the import is restricted to purely
discrete FMUs (superseding the need of wrapping a
numerical integrator into the runnable). For the pur-
pose of this work it is decided to only allow purely
discrete FMUs5.

Notably, FMI 1.0 does not include an attribute for
specifying a fixed sample period6. Thus, the sample
period for the TimingEvent needs to be given as a
parameter within the FMU import process.

5 Example application

The FMI to AUTOSAR conversion will be dem-
onstrated in an application example. In this scenario
we will consider export of a Modelica controller
from Dymola through FMI. The exported FMU will
then be converted to AUTOSAR and imported into
the AUTOSAR Builder tool.

In order to focus the discussion, a simple, instruc-
tive example of a controlled drive is used. The ex-
ample is modeled in Modelica using the Dymola tool
(see Figure 6). The reference trajectory is provided

5 This restriction is not as severe as it may seem on first
sight. If it is desired to use models with continuous states,
some tools (e.g. Dymola) provide options of exporting
such models as FMUs with inline integrators. As a result
the exported FMU has no external continuous states
(“numberOfContinuousStates = 0”), thus no integrator
needs to be provided for executing such an FMU.
6 Hopefully, future versions of the standard will allow
specifying a fixed sample period.

by the “reference” block. The “pIController” block
implements the closed-loop control of the plant.

Figure 6: Simple controlled drive example as Modelica
model in Dymola

The PI-controller (proportional-integral controller)
may be parameterized with the proportional gain “k”
and the time constant “T” of the integral term, as
shown in Figure 7.

Figure 7: Parameter dialog for controller calibration
in Dymola

Figure 8 shows how the example can be modeled
within an AUTOSAR VFB diagram. The parameters
are modeled as explicit inputs to the “PIController”
SW-C. The “PI_Init” runnable initializes the control-
ler and sets the provided parameters. The “PI_Run”
runnable is called periodically to provide the re-
quired actuating variable. Instead of the plant, Sen-
sor-Actuator SW-Cs have been introduced (“Tor-
queActuator” and “SpeedSensor”).

Figure 8: Simple controlled drive example as AUTO-
SAR VFB diagram (including sensor and actuator
components, as well as parameter ports for controller
calibration)

The Modelica PI-controller is exported from Dy-
mola as an FMU and transformed from the FMI
schema to the AUTOSAR schema. Similarly, the
required C wrapper code for the AUTOSAR run-
nable is automatically generated from the FMI
schema. In both cases Scala and Java are used as the
implementation languages of choice for carrying out

these transformations7. In Figure 9 an excerpt of the
Model Description File of the PI-controller as ex-
ported by Dymola is given.

Figure 9: Excerpt from the Model Description File of
the PI-controller (FMI schema compliant xml format)

The necessary workflow for transforming the
FMU to an AUTOSAR SW-C is depicted in Figure
10. The workflow is highly automated, since the cur-
rent version of the fmi2autosar program needs no
user interaction except of specifying the location of
the program’s input and the desired fixed sample
period. Basically, the import into AUTOSAR Build-
er works by just copying the files generated by
fmi2autosar into an AUTOSAR project directory and
“refreshing” the project8. The screenshot in Figure
11 shows the AUTOSAR Master Editor view, after
the PI-controller import.

7 The implementation effort was considerably reduced by
leveraging the functionality of the XMLSpy tool [11] to
automatically generate XML data bindings for the Java
language.
8 For further processing in AUTOSAR Builder, e.g., simu-
lation on VFB level and RTE generation, necessary build
dependencies and compiler flags need to be configured
manually in AUTOSAR Builder. Because the required
settings are highly tool- and application-specific no at-
tempt is made to provide default settings.

Import into AUTOSAR Builder

modelDescription.xmlsources

PI.fmu

A FMU description
consists of several
files which are
stored in a zip-file
with the extension
„.fmu“. The FMI
standard allows to
distribute the Model
Interface
implementation as
C-sources or as
binaries. Note that
cross-compilation
will only work with
C-sources.

autosar.xmlPI_Run.cPI_Init.c

AUTOSAR SW-C description (xml-file)
and C-sources files for the „Init“ and

„Run“ runnable

The generated C-
source files adapt
the interface of the
FMU C-sources to
a C-interface
compatible to
AUTOSAR
runnables

Import the
generated artifacts
into an AUTOSAR
Authoring Tool for
further integration
into the vehicle’s
E/E architecture

Run FMI to AUTOSAR
transformation program

fmi2autosar.jar
(executable jar file)

Run the
transformation

Figure 10: FMU to AUTOSAR-SW-C transformation
workflow demonstrated through the PI-controller ex-
ample

AUTOSAR allows a flexible structuring of ele-
ments through the use of packages and subpackages.
To achieve a well-arranged layout, which facilitates
integration into an AUTOSAR project, the proposed
transformation collects all elements resulting from an
FMU transformation into one package. The value of
the FMU’s “modelIdentifier” attribute is used as
base string for the package and subpackage names
(see Figure 11).

After the import the model can be further proc-
essed in AUTOSAR Builder. It can be integrated
with other SW-Cs and simulated on the VFB level
using the Geensoft ASim tool.

6 Conclusions

This paper has presented a mapping and conversion
scheme between the Functional Mockup Interface
(FMI) for model exchange and the automotive soft-
ware architecture standard, AUTOSAR. A suitable
subset of the AUTOSAR software component speci-

fication was selected for the mapping and the ration-
ale for these decisions was motivated. The design
has been validated by importing the transformed
FMI models into an AUTOSAR Authoring Tool and
simulating the design on the Virtual Functional Bus
level.

The FMI to AUTOSAR mapping process has also
identified missing features in FMI that should be
worth considering for future versions of the standard.

Figure 11: Screenshot of the AUTOSAR Master Editor
after importing the FMU of the PI controller into the
Geensoft AUTOSAR Builder tool

6.1 Acknowledgements

Partial financial support of DLR by BMBF
(BMBF Förderkennzeichen: 01lS08002) for this
work within the ITEA2 project MODELISAR is
highly appreciated.

Dassault Systèmes AB thanks the Swedish fund-
ing agency VINNOVA for partial funding of this

work within the ITEA2 project MODELISAR (2008-
02291).

References

[1] Dymola Version 7.4. Dassault Systèmes,
Lund, Sweden (Dynasim). Homepage:
http://www.dymola.com, 2010

[2] AUTOSAR Builder Version 2010-2a. Das-
sault Systèmes, Brest, France (Geensoft).
Homepage: http://www.geensoft.com/, 2010

[3] Jörg Schäuffele, Thomas Zurawka. Automo-
tive Software Engineering, SAE Interna-
tional, 2005

[4] Hilding Elmqvist, Martin Otter, Dan
Henriksson, Bernhard Thiele, Sven Erik
Mattsson. Modelica for Embeeded Systems,
7th Int. Modelica Conference, 2009

[5] Barbara Lange. Verbunden; Austauschformat
für die Simulation, iX extra 10/2010, p. VIII

[6] MODELISAR consortium. Functional Mock-
up Interface for Model Exchange 1.0,
http://modelisar.org/specifications/FMI_for_
ModelExchange_v1.0.pdf, 2010

[7] AUTOSAR GbR. Technical Overview,
AUTOSAR, Part of Release 3.1, AUTO-
SAR_TechnicalOverview.pdf, 2008

[8] W3C. XML Schema Part 1: Structures Sec-
ond Edition. W3C Recommendation 28 Oc-
tober 2004,
http://www.w3.org/TR/xmlschema-1/

[9] MapForce 2010, Altova GmbH, Vienna,
Austria,
http://www.altova.com/mapforce.html, 2010

[10] Martin Odersky. The Scala Language Speci-
fication Version 2.8, http://www.scala-
lang.org/docu/files/ScalaReference.pdf, 9
November 2010

[11] XMLSpy 2010, Altova GmbH, Vienna, Aus-
tria, http://www.altova.com/xmlspy.html,
2010

[12] AUTOSAR GbR. Software Component
Template, Part of Release 3.1, AUTO-
SAR_SoftwareComponentTemplate.pdf,
2010

[13] AUTOSAR GbR. Specification of RTE, Part
of Release 3.1, AUTOSAR_SRS_RTE.pdf,
27.01.2010

http://www.dymola.com/
http://www.geensoft.com/
http://modelisar.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://modelisar.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.w3.org/TR/xmlschema-1/
http://www.altova.com/mapforce.html
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.altova.com/xmlspy.html

	1 Introduction
	2 Functional Mockup Interface
	3 Introduction to AUTOSAR
	4 FMI to AUTOSAR Software Component conversion
	4.1 Establishing a relation between FMI and AUTOSAR software component specification methodology
	4.2 Mapping FMI inputs/outputs to AUTOSAR SW-Cs Ports
	4.3 Mapping of FMI parameters to AUTOSAR calibration ports
	4.4 Wrapping the FMU C-code into an AUTOSAR Runnable Entity

	5 Example application
	6 Conclusions
	6.1 Acknowledgements

