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Abstract

The demand to ever increase realism and scope of
models routinely exceeds the currently available com-
puting power and thus requires thoughts on improv-
ing simulation efficiency. This is especially true for
real-time simulations, where fixed timing constraints
do not allow to just “wait a bit longer”.

This paper presents a new approach in Modelica that
allows a modeler to separate a model into different par-
titions for which individual solvers can be assigned. In
effect, this allows to use multi-rate and multi-method
time integration schemes that can contribute to im-
prove the efficiency of a (real-time) simulation.

The first part of the paper discusses basic considera-
tion relating to modular (real-)time integration. After-
wards, the implementation of a convenient Modelica
library for the partitioning of physical models is briefly
described. Finally, the presented library is used to par-
tition a detailed six degree of freedom robot model for
modular simulation. The simulation performance of
that partitioned model is compared to the simulation
performance achieved by using “conventional” global
solvers.

Keywords: multi-rate / multi-method time integra-
tion; simulation; clocked discretized continuous-time
partitions.

1 Introduction

Testing the actual embedded systems hardware in
processor-in-the-loop (PIL) or hardware-in-the-loop
(HIL) setups, usually requires that the “virtual” parts
of the overall systems are simulated under real-time
constraints. This means that the simulation must run
as a hard real-time application that always meets its
timing deadlines.

Inputs and outputs of a real-time simulation need to
be processed at regular intervals. The length of this

interval is called the simulation frame time. The worst
case computation time needs to be less than the sim-
ulation frame time. Explicit fixed-step solvers are ap-
propriate numerical integration routines for real-time
simulations. Variable-step solvers are generally not
appropriate for two reasons: a) because real-time sim-
ulation must normally perform I/O operations at reg-
ular intervals, and b) because the flexible number of
performed simulation model evaluations impede deter-
ministic prediction of worst case computations times.

Implicit fixed-step solvers are problematic in the
context of real-time simulation, because the number
of iterations required by implicit methods is theoret-
ically unbounded. However, their numerical proper-
ties with regard to integrating stiff systems1 is much
more favorable compared to explicit solver methods.
When integrating stiff systems using explicit methods,
the largest possible step size is severely limited due to
stability problems of the integration algorithms. Im-
plicit methods can perform much better in such cases.
Because of that, attempts have been made to use im-
plicit methods also in real-time simulation. Elmqvist
et al. [5, 4] describe techniques that allow to minimize
the number of iteration variables for implicit methods
(in some cases the number of iteration variables can
be reduced to zero!). These algorithms are available in
the commercial tool Dymola for real-time simulation
purposes under the umbrella term inline integration
algorithms. The development of linearly implicit or
semi-implicit methods are another noticeable attempt
in which implicit solver methods are “approximated”
by methods that exhibit a bounded number of worst-
case iterations. This improves the suitability of these
methods for real-time simulation purposes

Computational resources are finite. As a conse-
quence the computational requirements of the real-
time simulation must accommodate with available

1Stiff systems typically contain dynamically fast and highly
damped components.
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hardware resources. If the computational load re-
quired for the simulation is too high, the simulation
model needs to be adapted in order to meet the tim-
ing deadlines. Typical options for improving the com-
putational performance include model simplification,
use of more efficient algorithms and operations, or re-
placing computational intensive subsystems with fast
table lookups. Another option is to split the simula-
tion model into subsystems, which can be executed in
parallel across multiple processors, or which can be
executed with different frame rates. The later option
is termed multiframing or multi-rate integration and
can be attractive if some subsystems have significantly
longer time constants than others. Details about typi-
cal techniques used in the context of real-time simula-
tion can be found in relevant literature, e.g., [7, 3].

The new synchronous language elements extension
to Modelica [8, Chapter 16] also provides language
primitives that allow the developer to partition models
into several parts that can be solved separately by dif-
ferent numerical solver methods. A crucial aspect of
the partitioning task is to establish adequate coupling
mechanism between the separate partitions. Following
[6] the term modular simulation is used to underline
that modular coupling approach.

During the partitioning the developer can take ad-
vantage of a-priori system knowledge to improve the
performance of the simulation. Partitions can be exe-
cuted with different frame rates and/or can utilize dif-
ferent numerical integration algorithms. In that way
multi-rate and multi-method integration schemes can
be realized. To the knowledge of the authors, this is a
rather unique feature in a modeling language for physi-
cal systems. However, the suitable preparation of sim-
ulation models for multi-rate and multi-method inte-
gration is still a non trivial task.

In order to facilitate the preparation of simula-
tion models for multi-rate and multi-method integra-
tion schemes a Modelica library named MULTIRATE

has been build that wraps necessary methodological
and technical knowledge in an easy-to-use framework.
The theory behind this library, as well as its technical
implementation and application to practical problems
will be demonstrated in the following sections.

2 Clocked Discretized Continuous-
Time

Using the synchronous language elements extension
[8, Chapter 16] it is possible to define clocks that
associate a continuous-time solver to the equations

associated to that clock. This is illustrated in Fig-
ure 1. Line 4 defines a periodic clock with the in-

1model ClockedDiscretizedContinuousTime
2Real x(start=0), u;
3// 500 ms, no solver:
4Clock clk = Clock(5,10);
5// 500 ms, ExplicitEuler solver:
6Clock clk_solver=
7Clock(clk, "ExplicitEuler");
8equation
9// associate clock clk_solver to u:
10u = sample(1.0, clk_solver);
11der(x) = -x + u;
12end ClockedDiscretizedContinuousTime;
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Figure 1: Clocked discretized continuous-time exam-
ple.

terval 500ms. Line 7 defines a solver clock based
on the previously defined clock and assigns as solver
method "ExplicitEuler". Other methods that are
predefined by the language standard are discussed be-
low. Line 10 associates clock clk_solver with the
variable u (by “sampling” the literal constant 1.0
using clock clk_solver). Due to clock inference
the differential equation in line 11 can be deduced
to be also associated with clk_solver and therefore
the differential equation needs to be solved by the
"ExplicitEuler" method with a fixed-step integra-
tion step size of 500ms. The corresponding plot of x
is shown at the right-hand side of Figure 1.

The specification [8, Section 16.8.2] defines the
conceptual solution algorithms of the predefined meth-
ods (tools may provide support for additional solver
methods). Since the following discussion is based on
these algorithms the respective part from the specifica-
tions is reproduced below in a slightly adapted form2.

The solvers are defined with respect to the underlying or-
dinary differential equation in state space form to which the

2Most notably, in contrast to the specification text the solver
methods are defined in terms of integrating from clock tick ti to
ti+1, instead of from ti−1 to ti. This is just a simple index shift.
The advantage is, that it allows to present some equations in a
slightly more concise and readable form.
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Table 1: Predefined solver methods for solver
clocks

Solver Method Solution method
(for all methods:
yi := g(xi,ui, ti))

Explicit-
Euler

xi+1 := xi + h · ẋi
ẋi := f (xi,ui, ti)

ExplicitMid-
Point2

xi+1 := xi + h · f (xi + 1
2 h · ẋi,

ui+ui+1
2 , ti + 1

2 h)
ẋi := f (xi,ui, ti)

Explicit-
Runge-
Kutta4

k1 := h · ẋi

k2 := h · f (xi + 1
2 k1,

ui+ui+1
2 , ti + 1

2 h)

k3 := h · f (xi + 1
2 k2,

ui+ui+1
2 , ti + 1

2 h)
k4 := h · f (xi + k3,ui+1, ti+1)
xi+1 := xi + 1

6 (k1 + 2k2 + 2k3 + k4)
ẋi := f (xi,ui, ti)

Implicit-
Euler

xi+1 := xi + h · ẋi+1
†

ẋi := f (xi,ui, ti)

Implicit-
Trapezoid

xi+1 := xi + 1
2 h · (ẋi + ẋi+1) †

ẋi := f (xi,ui, ti)
† Equation system with unknowns: xi+1, ẋi+1.

continuous-time partition can be transformed, at least con-
ceptually (t is time, u(t) is the real vector of input variables
to the partition, x(t) is the real vector of continuous-time
states, and y(t) is the real vector of algebraic and/or output
variables to other partitions):

ẋ = f (x,u, t)

y = g(x,u, t)

The solver methods (with exception of "External"3) are
defined by integrating from clock tick ti to clock tick ti+1

and computing the desired variables at ti+1, with h = ti+1−
ti = interval(ui+1) and xi+1 = x(ti+1).

Table 1 shows the definitions of the predefined
solver methods using the notation from above.

3 Multi-Rate

Multi-rate integration can be attractive if some sub-
systems have significantly longer time constants than
others. This is often the case for multi-domain physi-
cal systems since the components of different physical
domains often exhibit significant different time con-
stants. A typical example are systems with slow me-
chanical parts which are controlled by fast electrical

3The solver method "External" means that the solution
method is defined in the simulation environment and not in the
Modelica model.

circuits. If an explicit integration method is used, the
numerical stability of the whole system depends on the
fastest time constant and it is necessary to choose a re-
spective small step size for integration.

The MULTIRATE library doesn’t impose limits on
the number of partitions with different frame rates that
may be executed together. However, for clarity the ba-
sic idea of multi-rate integration is demonstrated with
two ODE partitions4 that will be discretized for two
different execution rates:

ẋ f (t) = f f (x f ,xs, t) (1a)

ẋs(t) = fs(x f ,xs, t) (1b)

The sub-index f stands for the “fast” partition
and s stands for the “slow” partition. Using the
ExplicitEuler method from Table 1 for discretiza-
tion results in a system of recurrence equations of the
form:

x f (ti + j ·h f ) = x f (ti +( j−1) ·h f )

+ h f · f f
(
x f (ti +( j−1) ·h f ),

xs(ti +( j−1) ·h), ti +( j−1) ·h
)

(2a)

xs(ti+1) = xs(ti)+ k ·h f · fs
(
x f (ti),xs(ti), ti

)

(2b)

where k and j are integers, k is the ratio of the two step
sizes, j = 1 . . .k, h f is the step-size of the fast partition,
and ti+1− ti = k · h f = hs is the step-size of the slow
partition.

Note that Equation (2a) does not specify how xs(ti +
( j− 1) · h) is calculated. Equation (2b) is not defined
for intermediate values between ti and ti+1. Therefore,
an interpolation or extrapolation scheme needs to be
used to estimate the intermediate values.

For real-time simulation the sequence in which the
computation of fast and slow frames are interspersed is
important. Ledin [7] describes three typical execution
schemes. The timing diagram in Figure 2 shows that
execution schemes by means of an example where the
ratio of the slow and the fast step size, k, is k = 3. The
three schemes are described briefly below:

1. Multiframing in a single task with no fast-frame
real-time I/O. The slow frame rate is treated as a
“master” frame rate in which the slow frame is
executed first, followed by a burst of the k fast
frames. This scheme is only acceptable if the fast
frames do not perform any real-time I/O.

4In general, partitions in the MULTIRATE library may consist
of differential and algebraic equations and the partitions are cou-
pled over designated input and output variables, but this is omitted
here in favor of a more succinct presentation of the basic idea of
multi-rate integration.
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2. Multiframing in a single task with fast-frame
real-time I/O. The fast frames are executed at
fixed intervals of h f length. The computations
needed in the slow frame are split into several
subframes which are interspersed after the fast
frame calculations. However, splitting the slow
frame into several suitable subframes is rarely a
simple thing to do. This is a serious drawback of
this method.

3. Multiframing in a multitasking environment with
rate monotonic scheduling (RMS). In this case
the scheduler will give CPU access to the task
with the higher priority (computation of fast
frames) and interrupt the lower priority task
(computation of slow frames) until the higher pri-
ority task has finished its computations. During
the times in which the higher priority task is idle,
the CPU access is given back to the lower prior-
ity task to resume its computations. No (manual)
splitting into subframes is needed which is a huge
advantage compared to the previous method.

hs
Running
Idle
Running
Idle

Slow
Frame

Fast
Frame

tn tn+1

Time

hs
Running
Idle
Running
Idle

Slow
Frame

Fast
Frame

tn tn+1

h f

hs
Running
Idle
Running
Idle

Slow
Frame

Fast
Frame

tn tn+1

h f

Single task with no fast-frame I/O

Single task with fast frame I/O

Multitasking environment with RMS

Figure 2: Three different multiframing schemes for
real-time simulation.

4 Multi-Method

Multi-method integration (also called mixed-mode in-
tegration) is yet another option to improve the execu-
tion performance of (real-time) simulation. In contrast
to multi-rate integration that uses different integration
step sizes for distinct partitions, multi-method inte-
gration uses different integration methods for distinct
partitions. Similarly to multi-rate integration, multi-

method integration can be attractive if some partitions
have significantly longer time constants than others.

A typical scenario is to split a system into fast parts
and slow parts and use an implicit integration method
for the fast parts and an explicit integration method for
the slow parts. Schiela and Olsson [11] describe such
a mixed-mode integration scheme (using explicit and
implicit Euler methods) in which they employ an auto-
matic partitioning approach based on linearization and
eigenvalue analysis. This disburdens the developer
from partitioning the system. However, if a system
is highly nonlinear, inspecting eigenvalues becomes
questionable since the eigenvalues of the linearized
system move around with time. A user controlled par-
titioning, leveraging a-priori system knowledge, can
be more adequate and effective in such cases.

Similar to multi-rate integration, the basic idea of
multi-method integration is demonstrated on the ba-
sis of two ODE partitions in the form of equation sys-
tem (1). Using the ImplicitEuler method from Ta-
ble 1 for the “fast” partition and the ExplicitEuler
method for the “slow” partition results in recurrence
equations of the form:

xs(ti+1) = xs(ti)+ h · fs
(
x f (ti),xs(ti), ti

)
(3a)

x f (ti+1) = x f (ti)+ h · f f
(
x f (ti+1),xs(ti+1), ti+1

)
(3b)

where h = ti+1− ti is the integration step-size. At first,
xs(ti+1) is computed using the explicit Euler method.
This value is afterwards used to compute x f (ti+1) us-
ing the implicit Euler method.

The MULTIRATE library allows to combine any of
the solver methods listed in Table 1. Note that it is eas-
ily possible to combine multi-rate and multi-method
integration within the framework of the MULTIRATE

library. This allows to exceed the benefits compared to
applying the methods separately.

5 Partition Coupling

An important aspect when applying multi-rate and
multi-method integration is the coupling between the
involved partitions. In the context of the framework
provided by the MULTIRATE library the coupling
scheme of Figure 3 depicts the basic idea (liberally ab-
stracting from the details). Note that although the cou-
pling is discussed by considering the special case of
two coupled partitions, the basic principles carry over
to the general case of n partitions.

Partition 1 and 2 may be discretized by using one of
the solver methods defined in Table 1. Different solver
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ẋ1 = f1(x1,u1, t)
Partition 1

y1 = g1(x1,u1, t)

Extra-/Interpolation

ẋ2 = f2(x2,u2, t)
Partition 2

y2 = g2(x2,u2, t)

Extra-/Interpolation

u2y2n ,y2n+1

y1n ,y1n+1u1

t ∈ [Tn,Tn+1]

t ∈ [Tn,Tn+1]

Figure 3: Coupling of two partitions. Communication
takes place at discrete time instants t = T0,T1, . . . ,Tk.
Depending on the applied coupling scheme the ap-
proximation of the coupling terms u1, u2 can be based
on interpolation (if y1n+1 , or respectively y2n+1 is avail-
able) or it must be based on extrapolation.

methods, as well as different step sizes can be used as
long as the ratio of the step sizes is an integer.

Data exchange between clocked discretized
continuous-time partitions is only possible at clock
ticks. Therefore, the clock ticks of the slower partition
determine the discrete time grid in which data is
exchanged between the two partitions. This is quite
similar to the situation encountered in co-simulation
scenarios, in which the communication and data
exchange between two distinct systems is restricted to
discrete synchronization points Tn.

However, in contrast to co-simulation the modular
integration considered in the MULTIRATE framework
has some distinctive characteristics:

• It inherits the characteristics of the synchronous
model of computation that has been introduced
in the “Synchronous Language Elements” exten-
sion in Modelica 3.3 [8, Chapter 16]. This has the
advantage that the formal model of various cou-
pling schemes can be expressed in a high-level,
declarative manner which is close to the under-
lying conceptual mathematical model. However,
the drawback is that optimizations that require a
more low-level control can not be realized.

• Modelica uses acausal connectors to assemble
models of physical components. However, the
coupling of partitions according to Figure 3 re-
quires causal data-flow. It is not obvious how
convenient and effective coupling schemes can be

realized when a model should be partitioned at
acausal connectors.

5.1 Mathematical Model

For the further analysis more detailed mathematical
models than the one indicated in Figure 3 are pro-
posed. As before, the discussion is based on two parti-
tions, but carries over to more general settings involv-
ing n partitions.

Figure 4 depicts a continuous-time domain model
for two coupled partitions, including inputs (u1,u2)
and outputs (y1,y2) due to real-time I/O hardware de-
vices. The dynamics of the coupled partitions are
modeled as differential-algebraic equations (DAEs) in
autonomous semi-explicit form

ẋ1 = f1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)
(4a)

0 = γ1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)
(4b)

y1 = g1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)
(4c)

ẋ2 = f2
(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)
(4d)

0 = γ2
(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)
(4e)

y2 = g2
(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)
(4f)

with differential variables xi ∈Rnxi , algebraic variables
zi ∈ Rnzi , (real-time) inputs ui ∈ Rnui , and outputs yi ∈
Rnyi where nxi ,nzi ,nui ,nyi ∈ N and consistent initial
conditions xi(t0) = xi,0, zi(t0) = zi,0. The (continuous-
time) variables with tilde, x̃i, z̃i, ũi are reconstructed
from a number of m ≥ 1 sampled (discrete-time) val-
ues of the variables without tilde of the same name by
means of extrapolation or interpolation using a “recon-
struction” operator denoted Ψ

x̃i(t), z̃i(t) = Ψi(χi,ζi)(t) t ∈ [Tn,Tn+1] (4g)

ũi(t) = Ψui(υi)(t) (4h)

where χi,ζi,υi are sampled at time instants tk ∈
(Tn−m,Tn] (extrapolation), or tk ∈ (Tn+1−m,Tn+1] (in-
terpolation)

χik ,ζik = xi(Tk),zi(Tk) k = 1 . . .ki, Tk < Tk+1,

ki ∈ N, χi ∈ Rnxi×ki , ζi ∈ Rnzi×ki

υik = ui(Tk) k = 1 . . .kui , Tk < Tk+1,

kui ∈ N, υi ∈ Rnui×kui .

The operator Ψ is loosely borrowed from the math-
ematical framework described in [12, p. 1495], where
it is defined as extrapolation operator. The definition
there is mathematically more technical and rigorous
than considered necessary for this work.
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ẋ1 = f1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)
Partition 1, t ∈ [Tn,Tn+1]

0 = γ1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)

y1(t)u1(t)

y1 = g1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)

ũ1(t)

Ψ1

x1(t),z1(t)

x̃1(t), z̃1(t)
ẋ2 = f2

(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)
Partition 2, t ∈ [Tn,Tn+1]

0 = γ2
(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)

y2 = g2
(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)

Ψu1

Ψ2

x2(t),z2(t)

x̃2(t), z̃2(t)

u2(t) ũ2(t)
Ψu2

y2(t)

Figure 4: Illustration of the used continuous-time domain mathematical model for partition coupling, including
external real-time I/O (u1,u2,y1,y2). The inputs to the partitions are first sampled at discrete time instants
t = T0,T1, . . . ,Tk, subsequently the operators Ψi are applied to the (time-discrete) signals in order to provide
extrapolated/interpolated continuous-time signals during a period of continuous-time system evolution (t ∈
[Tn,Tn+1]).

Data exchange between partitions and the update of
coupling terms is restricted to the time-discrete syn-
chronization points t = T0,T1, . . . ,Tk. In co-simulation
the steps from Tn → Tn+1 are referred to as macro
steps. The union of all macro-time steps is a a macro-
time grid where the partitions update their coupling
terms. Generally, the real-time inputs and outputs
of the respective partitions may be sampled at dis-
crete time instants that are different to the macro-time
grid instants. During a macro step Tn→ Tn+1 the dy-
namics of the partitions evolve according to the gov-
erning DAE using extrapolated (or interpolated) data.
Note that x̃i, z̃i, ũi are continuous in each macro step
Tn → Tn+1 but may have jump discontinuities at the
synchronization points Tn.

Since this work is concerned with real-time simula-
tion, it is natural to consider only equidistant macro-
time grids with constant macro-step size h = (Tn+1−
Tn). Moreover, the utilized synchronous framework
in conjunction with the discretization formula given
in Table 1 suggests to describe the coupling within a
(discrete-time) recurrence equation framework. The
step-sizes hi of the two partitions may differ, but the
ratio between the slower and faster period must be an
integer multiple. Without loss of generality assume
that h1 is the faster partition and denote N = h2/h1 as
the frame ratio. The partitions are synchronized at the
discretization points (≡ macro-time grid)

t = k ·N ·h1 = k ·h2 = k ·h, k ∈ N. (5)

At these points the equations of both partitions have to
be fulfilled concurrently (synchronous model of com-
putation).

The overall discretized system equations can now be
described in terms of the faster sampling period h = h1,
further also denoted as micro-time step. The pre-
cise time dependencies, i.e., at which instant ti = i ·h1
on the micro-time grid coupling variables from time
instant ti≤ j are required depend on the utilized dis-
cretization method. Table 2 shows the dependencies
for the solver methods supported by the Modelica stan-
dard. The important characteristics to be observed
are:

1. Algebraic equations always, regardless of the uti-
lized solver method, require the variable values at
the current time instant on the micro/macro-time
grid.

2. For state integration using ExplicitEuler cou-
pling variable values and state variable values
from previous activation times are sufficient.

3. The other two explicit methods require coupling
variable values from the current time instant (due
to the occurrence of term ui+ui+1

2 in the defining
equations in Table 1)!

4. The implicit methods require coupling variable
values and state variable values from the current
time instant.
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Table 2: Coupled variables time dependencies after
discretization

Solver Method Time instant dependencies
For all methods: h1 is the step-size
of the fast partition, and
ti+1− ti = N ·h1 = h2 = h
is the step-size of the slow partition,
N, j ∈ N, N = h2/h1, j = 1 . . .N.
x̃1,i, z̃1,i, x̃2,i, z̃2,i are approximated
from x1,i,z1,i,x2,i,z2,i by a suitable
extrapolation method.
Time dependencies in the algebraic
equations are always:
0 = γ1(x1,iN+ j, x̃2,iN+ j,

z1,iN+ j, z̃2,iN+ j)
0 = γ2(x̃1,(i+1)N ,x2,(i+1)N ,

z̃1,(i+1)N ,z2,(i+1)N)

Explicit-
Euler

x1,iN+ j = f1(x1,iN+ j−1, x̃2,iN+ j−1,
z1,iN+ j−1, z̃2,iN+ j−1)

x2,(i+1)N = f2(x̃1,iN ,x2,iN , z̃1,iN ,z2,iN)

Explicit-
MidPoint2 /
RungeKutta4

x1,iN+ j = f1(x1,iN+ j−1, x̃2,iN+ j,
z1,iN+ j−1, z̃2,iN+ j)

x2,(i+1)N = f2(x̃1,(i+1)N ,x2,iN ,
z̃1,(i+1)N ,z2,iN)

Implicit-
Euler /
Trapezoid

x1,iN+ j = f1(x1,iN+ j, x̃2,iN+ j,
z1,iN+ j, z̃2,iN+ j)

x2,(i+1)N = f2(x̃1,(i+1)N ,x2,(i+1)N ,
z̃1,(i+1)N ,z2,(i+1)N)

This has the following consequences for clocked dis-
cretized continuous-time partitions that are coupled
within Modelica’s synchronous computation frame-
work:

• In the general case, there is no scheduling of γ1
and γ2, that satisfies reciprocal data dependencies
without resorting to extrapolation from previous
values.

• State integration using ExplictEuler allows
to use x̃1,iN , z̃1,iN = x1,iN ,z1,iN (no extrapolation
needed, since values already available at ti+1N).
However, x̃2,iN+ j−1, z̃2,iN+ j−1 need extrapolation
for j > 1. Scheduling of f1, f2 at the macro-time
grid is always possible, since only past values are
required at these points.

• For state integration using the remaining explicit
and implicit methods, there is no scheduling of f1
and f2 that satisfies reciprocal data dependencies
in the general case without resorting to extrapo-
lation from previous values.

Note that in Modelica’s synchronous computation
framework it is not allowed to have algebraic loops
spanning clocked discretized continuous-time parti-
tions (however, it is allowed to have algebraic loops
within a partition!). Therefore, there must be a sorting
for the coupling equations at macro-time grid points
that allows to evaluate them in a sequential order that
satisfies data dependencies.

The previous discussion already allows to identify
some of the consequences when using the synchronous
framework for partition coupling:

• A staggered method (Gauss-Seidel scheme) that
would first integrate the slow partition, extrapo-
lating the inputs from the coupled (fast) partition,
and after that integrate the fast partition, interpo-
lating from the results of the slow partition, is not
feasible. This is because within the synchronous
framework new values are accessible only at the
points at time where they are valid and not di-
rectly after they have been computed. Also, it is
not possible for the modeler to directly influence
the sequence of calculations. This is at the dis-
cretion of the simulation tool that will only guar-
antee to respect data flow dependencies.

• Nevertheless, an execution scheme similar to the
“Single task with no fast-frame real-time I/O” de-
picted in Figure 2 is feasible, however, the inter-
polation of coupling variables during execution
of the fast partitions is not possible (extrapolation
is required).

• The synchronous model of computation makes
the abstractions that equations at time instants
are evaluated instantaneously. However, in real-
ity, computation takes time. From a real-time I/O
timing perspective it is desirable that the simula-
tion time instants of inputs and outputs closely fit
the real-time instants. For that reason, dedicated
real-time integrators are typically designed to re-
quire only past inputs for the integration up to the
current time instant. This allows to compute the
output values required at real-time instants t = Tn

during a computational period scheduled at t <
Tn. This computational timing details are beyond
the scope of the Modelica specification. How-
ever, observe that all solvers specified in Table 1
(except ExplicitEuler) require the (real-time)
inputs at t = Tn in order to compute the outputs
at t = Tn. Therefore, the real-time outputs will
be inevitable afflicted with a (potentially consid-
erable) computational delay (toutputs = Tn + tdelay).
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Obviously, it will often be desirable to keep at
least tdelay as small as possible. For the “Single
task with no fast-frame real-time I/O” scenario it
is therefore advisable to schedule the computa-
tion of the slow frame’s real-time outputs before
executing the fast frames (just as depicted in Fig-
ure 2)5.

• Parallel coupling methods using solely extrapo-
lated coupling terms (Jacobi-scheme) can be re-
alized within the available synchronous frame-
work. Therefore, parallel execution of frames as
depicted at the bottom of Figure 2 should be fea-
sible. This is expected to be particularly attractive
if a simulation can benefit from multi-core hard-
ware and distribute the computational load on the
available cores6.

• Some of the solver methods in Table 1 are multi-
pass methods7, i.e., they require several “inter-
mediate” evaluation of f (..) during integration.
Since communication within the synchronous
framework can only occur at clock ticks, the
needed intermediate values of the inputs u are
computed by interpolation. The alternative to ac-
tually acquire (real-time) samples of u for this in-
termediate evaluations is not possible in the cur-
rent framework. However, it should be noted that
for dedicated real-time integrators the use of in-
termediate input samples is typically considered
[1, 9].

5.2 Partition Coupling at Acausal Connec-
tors

In Figures 3 and 4 the coupling of partitions is accom-
plished by causal (directed) dataflow. However, physi-
cal modeling in Modelica relies on acausal connectors.
It is not obvious how to accomplish partition coupling
at the boundary of acausal connectors.

The following discussion is based on couplings
at the boundary of rotational mechanical connectors
from the Modelica Standard Library. However, the

5The Modelica standard doesn’t provide any possibility for a
modeler to control the scheduling of computations. Therefore, a
reasonable scheduling of real-time I/O can be seen as an imple-
mentation quality trait of a Modelica tool.

6However, the Modelica standard doesn’t provide any means
for a modeler to control whether computations are parallelized. At
the time of writing this article the authors are not aware of any
Modelica tool that supports parallelization of clocked partitions.

7Namely, the solver methods ExplicitMidPoint2 and
ExplicitRungeKutta4.

presented principles are easily transferable to other
physical connectors.

Consider the academic example model in Figure 5
and assume the model shall be partitioned somewhere
between the inertias J1 and J2.

(a) Modelica component diagram of assembly.

φ1 φ2dc

cc

J1 J2

d1

c1

d2

c2

(b) Schematic diagram of mechanical assembly.

Figure 5: The example model: a linear 2-DOF oscilla-
tor.

Figure 6 shows two common approaches to partition
the model for modular integration [2]:

Force/displacement coupling Partition P1 provides
the cut torque at its boundary as output which is
the input to partition P2. Conversely, partition P2
provides the displacement at its boundary as out-
put which in turn is the input to partition P1 (Fig-
ure 6a).

Displacement/Displacement coupling The coupling
force element of S1 is duplicated in S2. The two
partitions are coupled by the displacements of S1
and S2 (Figure 6b).

5.3 Implementation in Modelica

The Modelica MULTIRATE library provides conve-
nient building blocks for partitioning a model for
multi-rate and multi-method simulation. It is imple-
mented on top of the synchronous language elements,
partly reusing functionality provided by the MODEL-
ICA_SYNCHRONOUS library [10].

5.3.1 Force/Displacement Coupling

The component diagram in Figure 7a shows the oscil-
lator from Figure 5a in a force/displacement coupling
configuration. The coupling component subSample1
is an instance of the SubSampleForceDisp class from
the MULTIRATE library. The SubSampleForceDisp
class provides a few parameters to modify the coupling
characteristics, namely inferFactor to define that the
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φ1
τ1 τ2

φ2

P2P1

dc

cc

J1 J2

d1

c1

d2

c2

[
φ2
φ̇2

]

τ1

(a) Force/displacement coupling.

cc

dc
φ1
τ1 τ2

P2P1

φ2

cc

J1

d1

c1

J2

d2

c2

dc

[
φ2
φ̇2

]

[
φ1
φ̇1

]

(b) Displacement/displacement coupling.

Figure 6: Partitioning the example model.

tool shall determine the sub-sample factor by clock in-
ference. Otherwise, the sub-sample factor can be en-
tered manually. Efficient polynomial extrapolation of
arbitrary degree nP is supported for extrapolating val-
ues stemming from the slow partition during execution
of the fast partition8. With default settings the out-
put of the fast partition will be delayed one clock tick,
however parameter useDirectFeedthrough allows to
avoid that delay. The delay is necessary if both par-
titions need at macro-time steps t = iN the current
coupling values of the respective other partition. As
has been discussed in Section 5.1 this reciprocal data
dependencies lead to illegal algebraic loops spanning
the coupled partitions. Note that if at least one of the
partitions uses ExplicitEuler as solver method, a
scheduling without algebraic loops may become feasi-
ble and useDirectFeedthrough may be set to true.

The design of the icon of the SubSampleForceDisp
class gives a visual clue regarding the intended place-
ment within a model. The component at the left hand
side receives a displacement (φ and derivatives of φ ),
and needs to provide a torque τ . This is typical for
spring like elements. The right hand side compo-
nent receives a torque and reacts with a displacement.
This is typical for inertia like components. The sub-

8Note that nP=0 is equivalent to holding the value constant
and nP=1 is equivalent to linear extrapolation. Moreover, while
increasing the order of extrapolation may result in improved nu-
merical stability and accuracy in some applications it may also de-
teriorate numerical stability (see [2] for comprehensive numerical
experiments regarding extrapolation and interpolation of coupling
signals in co-simulation scenarios). In many cases, nP=0 or nP=1
seems to be a good choice.

sampling factor is displayed at the bottom of the icon
(provided that inferFactor=false).

The internal structure of the SubSampleForceDisp
class is depicted in Figure 7b. The parallel branches
with component uDirect1 and unitDelay19 are con-
ditional branches. Their activation is mutually ex-
clusive and depends on the value of the parame-
ter useDirectFeedthrough. The subSample1 block
wraps Modelica’s subSample(..) operator, which
performs fast-to-slow rate transitions. Component
absoluteSensor returns an array with the displace-
ment variables {φ , φ̇ , φ̈}. Upsampling and (polyno-
mial) extrapolation of the variables is performed by the
superSample1 block. Since φ is a discrete-time (sam-
pled) signal (see Figure 4), it carries no information
about its derivatives. It is the task of component move
to force the movement of flange flange_a according to
signals φ , φ̇ and φ̈ . In the implementation smoothness
information of φ is recovered at the sampling points
by using the sampled values of φ̇ and φ̈ and setting the
recovered signal equal to flange_a.phi. This is ac-
complished by using the derivative annotation as de-
scribed in [8, Section 17.7, “Declaring Derivatives of
Functions”]. Components torqueSensor and torque1
are from the Modelica Standard Library.

9The unitDelay1 block wraps the previous operator. Ac-
cording to the current specification [8, Section 16.8.1] the use of
previous within a clocked discretized continuous-time partition
is forbidden. However, the Dymola 2014 FD01 tool used for this
work is more lenient and allows it. This is a desirable feature in
order to enable the described implementation.
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j2

J=10

j1

J=10
d=10

cd1

c=1e4
d=10

cd2

c=1e4fixed1 fixed2

assignSolver1 periodicClock1

100 us

ImplicitTrapezoid

d=10

cc

c=1e4
2

f ast slow

subSample1

p

t·1/z

assignSolver2periodicClock2

200 us

ExplicitRungeKutta4

(a) Example model using a force/displacement coupling
in a multi-rate and multi-method configuration. The cou-
pling component subSample1 is an instance of class
SubSampleForceDisp from the MULTIRATE library.

absoluteSensor

{phi, w, a}
phi,w,a

move

subSample1

factor

torque1

tau

superSample1

factor

n nP

superSample1

factor

n nP

torqueSensor1

tau

unitDelay1

1

z
y_start=0

uDirect1

flange_bflange_a

(b) Component composition diagram of class
SubSampleForceDisp. This class implements the
force/displacement coupling.

Figure 7: Force/displacement coupling using the
MULTIRATE library.

5.3.2 Displacement/Displacement Coupling

The component diagram in Figure 8a shows the os-
cillator in a displacement/displacement coupling con-
figuration. The component cc is an instance of class
SubSampleDispDisp from the MULTIRATE library. It
constitutes both: the dynamic equations of motion for
the spring/damper element and the partition coupling
equations.

The upper part of parameters of the
SubSampleDispDisp class is identical to the pa-
rameters provided by the SubSampleForceDisp class.
The lower part provides parametrization for the
spring/damper element.

The internal structure of the SubSampleForceDisp
class is depicted in Figure 8b. Note that the dynamic
equations for the spring/damper element are dupli-
cated: while component springDamper1 is assigned
to the slow partition, springDamper2 is assigned to
the fast partition. This “overlapping” integration of-
ten leads to more favorable numerical stability proper-
ties (see Busch [2]). Aside from this, the components
appearing in Figure 8b are already known from Fig-

d=10

cc

c=1e4

f ast slow

3

j2

J=10

j1

J=10
d=10

cd1

c=1e4
d=10

cd2

c=1e4fixed1 fixed2

assignSolver1 periodicClock1

100 us

ExplicitMidPoint2

assignSolver2periodicClock2

300 us

ExplicitEuler

(a) Example model using displacement/displacement cou-
pling in a multi-rate and multi-method configuration.

absoluteSensor2

{phi, w, a}
phi,w,a

move2

d=d

springDamper2
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{phi, w, a}

subSample1

factor

subSample1

factor

d=d

springDamper1

c=c
phi,w,a

move1

unitDelay1

1

z
y_start=0

unitDelay1

1
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y_start=0

superSampleExpo2

factor

n nP

superSampleExpo2

factor

n nP

uDirect1

flange_bflange_a

(b) Implementation of displacement/displacement coupling
class.

Figure 8: Displacement/displacement coupling using
the MULTIRATE-library.

ure 7b.
While this section described the partitioning at the

example of 1-dimensional, rotational mechanics, it is
needless to say that the basic approach carries over
to other physical domains. Furthermore, the mindful
reader may miss a SubSampleDispForce class. That
class was omitted, since it basically results by swap-
ping and adapting respective components in Figure 7b.

6 Application to a 6-DOF Robot
Model

In order to understand whether the partitioning is suit-
able for “real-world” systems with considerable com-
plexity, the RobotR3 example (a detailed model of a
robot with six degrees of freedom) from the MultiBody
package of the Modelica Standard Library (MSL) was
adapted and partitioned into three parts (see Figure 9):

1. “clockControl” partition. The partition con-
sists of a clocked discrete-time path planning
component and clocked discrete-time P-PI cas-

Modular Multi-Rate and Multi-Method Real-Time Simulation

390 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096381



mechanics

1

3

2

5

4

6

pathPlanning

w

6 axes

axis1

axis2

axis3

axis4

axis5

axis6

clockControl

800 us

clockDrive

800 us

ImplicitEuler

fast slow

subSample5

p

t·1/z

fast slow

subSample6

p

t·1/z

fast slow

subSample4

p

t·1/z

fast slow

subSample3

p

t·1/z

fast slow

subSample2

p

t·1/z

fast slow

subSample1

p

t·1/z

clockMultiBody

800 us

ExplicitMidPoint2

assignSolver

axisControlBus1

axisControlBus2

axisControlBus3

axisControlBus4

axisControlBus5

axisControlBus6

co
nt

ro
lB

us

Figure 9: 6-DOF robot example adapted from the
RobotR3 example of the multi-body package of the
MSL.

cade controllers for the six axes (inner PI-
controllers to control the motor speeds, and outer
P-controllers to control the motor positions).
Therefore, the continuous-time controllers and
the path planning component from the original
RobotR3 example were replaced by a discrete-
time (digital) implementation. The sample period
of that partition is set to 800 µs.

2. “clockDrive” partition. The remaining parts in
each axis (motor including current controller and
the gearbox including gear elasticity and bearing
friction) are combined into a clocked discretized
continuous-time partition. The steady-state ini-
tialization found in the original RobotR3 example
was removed since the initialization of clocked
partitions differs from the standard scheme of ini-
tialization in Modelica [8, Section 16.9, “16.9 Ini-
tialization of Clocked Partitions”]. Instead, com-
patible initial values have been set at appropri-
ate places. “ImplicitEuler” with a step size of
800 µs is used as solver method.

3. “clockMultiBody” partition. Except for set-
ting compatible initial values, the multi-body
part is identical to the original RobotR3 model.
“ExplicitMidPoint2”, also with a step size of
800 µs, is used as solver method.

Partitions “clockDrive” and “clockMultiBody” are
coupled at the mechanical flanges connecting the axes

with the mechanics multi-body system by force/dis-
placement components with constant extrapolation
(nP=0) and no direct feedthrough.

The simulation performance using the solver clocks
was compared against simulations performed on the
same model (using various solvers), but without us-
ing coupled clocked discretized continuous-time par-
titions (see Figure 10).
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Figure 10: Comparison model: 6-DOF robot example
without coupled clocked discretized continuous-time
partitions.

The numerical experiment is conducted on a note-
book with an Intel Core 2 Duo CPU P9700 @ 2.8 GHz
and 4.0 GB of RAM. The simulation tool is Dymola
2014 FD01 running on a 64-bit Microsoft Windows 7
operating system.

The reference simulation result is obtained by sim-
ulation of the comparison model (Figure 10) using
DASSL as integrator. The solver parameter “Toler-
ance” is set to 0.0001 for all simulation runs. The
simulation interval is always set to [0,2] seconds. The
step size of the tested solver methods is iteratively in-
creased until either integration fails (which for the con-
sidered model typically means that too large residu-
als appear while solving (nonlinear) systems of equa-
tions), or the simulation result deviates considerably
from the DASSL reference solution.

The decision whether a result deviates considerable
from the reference solution is made by two criteria:
a) visual inspection of the trajectory of the load at the
robot arm tip, and b) deviation of the trajectory to the
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reference solution defined by the norms

E2 =

√∫ te

t0
er(t)2 dt (6a)

E∞ = sup
t≥t0

(er(t)) (6b)

where t0 is the simulation start time, te is the simulation
stop time and

er(t) =
‖r(t)− rDASSL(t)‖
‖rDASSL(t)‖ r,rDASSL ∈ R3

provides a relative error measurement by relating the
distance between the obtained solution r(t) and the
reference solution rDASSL(t) to the magnitude of the
vector rDASSL(t). For the actual computation of E2
and E∞, (6a) and (6b) are numerically evaluated over
an uniformly spaced grid with spacing ∆t = 0.0008.
Therefore, the integral in (6a) is approximated by nu-
merical summation.

In Figure 11 the DASSL reference solution is com-
pared with the result when simulating the coupled par-
titions model of Figure 9 and the result when simulat-
ing the comparison model of Figure 10 with an inline
implicit Euler solver.

Figure 11a shows the first Cartesian coordinate of
the trajectory of the robot arm tip. It can be observed
that the solution computed by the implicit Euler solver
with fixed step size 0.0016 s diverges considerably at
the end of the simulation run. Examining the evolution
of the norms E2 and E∞ confirms that observation (see
Figure 11b). At t = 2 s the relative error of the implicit
Euler solution compared to the DASSL reference is
about 3%.

Beside using the DASSL integrator, various real-
time inline integrators provided by the tool Dymola
[5] were tested with the comparison model. Table 3
summarizes the results obtained by that simulation ex-
periments and contrasts them to the result obtained
by simulation of the coupled partitions model of Fig-
ure 9.

The inline implicit Euler solver displayed the best
performance of the tested “conventional” solvers.
However, for this scenario it was possible to even out-
perform that solver by a factor of about 2.9 (at com-
parable accuracy to the reference solution) by using a
coupling of clocked discretized continuous-time parti-
tions in combination with judiciously selected solver
methods.
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(a) Trajectory of the first Cartesian coordinate of the robot
arm tip.
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(b) Evolution of the norms E2 and E∞ over the simulation
time.

Figure 11: Simulation results of coupled partition ap-
proach and implicit Euler solver (step size 0.0016 s)
compared to the DASSL reference solution.

7 Conclusions

This paper presented a new approach in Modelica that
allows a modeler to separate a model into different par-
titions for which individual solvers can be assigned.
This effectively allows multi-rate and multi-method
time integration schemes that can improve simulation
efficiency in certain cases. Additionally, there is a po-
tential to execute the partitions in parallel to gain fur-
ther simulation speedups. However, this is not sup-
ported by currently available tools.

The approach is based on clocked discretized
continuous-time partitions, a concept that was intro-
duced as part of the synchronous language elements
extension into the Modelica 3.3 language standard.
However, until now it has not been applied in the con-
text considered in this article.

The article started with a formal description of
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Table 3: Comparison of solver methods

Solver Step size (s) CPU-time for E2 E∞
integration (s)

DASSL 10.8 0 0
Coupled partitions 2×0.0008 0.7 0.0014 0.0019
Inline implicit Euler 0.0008 2.0 0.0058 0.0081
Inline implicit Euler (considerable deviation) 0.0016 (1.2) 0.0207 0.0313
Inline trapezoidal 0.0008 2.1 0.0059 0.0082
Inline trapezoidal (considerable deviation) 0.0016 (1.3) 0.0208 0.0313
Inline explicit Euler 0.00002 2.3 0.0009 0.0017
Inline explicit Euler 0.00004 (Failed)
Mixed explicit/implicit Euler 0.0004 3.5 0.0004 0.0008
Mixed explicit/implicit Euler 0.0008 (Failed)
Inline explicit RK 4 0.00002 8.6 0.0004 0.0009
Inline explicit RK 4 0.00004 (Failed)

the mathematical prerequisites of coupling partitions
within the synchronous language elements framework
with special regard to timing requirements inherent
to real-time simulations. In the following, the im-
plementation of a Modelica library for the partition-
ing of physical models, denoted as MULTIRATE li-
brary, was sketched out. Finally, elements of that li-
brary were used to partition a detailed robot model
and the simulation performance of that partitioned
model was compared to “conventional” inline inte-
grators provided by the Dymola tool. This numeri-
cal experiment illustrated: a) that the partitioning is
feasible also for comprehensive, “real-world” models,
and b) that by using a coupling of clocked discretized
continuous-time partitions in combination with judi-
ciously selected solver methods considerable simula-
tion speedups can be achieved (the speedup factor was
about 2.9 for the example model).

Despite this encouraging result, it also needs to
be noted that it can take substantial efforts to find a
good partitioning and select a combination of solver
methods and corresponding integration step sizes that
outperform a simulation using “conventional” solvers.
Nevertheless, particularly for real-time simulations,
investing that additional effort may be worthwhile if
real-time constraints cannot be satisfied by using a
conventional global solver approach.
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