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Abstract. The number of objects that can be maintained in visual
working memory without interference is limited. We present simulations
of a model of visual working memory in ventral prefrontal cortex that
has this constraint as well. One layer in ventral PFC constitutes a ’black-
board’ representation of all objects in memory. These representations are
used to bind the features (shape, color, location) of the objects. If there
are too many objects, their representations will interfere in the black-
board and therefore the quality of these representations will degrade.
Consequently, it becomes harder to bind the features for any object main-
tained in memory, which reduces the capacity of working memory.

1 Introduction

Recent investigations [1] have shown that humans have the ability to maintain a
number of visual objects in visual working memory. A remarkable characteristic
of this finding is that the number of objects that can be maintained in working
memory without interference (i.e., loss of information) is limited (to about four),
but the number of object features (e.g., shape, color, location, motion, etc.) is
unlimited for each of the objects. A model of visual working memory in pre-
frontal cortex (PFC) has been presented that can explain this characteristic [2].
Basically, this model is characterized by a ’blackboard’ that can link different
’processors’ to one another. The processors in this case are networks for feature
identification (shape, color, location). One layer in ventral PFC functions as the
blackboard, containing representations that consist of conjunctions of (partial)
’identity’ (shape, color) information and location information. This blackboard
serves to bind the information processed in each of the specialized feature net-
works. Objects in working memory are stored in the blackboard. When too many
objects are put in working memory, their representations in the blackboard in-
terfere. Consequently, an object’s representation in the blackboard muddles and
the capacity of the blackboard to bind the features of an object degrades.
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After getting deeper into this model of visual working memory, we present
simulations that confirm our expectations that the model is limited in the num-
ber of visual objects that it can maintain without interference.

2 Blackboard Architecture of Visual Working Memory in
PFC

Our model of visual working memory in PFC is based on a neural blackboard
architecture that is used in a simulation of object-based attention in the visual
cortex [3]. We assume that the neural blackboard architecture is located in the
ventral prefrontal cortex (V-PFC) [2]. This is in line with human neuroimaging
studies and recent monkey studies [4]. Activation in V-PFC is sustained (rever-
berating) activation, characteristic of working memory activation in the cortex.

Fig. 1. A blackboard architecture in prefrontal cortex (PFC). PIT = posterior infero-
temporal cortex; AIT = anterior infero-temporal cortex; V-PFC = ventral prefrontal
cortex.

In the model (figure 1), the ventral prefrontal cortex (V-PFC) has a lay-
ered structure with representations similar to the representations in the visual
(temporal) cortex. First, the posterior infero-temporal cortex (PIT) connects to
one of the layers in V-PFC (for the purpose of illustration: the top layer in fig-
ure 1). As in PIT itself, the representations in this layer of V-PFC consist of
conjunctions of location and (partial) identity (object-feature) representations
(shape, color). In turn, another layer of V-PFC (the bottom layer in figure 1) is
connected to the higher-level areas in the visual cortex, in which location and
(location-invariant) object identity information are processed and represented
(in figure 1 illustrated for the anterior infero-temporal cortex (AIT), where the
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shape of an object is processed and represented). These connections are similar
to the connections of the feedback network of the visual cortex in [3]. They have
a ’fan-out’ structure, which means that they connect to all possible representa-
tions that are selective for an activated feature (on every possible position). As
a result, the representations in the bottom layer of V-PFC consist of distributed
identity representations. The bottom and top layer of V-PFC interact in a man-
ner similar to the interaction between the feedforward and feedback networks of
the visual cortex in [3], using similar microcircuits. This interaction results in
the selective activation of a third layer in V-PFC (the ’select’ layer in figure 1).
In particular, in the select layer there is activation on locations in which there is
a substantial match in activation between the top and bottom layer of V-PFC.

Figure 1 illustrates the selection process in the V-PFC model. In figure 1,
two objects are processed in the visual cortex, and their PIT representations
also activate the representations in the top layer of V-PFC. The activation of
one of the objects (the cross) is selected (attended) in AIT (e.g., due to a com-
petition between both figures in AIT). This identity activation of the cross in
AIT activates the bottom layer of V-PFC. As a result, the interaction between
the top and bottom layer activate the representations in the select layer that are
selective for the features (e.g., shape, color, position) of the cross. The activation
in the select layer can be used to activate the other features of the cross [3,5].

2.1 Feature Binding in Working Memory

The nature of the representations in V-PFC and the connections with the higher-
level areas in the visual cortex produces the behavioral effects described before.
The blackboard architecture of V-PFC results in a binding of the feature rep-
resentations of the objects maintained in memory. Therefore, the features of an
object can be retrieved (selected) in working memory as long as the representa-
tions of the objects stored in V-PFC do not interfere. However, when too many
objects are present in a display, their representations in V-PFC will interfere,
which results in loss of information. As more objects are present in a display,
the amount of interference increases, and it can be expected that the quality
of the representation of an object in V-PFC becomes less. As a consequence, it
becomes harder to correctly bind the feature representations of the object that
are maintained in memory. V-PFC might end up binding wrong feature repre-
sentations for an object that is attended to. We carried out simulations to see
whether our model of the visual working memory shows this behavior.

3 Simulations

For the simulations we used the same neural network model of (the ventral
pathway in) the visual cortex that is used in the simulation of object-based
attention in the visual cortex [3]. It basically consists of a feedforward network
that includes the areas V1, V2, V4, PIT and AIT, and of a feedback network
that carries information about the identity of the object to the lower areas



774 G.T. van der Voort van der Kleij, M. de Kamps, and F. van der Velde

in the visual cortex (V1 - PIT). The model shares the basic architecture and
characteristics (i.e., the nature of the representations) of the visual cortex. For
the purpose of our simulations, we trained 5 feedforward neural networks to
identify 9 different objects on 9 possible positions (using backpropagation). After
a feedforward neural network had successfully learnt this task, its corresponding
feedback network was trained as well (using Hebbian learning) [3]. This resulted
in having 5 instances of the visual cortex model, with each instance having
slightly different connection weights between its layers.

The layers of the visual working memory were subsequently simulated as
follows. The activation in the top layer of V-PFC is simulated as a copy of the
activation in PIT after a display is processed feedforwardly through the visual
cortex [3]. This is done because the representations in this layer of V-PFC are
similar to the representations in PIT. For reasons of simplicity, the bottom layer
of V-PFC, which is connected to many higher-level areas in the visual cortex, is
simulated being connected to just one of these areas, AIT. The connections from
AIT to this layer are similar to the connections between AIT and PIT in the
feedback network of the visual cortex [3]. These connections are therefore copied
from a trained feedback network and the representation in this layer equals the
representation in PIT in the feedback neural network.

During the simulations, displays consisting of N (different) objects, with N
ranging from 2 to 9, are presented to V1. For each N , 180 random displays
are presented to each instance of the model. Objects in a display are placed on
separate, non-overlapping, positions. Let us see what happens in our model after
presentation of a single display (i.e., one trial). First, the visual cortex processes
the display. The feedforward neural network gradually transforms the retinotopic
information in the primary visual cortex into identity-based information. The
representations of the objects in PIT also activate the representations in the
top layer of V-PFC, that receives its information from PIT. This layer of V-PFC
stores the objects in the display. Now suppose that one of the represented objects
is attended to (selected). The attended object activates its shape representation
in AIT, and consequently, all representations in the bottom layer of V-PFC that
are selective for the shape of the object. The question now arises whether it is
possible to bind the shape of the attended object with its other features (e.g., its
location), despite the fact that N −1 other objects are also present in the display.
If the representation of the attended object in the top layer of V-PFC is still
intact (i.e., is not severely affected by the representations of other objects), the
interaction between the top and bottom layer can activate the representation
in the select layer that is selective for the attended object. This implies that
this representation should be activated in the select layer on a position that
corresponds to the location of the attended object in the display. But, in the
case that the N representations of the objects in the top layer interfere too
much, and make each other’s representations ‘fuzzy’, the interaction between
the top and bottom layer cannot uniquely activate the representation that is
selective for the attended object anymore. Instead, it might wrongly activate a
representation that (originally) is selective for another object. Feature binding
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of the selected object then fails. The chance of this happening will likely rise as
the number of objects represented in the top layer of V-PFC increases.

For example, if a cross and a diamond are presented in a display (figure 1),
the cross on the left and the diamond on the right, then this display will be
represented in the top layer of V-PFC. Selecting the cross in AIT subsequently
activates the distributed representations of the shape of the cross at any possible
position in the bottom layer of V-PFC. By means of the interaction between the
top and the bottom layer, the representation of the cross on the left position in
the select layer will be activated. But, in the case that the representation of the
cross and the representation of the diamond in the top layer are interfering too
much, the selection of the cross in AIT could result in the incorrect activation
of a representation on the right in the select layer. Let us see how our model of
visual working memory behaved.

4 Results

In our model of visual working memory, the representation in the encode layer
embodies the match between the representation in the top and the bottom layer
of V-PFC.

Fig. 2. Probability distribution of match (i.e., standardized positive covariance per
position) for positions of attended objects (solid line) and for positions of unattended
objects (dashed line) in the top layer in V-PFC. Y-axis: probability. X-axis: match,
from negative (left) to positive (right).

The artificial neurons can have activation values in the range −1 to 1. Posi-
tive and negative activation can be regarded as activity of separate populations
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of neurons [6]. Thus, negative activation in the bottom layer and negative acti-
vation in the top layer is also a match. Therefore, we simulated the interaction
between the top and the bottom layer of V-PFC by computing the covariance
between them. Note that these covariance values offer two kinds of information;
the match (positive covariance) and the mismatch (negative covariance). After
every presentation of a display with N objects, the positive covariance for every
possible position of an object in the blackboard (top) layer was summed and
subsequently standardized by the average positive covariance per position dur-
ing that trial. The same was done for the negative covariance. We will further
refer to this standardized positive and negative covariance as the match and
mismatch respectively.

It may be clear that within every trial, one position in the top (and select)
layer corresponds to the position of the attended object in the display, and N −1
positions in these layers correspond to positions of objects in the display that
are unattended. The rest of the positions in the top and select layer (9 − N)
correspond to locations in the display where no object was presented.

Figure 2 shows the probability distribution over several amounts of match
for positions in the top layer of attended objects and unattended objects sepa-
rately. For each number of objects in working memory, data of all 5 instances
of the neural network model are averaged over all relevant trials. Note that for
successful binding to occur, the match should be high on the position of the
attended object and low on positions of unattended objects (as the mismatch
should be respectively low and high). Only then the position of the attended
object can be clearly distinguished from the positions of unattended objects in
terms of match. As can be seen in the figure, this is the case if the number of
objects held in working memory is low.

Figure 3 shows the probability distribution over several amounts of mismatch
for positions in the top layer of attended objects and unattended objects sep-
arately. Again, for each number of objects in working memory, data of all 5
instances of the neural network model are averaged over all relevant trials. Note
that for successful binding to occur, the mismatch should be low on the po-
sition of the attended object and high on positions of unattended objects (as
the match should be respectively high and low). Only then the position of the
attended object can be clearly distinguished from the positions of unattended
objects in terms of mismatch. Again, as can be seen in the figure, this is the case
if the number of objects held in working memory is low.

However, figures 2 and 3 show that the probability distribution of match
and mismatch for the positions of attended objects and for the positions of
unattended objects start to overlap more and more as the number of objects in
working memory increases. This means that the position of the attended object
cannot be reliably selected on the basis of positive covariance. As the load on the
visual working memory gets higher, positions of unattended objects will more
frequently be selected instead. In other words, the binding process starts to break
down.
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Fig. 3. Probability distribution of mismatch (i.e., standardized negative covariance per
position) for positions of attended objects (solid line) and for positions of unattended
objects (dashed line) in the top layer in V-PFC. Y-axis: probability. X-axis: mismatch,
from negative (left) to positive (right).

Fig. 4. (A) Mismatch (mean and rms) on positions of attended objects (solid line), on
positions of unattended objects (dot-dot line) and on positions without an object (dash-
dot line) in the top layer in V-PFC. (B) Idem, but then for match (i.e., standardized
positive covariance per position).

The mean amount of match for positions of attended objects, positions of
unattended objects and positions with no object is presented in figure 4B to-
gether with its root mean square (rms). Picking the position of the attended
object instead of a position of an unattended or empty position on the basis
of match information clearly becomes very hard as the number of objects in
working memory increases. Does mismatch information enable us to point out
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the right position of an attended object when the number of objects stored in
memory increase? The answer is given in figure 4A, and appears to be negative.
The distinction between attended and unattended objects gets lost here as well.
Filling up the working memory makes the level of mismatch that can be detected
in the top layer on the position of the attended object more and more similar to
the level of mismatch on other positions. Thus, based on mismatch information,
binding begins to fail as well.

5 Discussion

The simulations point out that the model of visual working memory that we
presented is limited in the number of objects that it can maintain in memory
without interference (i.e., loss of information). Our model cannot successfully
bind the feature(s) of the attended object anymore as it gets loaded with more
objects. This is in accordance with findings about visual working memory [1].
However, when exactly the limit in visual working memory is reached will depend
on other factors as well, like the level of alertness and the contrast of the objects
with the background. We predict that this limit is also partly dependent on
the distance between objects in a display. Objects that are close to each other
activate more common neurons in the top layer of V-PFC than objects that
are far from each other. More overlap between representations of objects in the
top layer of V-PFC leads to more interference and thus enhances the chance of
binding the wrong features for an attended object.
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