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H
umans can use the Internet to share knowledge and to help each
other accomplish complex tasks. Until now, robots have not
taken advantage of this opportunity. Sharing knowledge between
robots requires methods to effectively encode, exchange, and
reuse data. In this article, we present the design and first imple-

mentation of a system for sharing knowledge between robots.
In the manufacturing and logistics industries, robotic systems have

brought significant sociological and economic benefits through improved
human safety, increased equipment utilization, reduced maintenance costs,
and increased production. In a world that is undergoing significant environ-
mental and social change, there will be an increasing demand for these robots
to leave the safety of their controlled environments and operate in the real
world. Robots will be required to operate in homes and hospitals to service
the health of a rapidly aging population, and they will be required to mine
and farm in increasingly remote locations. In these environments, robots will
need to reliably perform tasks beyond their explicitly preprogrammed behav-
iors and quickly adapt to the unstructured and variable nature of tasks.

Although there has been much progress in task performance with well-
defined sets of objects in structured environments, scaling current algo-
rithms to real-world problems has proven difficult. Today’s robots can only



perform highly specialized tasks, and their operation is
constrained to a narrow set of environments and objects.
The majority of the world’s 8 million service robots are
toys or drive in preprogrammed patterns to clean floors or
mow lawns, while most of the 1 million industrial robots
repetitively perform preprogrammed behaviors to weld
cars, spray paint parts, and pack cartons [1].

To date, the vast majority of academic and industrial
efforts have tackled these challenges by focusing on increas-
ing the performance and functionality of isolated robot sys-
tems. However, in a trend mirroring the developments of the
personal computing (PC) industry [2], recent years have seen
first successful examples of augmenting the computational
power of individual robot systems with the shared memory
of multiple robots. In an industrial context, Kiva Systems
successfully uses systematic knowledge sharing among 1,000
individual robots to create a shared world model that allows
autonomous navigation and rapid deployment in semistruc-
tured environments with high reliability despite economic
constraints [3], [4]. Other examples for shared world models
include research on multiagent systems, such as RoboCup
[5], where sharing sensor information has been shown to
increase the success rate of tracking dynamic objects [6], col-
lective mapping of autonomous vehicles [7], [8], or distrib-
uted sensing using heterogeneous robots [9].

However, in most cases, robots rely on data collected
once in a first, separate step. Such pooled data have allowed
the development of efficient algorithms for robots, which
can then be used offline without access to the original data.
Today’s most advanced personal assistant robots rely on
such algorithms for object recognition and pose estimation
[10], [11]. Similarly, large training data sets for images and
object models have been crucial for algorithmic advances
in object recognition [12]–[17].

In some cases, pooled data have also been used to offer
additional robot services. Examples include localization
services [18], scene recognition [19], and, more recently,
robotic manipulation [20], [21]. This is especially true in
mobile robotics, where computer vision algorithms have
proven successful in detecting loops while traversing tra-
jectories [22], labeling and classification of visited places
[23], [24], and augmentation of maps with semantic con-
cepts [25]. Other systems query large object databases to
obtain information [26].

Another class of approaches uses pooled data to extract
previously unknown correlations. Amazon’s recommenda-
tion system [27], Apple iTunes’ “Genius” feature [28], and
Google Goggles [29] are well-known software examples.
The Photo Tourism software [30] is a good example of
how a large collection of image data can be used to obtain
new information, such as three-dimensional (3-D) repre-
sentations of public scenes. In the context of object recog-
nition, priors extracted from pooled data have been shown
to significantly speed up learning [31], [32]. Some work
has applied this learning step on data gathered from the
Internet [33] to obtain object models. Others have used

correlations of diverse data to obtain richer models for
image recognition [34]. Yet another method for exploiting
data correlations in this context are bag of words [35],
which summarize image features for creating appearance
models for fast recognition.

Comparatively little research has addressed the sharing
and reuse of knowledge. Some researchers have proposed
sharing pooled data using an Internet search engine [36] or
a cloud computing framework [37]. Others have suggested
embedding knowledge directly into objects [38]. Attempts
such as the planning domain definition language target the
standardization of plan languages and planning domain
specifications [39]. Another approach aims at creating
abstract representations for high-level knowledge that can
be shared across multiple platforms [40], [41].

Today, the vast majority of data for robots is dependent
on specific hardware configurations, which limits reuse to
identical robots. In addition, existing databases typically
contain only one type of data in isolation. This continues
to severely constrain the reuse of data.

RoboEarth collects, stores, and shares data independent
of specific robot hardware. In addition, data in RoboEarth
is linked [42]. For example, the computer-aided design
(CAD) model of an object may be linked to semantic
descriptors (e.g., the object’s English name), the object’s
properties (e.g., object weight), its relation to other objects
(e.g., belongs to the class “bottle”), or instructions for
manipulating the object (e.g., grasp points).

RoboEarth

Example Scenario
Imagine the following scenario. A service robot (robot A) in
a hospital room was programmed to serve a drink to a
patient. This task includes locating a bottle that contains the
drink, navigating to the bottle’s position on a cupboard,
grasping and picking up the bottle, locating the patient in
the bed, navigating to the patient, and giving the bottle to
the patient. Imagine that during task execution, robot A
monitors and logs its progress and continuously updates
and extends its rudimentary, preprogrammed world model
with additional information. It updates and adds the posi-
tion of detected objects, evaluates the correspondence of its
map with actual perception, and logs successful and unsuc-
cessful attempts during its task performance. If the robot is
not able to fulfill a task, it asks a person for help and stores
any newly learned knowledge. At the end of task perform-
ance, the robot shares the acquired knowledge by uploading
it to a distributed database.

Sometime later, the same task is to be performed by a
second robot (robot B) that has no prior knowledge on how
to execute the task. This second robot queries the database
for relevant information and downloads the knowledge pre-
viously collected by robot A. Although differences between
the two robots (e.g., due to wear and tear or different robot
hardware) and their environments (e.g., due to changed
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object locations or a different hospital room) mean that the
downloaded information may not be sufficient to allow
robot B to reperform a previously successful task, this infor-
mation can nevertheless provide a useful starting point—a
prior. Recognized objects, such as the bed, can now provide
rich occupancy information even for areas not directly
observed by robot B. Detailed object models (e.g., of a bottle)
can increase the speed and reliability of robot B’s interac-
tions. Task descriptions of previously successful actions
(e.g., driving around the bed) can provide guidance on how
robot B may be able to successfully perform its task.

This and other prior information (e.g., the previous loca-
tion of the bottle, and the bed is a likely place to find the
patient) can guide the second robot’s search and execution
strategy. In addition, as the two robots continue to perform
their tasks and pool their data, the quality of prior informa-
tion will improve and begin to reveal the underlying patterns
and correlations about the robots and their environment.

Although many of the requirements for this scenario are
challenging research questions, we believe that the availabil-
ity of such prior information is a necessary condition for the
robots to operate in more complex, unstructured environ-
ments. The benefits of storing, sharing, and reusing infor-
mation are not restricted to tomorrow’s mobile service
robots. Today, thousands of robotic systems solve the same
essential problems over and over again.

Ultimately, the nuanced and complicated nature of
human environments cannot be summarized within a
limited set of specifications but will require robots to sys-
tematically share data and build on
each other’s experience. We believe
that a World Wide Web for robots
will allow the robots to achieve suc-
cessful performance in increasingly
complex tasks and environments.

Proof of Concept
This article describes RoboEarth, a
worldwide, open-source platform
that allows any robot with a network
connection to generate, share, and
reuse data. The work described here
is a first step by the RoboEarth Con-
sortium [43] toward delivering a
proof of concept that
l RoboEarth greatly speeds up

robot learning and adaptation in
complex tasks

l robots using RoboEarth can exe-
cute tasks that were not explicitly
planned for at design time.
This proof of concept includes a

distributed database that stores reus-
able data for objects, maps, and
tasks. As part of its proof of concept,
the RoboEarth Consortium will also

implement a series of demonstrators centered around the
hospital scenario outlined in the “RoboEarth: Example
Scenario” section.

Design Principles
The architecture and implementation of RoboEarth is
guided by a number of design principles, centered around
the idea of allowing robots to reuse and expand each
other’s knowledge. To facilitate reuse of data, RoboEarth
supports and leverages existing standards. The database is
made available via standard Internet protocols and is based
on an open-source cloud architecture to allow others to set
up their own instance of RoboEarth, resulting in a truly
distributed network. The code generated by the RoboEarth
Consortium will be released under an open-source license,
and will provide well-documented, standardized interfa-
ces. Finally, RoboEarth stores semantic information
encoded in the World Wide Web Consortium (W3C)-
standardized Web Ontology Language (OWL [44]) using
typed links and uniform resource identifiers (URIs) based
on the principles of linked data [42].

Architecture
RoboEarth is implemented based on a three-layered archi-
tecture (Figure 1). The core of this architecture is a server
layer that holds the RoboEarth database [Figure 1(a), the
“Architecture: Database” section]. It stores a global world
model, including reusable information on objects (e.g.,
images, point clouds, and models), environments (e.g.,
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Figure 1. RoboEarth’s three-layered architecture.
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maps and object locations), and actions (e.g., action recipes
and skills) linked to semantic information (e.g., properties
and classes), and provides basic reasoning Web services.
The database and database services are accessible via com-
monWeb interfaces (see the “Architecture: Interfaces” sec-
tion for details).

As part of its proof of concept, the RoboEarth Consor-
tium [43] is also implementing a generic, hardware-inde-
pendent middle layer [Figure 1(b)] that provides various
functionalities and communicates with robot-specific skills
[Figure 1(c)]. The second layer implements generic com-
ponents (see the “Architecture: Generic Components” sec-
tion for details). These components are part of a robot’s
local control software. Their main purpose is to allow a
robot to interpret RoboEarth’s action recipes. Additional
components enhance and extend the robot’s sensing, rea-
soning, modeling, and learning capabilities and contribute
to a full proof of concept that closes the loop from robot to
theWorld WideWeb database to robot.

The third layer implements skills and provides a generic
interface to a robot’s specific, hardware-dependent func-
tionalities via a skill abstraction layer (see the “Architecture:
Skill Abstraction Layer and Robot-Specific Components”
section for more details).

Database
RoboEarth stores CAD models, point clouds, and image data
for objects. Maps are saved as compressed archives, contain-
ing map images and additional context information such as
coordinate systems. Robot task descriptions are stored as
human-readable action recipes using a high-level language to
allow sharing and reuse across different hardware platforms.
Such action recipes are composed of semantic representations
of skills that describe the specific functionalities needed to
execute them. For a particular robot to be able to use an action
recipe, the contained skills need to have a hardware-specific
implementation on the robot. To reduce redundancy, action
recipes are arranged in a hierarchy, so that a task described by
one recipe can be part of another more complex recipe. In
addition, database services provide basic learning and reason-
ing capabilities, such as helping robots to map the high-level
descriptions of action recipes to their skills or determine what
data can be safely reused on what type of robot.

The RoboEarth database has three main components
(Figure 2). First, a distributed database contains all data
organized in hierarchical tables [Figure 2(a)]. Complex
semantic relations between data are stored in a separate
graph database [Figure 2(b)]. Incoming syntactic queries
are directly passed to the distributed database for
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#objectLocation
Object.Location id: 
Object id: 
Environment id: 
Position (x, y, z, d):

env.hospital.room.X.500.1000.0.100
furniture.bed.hospitalBed
hospital.room.X
(500, 1000, 0, 100)

#action
Action id:
info:description
recipe:

drive.bin.cupboard
drive to the cupboard
<OWL> … <\OWL>

#objectDescription
Object id: 
info:description
object:description
object:model

object:image

furniture.bed.hospitalBed
hospital.room.X
<OWL> … <\OWL>
www.roboearth.org/env/hospital/room/X/model.zip

www.roboearth.org/env/hospital/room/X/env.zip

#environment
Environment id: 
Map data:

hospital.room.X
www.roboearth.org/env/hospital/room/X/map.zip

#action
JoyStickDrive

#objectDescription
RoboEarthObjRecPerception_102

#environment
SemanticMapPerception16

Reasoning Server
Syntactic Query

Semantic Query

…

(b)(a)

Figure 2. The three main components of the RoboEarth database (see details in the “Architecture: Database” section).

72 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2011



processing. Semantic queries are first processed by a rea-
soning server. Data are stored in a distributed database
based on Apache Hadoop [45], which organizes data in
hierarchical tables and allows efficient, scalable, and reli-
able handling of large amounts of data. Examples of the
kind of data stored in this database include the recognition
model of the bottle or the object model of the hospital bed
mentioned in the “RoboEarth: Example Scenario” section.

Second, a centralized graph database holds semantic
information encoded in the W3C-standardized OWL [44].
It stores the following data and their relations.
l Objects: The database stores information on object types,

dimensions, states, and other properties as well as locations
of specific objects a robot has detected and object models
that can be used for recognition (Figure 3). Figure 3(a)
describes a recognition model for a certain kind of object

(defined by the property providesModelFor), giv-
ing additional information about the kind of model and
the algorithm used. The actual model is linked as a
binary file in the format preferred by the respective algo-
rithm (defined by the property linkToRecogni-
tionModel). Figure 3(b) describes the recognition of a
specific object. An instance of a RoboEarthObjRec-
Perception is created, which describes that the
object Bottle2342 (linked through the property
objectActedOn) was detected at a certain position
(linked through the property eventOccursAt) at a
given point in time using that recognition model
(defined by the property recognizedUsingModel).

l Environments: The database stores maps for self-local-
ization as well as poses of objects such as pieces of furni-
ture (Figure 4). The semantic map combines a binary

#Bottle2342

type:
roboearthObjID:
depthOfObj:
widthOfObj:
heightOfObj:

Bottle
2342
0.052
0.052
0.072

#RoboEarthObjRecPerception_102
#rotationmatrix3d_17

type:
objectactedOn:
eventOccursAt:
startTime:
recognizedUsingModel:

RoboEarthObjRecPerception
#Bottle2342
#rotationmatrix3d_17
#timepoint_1271159865
#ObjModelWorkshop0710

#ObjModelWorkshop0710

type:
createdByAlgorithm:
creationDateTime:
linkToRecognitionModel:
linkToImageData:

RoboEarthObjRecModelPlanar
RoboEarthObjRecSystem
2010-11-08T14:39:00+02:00
http://www.roboearth.org/data/workshop_bottle.rec
http://www.roboearth.org/data/workshop_objrec1.jpg

linkToImageData: http://www.roboearth.org/data/workshop_objrec2.jpg
providesModelFor: Bottle

1 0 0 0.94
0 1 0 1.05
0 0 1 1.53
0 0 0 1

(a)

(b)

Figure 3. The object description, recognition model, and one particular perception instance of the bottle used in the second
demonstrator (see details in the “Demonstrators: Second Demonstrator” section).

#Cupboard2

type:
depthOfObj:
widthOfObj:
heightOfObj:
describedInMap:

Cupboard
0.317
0.516
0.873
#F360-Containers

properPhysicalParts: #door4

#rotationmatrix3d_22

#SemanticMapPerception16

objectActedOn:
eventOccursAt:
startTime:

#Cupboard2
#rotationmatrix3d_22
#timepoint_1271198375

#F360-Containers

type:
createdByAlgorithm:
creationDateTime:
linkToMapFile:

SemanticEnvironmentMap
IASSemanticObjectMappingSystem
2010-11-08T14:39:00+02:00
http://www.roboearth.org/data/workshop_env.map

1 0 0 0.77
0 1 0 1.04
0 0 1 1.32
0 0 0 1

Figure 4. The environment map used in the second demonstrator (see details in the “Demonstrators: Second Demonstrator”
section).
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map that is linked using the linkToMapFile property
with an object that was recognized in the respective envi-
ronment. The representation of the object is identical to
the one in Figure 3. This example shows that both binary
(e.g., occupancy grids) and semantic maps consisting of a
set of objects can be exchanged and even combined. The
given perception instance not only defines the pose of the
object but also gives a time stamp when the object was
seen last. This can serve as a base for calculating the posi-
tion uncertainty, which increases over time.

l Action Recipes: The stored information includes the list of
subaction recipes, skills, and their ordering constraints
required for executing an action recipe as well as action
parameters, such as objects, locations, and grasp types
(Figure 5). Action classes are visualized as blocks, proper-
ties of these classes are listed inside of the block, and
ordering constraints are depicted by arrows between the
blocks. The recipe is modeled as a sequence of actions,
which can be action recipes by themselves, e.g., the
GraspBottle recipe. Each recipe is a parameterized

ServeADrink
dependsOnComponent ObjectRecognitionModel AND providesModelFor.Bottle
dependsOnComponent ObjectRecognitionModel AND providesModelFor.Bed
dependsOnComponent ObjectRecognitionModel AND providesModelFor.Cabinet

MoveBaseToGraspPose

MoveBaseToHandoverPose

HandoverObject

OpenGripperForHandover

subClassOf

toLocation

subClassOf

toLocation

subClassOf

toLocation

subClassOf OpeningAGripper
robotRightHandtoLocation

subClassOf

objectActedOn

GraspBottle

GraspingSomething
bottle1

Translation
(Point2D AND
inReachOf.bottole1)

Translation
(Point2D AND
inReachOf.bed1)

Reaching
(Point3D AND
aboveOf.bed1)

GraspBottle

ReachToApproachPose

OpenGripperForGrasping

closeGripperForGrasping

LifeObjectToApproachPose

ReachToParkingPose

ReachForObjectPose
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subClassOf
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handPose-
approachObject

Reaching
handPose-
graspObject

Reaching
handPose-
approachObject

Reaching
parkingPose

OpeningAGripper
handPose-
approachObject

ClosingAGripper
handPose-
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toLocation

subClassOf
toLocation

subClassOf
toLocation

subClassOf
toLocation

subClassOf
toLocation

subClassOf
toLocation

objectActedOn

GraspingSomething

bottle1

Figure 5. The action recipe used for the second demonstrator (see details in the “Demonstrators: Second Demonstrator” section).
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type-specific subclass of an action such as Transla-
tion. Atomic actions, i.e., actions that are not composed
from subactions, represent skills that translate these com-
mands into motions (see the “Architecture: Generic
Components—Action Execution” section for details).
Examples of the information stored in this second data-

base include the action recipe used by robot A in the exam-
ple detailed in the “RoboEarth: Example Scenario” section,
the location of the bottle, and the number of times the
patient was found in the bed.

Third, services that provide advanced learning and rea-
soning capabilities at the database level. A first type of service
is illustrated by RoboEarth’s reasoning server. It is based on
KnowRob [40] and uses semantic information stored in the
database to perform logical inference. This allows to deter-
mine if robot B in the example detailed in the “RoboEarth:
Example Scenario” section meets the requirements needed
to execute the action recipe used by robot A, or if it has the
sensors needed to use the same object-recognitionmodel.

Services may also solely operate on the database.
RoboEarth’s learning and reasoning service uses reasoning
techniques [16], [40] to analyze the knowledge saved in the
RoboEarth database and automatically generates new action
recipes and updates prior information. For example, given
multiple task executions, the database can compute proba-
bilities for finding a bottle on top of the cupboard or on the
patient’s nightstand. Using the additional information that
cups are likely to be found next to bottles, the service can
automatically create a hypothesis for the probability of find-
ing cups on top of the cupboard. Such cross correlations
between objects can provide powerful priors for object
recognition and help to guide a robot’s actions. Addition-
ally, if there are two action recipes that reach the same goal
in different ways, the learning and reasoning service can
detect this, fuse the recipes, and explicitly represent both
alternatives. For example, if robot A was equipped with a
dexterous manipulator but robot B only with a tray, the
component could create a single action recipe “serve drink
to patient” with two branches depending on the robot’s abil-
ities, which would have different requirements: the first
branch would require a graspable bottle, whereas the second
branch would require the availability of human or robotic
help to place the bottle on the tray.

Interfaces
The RoboEarth database supports three types of interfaces.
First, a Web interface that allows humans to exchange
information with the database using hypertext mark-up
language (HTML) forms. This interface may be used by a
human to access the RoboEarth database and provide
labels for robot A’s perceptions of the bottle.

A second interface is based on the representational state
transfer (REST) architecture [46]. As a stateless system, the
REST interface transfers all necessary information as part of
the request without the need to store any information on the
server. This allows high scalability and fast response times,

because it allows for a number of server-side optimizations
(e.g., clusters with load balancing and fail over capabilities).
The REST-style interface allows to encode data directly into
JavaScript object notation (JSON) [47], which makes it suita-
ble for interaction between robots and the database. Based on
hypertext transfer protocol (HTTP) requests, this interface is
easily implemented in all common programming languages
and supported by most of today’s robot platforms. Robot B’s
initial request for prior information about the hospital room
as well as RoboEarth’s response would both use REST.

Both the Web interface and the REST interface rely on
the request–response message exchange pattern, which
can result in unnecessary traffic because of periodic
requests for updates. To avoid this kind of traffic, a third
interface is based on the publish/subscribe message
exchange pattern, which acts on changes to the database.
This type of interface would allow robot B to subscribe to a
notification for the patient leaving the hospital room to
carry out a room-cleaning operation without constantly
querying the database for the patient’s location.

Generic Components

Action Execution
The execution of an action recipe (Figure 5) involves 1)
determining and checking the availability of a set of skills
required for the task, 2) finding an ordering among them that
satisfies the ordering constraints, 3) linking a robot’s percep-
tions to the abstract task description given by the action
recipe, and 4) reliable action execution. The first and second
steps can be resolved by RoboEarth’s reasoning server (see
the “Architecture: Database” section for more details). How-
ever, the third and fourth steps require a tight integration of
RoboEarth’s knowledge representation and the object recog-
nition and action execution system used on the robot.

The action execution component ensures reliable action
execution on the robot by coordinating communication with
the RoboEarth database, monitoring the link between robot
perceptions and actions, and providing failure-handling rou-
tines. In case of unresolvable problems, it asks for user input.
For example, if robot B encounters an obstacle while trying
to navigate to the bottle, the action execution component
detects that the action recipe cannot be properly executed
and asks for help. If the issue is solved, the component
ensures a smooth continuation of the action recipe.

Environment Modeling
A world model component combines prior information
available via the RoboEarth database with a robot’s sensory
inputs [6]. To guarantee fast and safe performance despite a
potentially unreliable network connection to the RoboEarth
database, it uses a two-level approach. A local world model
supporting high update rates (typically tens of hertz) is exe-
cuted on the robot. It merges and associates (possibly con-
tradicting) sensor data from the robot’s 3-D perception
(e.g., the locations of labeled objects) with tracking data.
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A second, global world model is maintained in the
RoboEarth database. It updates the current local world
model by factoring in suitable prior information stored in
the RoboEarth database. This second level also provides
simple reasoning capabilities to address issues such as object
permanence. For example, if a bottle identified by a robot is
occluded for 2 s, it is likely that the bottle on the cupboard
has not changed. However, if the robot returns the next day,
the probability of the appearance of the same bottle on that
same cupboard has decreased significantly. Because of com-
putational and communication constraints, these updates
are typically provided at a slower rate (up to 1 Hz).

Semantic Mapping
The RoboEarth database provides generic action recipes
defined in terms of the robot’s skills, its environment, and
the objects it is going to interact with. For example, the
action recipe in the hospital scenario outlined in the
“RoboEarth: Example Scenario” section is defined in terms
of a cupboard, bed, bottle, and patient. RoboEarth imple-
ments a generic mapping component that uses monocular
visual simultaneous localization and mapping (SLAM) to
fuse partial observations of the environment with recog-
nized objects downloaded from the database (Figure 6).
This can be achieved by combining rich visual SLAM
methods [48], [49], which produce geometrically accurate
but typically semantically meaningless maps, with the
semantically enriched models of recognized objects down-
loaded from RoboEarth. This allows the generation of
semantic maps that can be used for localization by the
robot’s local world model in combination with basic skills
such as “MoveTo” to navigate or execute a learned explora-
tory trajectory for mapping a given environment.

For example, in the hospital scenario mentioned in the
“RoboEarth: Example Scenario” section, robot B may repeat

part of robot A’s movement trajectory to update the previ-
ous semantic map with potentially changed object locations,
resulting in the rapid creation of a map with occupancy
information even for areas not yet visited by robot B.

Learning
The repeated use of action recipes and skills on robot plat-
forms with varying similarity offers many opportunities to
improve the reliability and performance of action execu-
tion. A learning component allows the users to provide
feedback on a robot’s task performance. For example, if the
robot uses an unsuitable grip position to grasp the bottle,
the learning component allows a human to provide feed-
back and improve the robot’s grasp performance.

In addition, action execution can be improved based on
the experiences of other robots stored in the RoboEarth
database as well as a robot’s own experience. This allows the
learning component to leverage the strategies and models
used in skills and action recipes with data-based approaches
by calculating feed-forward corrections to robot motions.

For example, the learning component allows a robot to
access and integrate the experience of other similar robots
grasping similar bottles into its corresponding grasp skill
or to perform parts of a well-known trajectory in open-
loop control to compensate for slow-sensor feedback.

Action and Situation Recognition and Labeling
The generation of useful, transferable action recipes and
their successful reuse is a challenging task, because it must
address all levels of a robot’s actions, from the general skill
abstraction layer to the high-level action execution layer.
The recognition and labeling component is designed to
simplify the generation of new action recipes by abstract-
ing from the robot-specific, low-level layer and aggregating
subsequent steps that belong to a complex task into an

abstract task description. This is
essential for learning new recipes by
demonstration, either from observ-
ing the actions of another robot or
those of a human controller.

The recognition and labeling
component tackles this task from two
sides. A low-level layer recognizes
skills without any temporal or spatial
relation using the signals given by the
robot’s sensors. A second, high-level
layer then uses hidden Markov mod-
els (HMMs) to learn the (possibly
nested) spatial and temporal relations
of situations and actions using the
already-recognized primitives of the
lower level [50].

For example, when trying to enter
the hospital room, robot A may find
its path obstructed by a closed door.
Following detection of the problem

(a)

(b) (c) (d)

(e)

(f)

Figure 6. An example of semantic mapping as it was used for the second demonstrator
(see the “Demonstrators: Second Demonstrator” section). (a) 3-D object model of a juice
box bottle downloaded from RoboEarth. (b–d) Object images used for detection and the
recognized sped up robust features (SURF) points. (e) Camera image and backprojection of
the recognized object and the map points; notice the low semantic content for the map
points. (f) General 3-D view showing some map points, the recognized object, and the
camera’s location (on the robot). (Photo courtesy of RoboEarth Consortium.)
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and a request for user input, an operator uses a joystick to
control the arm of the robot to open the door and creates an
action recipe for “open a hospital room door.” Sometime
later, robot B may encounter the closed door of the hospi-
tal’s kitchen area. The recognition and labeling component
can now help this robot to detect that both situations are
similar and, upon successfully opening the kitchen door,
update the action recipe to reflect that knowledge.

Skill Abstraction Layer
and Robot-Specific Components
The skill abstraction layer (Figure 1) provides a generic
interface to a robot’s specific, hardware-dependent func-
tionalities. This is achieved by abstracting a robot’s under-
lying hardware to offer a subset of standardized skills (e.g.,
MoveTo, MoveCloseToObject, Grasp, or Detect), some-
times also referred to as movement primitives, perception
primitives, basis behaviors, or macro actions [51]. Skills
accept input parameters, for example, to set the end goal of
a movement or to define a grasp point. By providing a
common interface to higher-level commands, skills play a
key role in allowing the robots to successfully share and
reuse action recipes. The specific subset of skills available
in a specific robot is an important factor when selecting
among different action recipes to perform a task.

For example, robot A may be equipped with an omni-
directional platform, whereas robot B may have a parallel
drive. Using their respective MoveTo skills, both robots
can nevertheless execute the same action recipe.

Demonstrators
To provide a proof of concept of the benefits of sharing
information via RoboEarth, we have implemented three
prototypical demonstrators so far. The demonstrators used
a knowledge base with reasoning engine based on Know-
Rob [40], the robot operating system (ROS) [52] for com-
munication between generic components, and various
robot-specific functionalities.

First Demonstrator
In a first demonstrator, two types of robot with different
hardware and software configurations were tested in a
maze exploration task (Figure 7). Both types of robot were
preprogrammed with a basic set of skills using their respec-
tive RoboCup code [53], [54]. The skills were move 1 m
forward, move 1 m back, move 1 m to the right, and move
1 m to the left. Both types of robot could autonomously
detect maze fields blocked by black obstacles (a fifth skill)
and used their respective RoboCup code for navigation
and localization (i.e., the posters and red lines were not
used). However, each robot was controlled by a generic
action execution component (see the “Architecture:
Generic Components—Action Execution” section for
details), which coordinated the interaction of other robot-
unspecific components, the execution of low-level, hard-
ware-specific skills, and the exchange of information with

the RoboEarth database. Each robot also used RoboEarth’s
generic components for environment modeling (more
details can be seen in the “Architecture: Generic Compo-
nents—Environment Modeling” section) and learning (see
the “Architecture: Generic Components—Learning” sec-
tion for more details) to improve its maze navigation.

Robots navigated the maze in turns. Each robot started
on a predefined starting field and was allowed to continue
moving through the maze until it reached a predefined tar-
get field.

To collaboratively learn the optimal path through the
maze, the robots used Q-learning [57], with Q-learning
states represented by the maze cells and Q-learning actions
by the four-motion skills. At the start of the experiment, the
first robot began moving through the maze using a random
walk strategy. After each step of its navigation, the robot
surveyed its four adjacent maze fields for obstacles and

(a)

(b)

Figure 7. (a) Setup for the first demonstrator. A 6 3 8 m maze
consisted of 48 square fields outlined using red lines. Robots
tried to find the shortest path from a predetermined starting
field (indicated by the red cross) to a predetermined target field
(indicated by the green cross) while avoiding blocked maze
fields (indicated by black markers on the ground). (b) The two
different robot platforms used [55], [56]. The University of
Stuttgart’s and the Technical University of Eindhoven’s (USTUTT)
RoboCup robots (first and third from left) use four omniwheels
rather than the three omniwheels used by TU/e’s robots. Both
types of robots also use different robot operating software,
preventing a direct transfer and reuse of knowledge. By defining
a common set of hardware-specific skills, both types of robots
could share a simple action recipe and information about their
environment via RoboEarth. (Photo courtesy of RoboEarth
Consortium.)
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stored them in the Q-matrix. If the robot did not reach the
target field, it updated the value of its previous field with a
small movement cost. Once it did reach the target field, the
robot updated the entire Q-matrix [57] and uploaded it to
the RoboEarth database (see the “Architecture: Database”
section) hosted on a remote server. Subsequent robots
exploring the maze first downloaded the latest version of the
Q-matrix from the RoboEarth server and then used it to
guide their maze exploration. Upon successful arrival at the
target field, they similarly updated the Q-matrix with their
knowledge and reuploaded it to RoboEarth.

Followingmultiple iterations of downloading theQ-matrix,
navigating through the maze, and sharing of the improved Q-
matrix, the values of the matrix converged. At the end of
experiment, the converged matrix allowed all robots to move
through the maze using the shortest path. (Videos of the
demonstrator can be accessed at http://www.roboearth.org.)

Second Demonstrator
In a second demonstrator, a robot was asked to serve a drink
to a patient in a mock-up hospital room (Figure 8). At the
beginning of the experiment, the robot was preprogrammed
with skills for movement, perception, andmapping (described
in detail in the “Architecture: Generic Components—Seman-
tic Mapping” section). However, it did not have any prior
knowledge about its environment, relevant objects, or tasks.

At the start of the experiment, the written command Ser-
veADrink was sent to the robot. The robot’s action execu-
tion component (described in detail in the “Architecture:
Generic Components—Action Execution” section) received
and used the RoboEarth communication interface (see the
“Architecture: Interfaces” section) to remotely access the
RoboEarth database (see the “Architecture: Database” sec-
tion). Similar to robot Bmentioned in the example scenario in
the “RoboEarth: Example Scenario” section, the robot then
downloaded the relevant details, including the corresponding
ServeADrink action recipe. Further relevant details were

determined using logical reasoning based on a local knowl-
edge base, a KnowRob installation [40]. As a result, the robot
retrieved amap of the hospital room, approximate object posi-
tions gathered from previous trials, as well as perception and
manipulation models for the cupboard, the bed, and the bottle
(cf. Figure 6). The perception models were sent to the robot’s
semantic mapping component (see the “Architecture:
Generic Components—Semantic Mapping” section), which
started looking out for the given object. All perception
instances were routed to the world modeling component
(see the “Architecture: Generic Components—Environ-
ment Modeling” section), which was responsible for assert-
ing the world state in the local knowledge base. The map
was used by the robot’s localization component to safely
navigate the hospital room. The action execution compo-
nent itself internally built a state machine from the action
recipe and used it to trigger and monitor the execution of
action primitives (see the “Architecture: Skill Abstraction
Layer and Robot-Specific Components” section).

Despite differences between the downloaded informa-
tion, such as changes in the map and variations in object
locations, RoboEarth’s world modeling component
allowed the robot to use the downloaded information as a
prior. For example, the last known location of the bottle
was asserted in the local knowledge base and could be
queried by the action execution framework to parameterize
the moveTo action primitive as part of the MoveBase-
ToGraspPose subaction (Figure 5). This led to a bias of
the robot’s search strategy toward the most promising
areas of the map. Similarly, downloading the known
dimensions of the bed meant that detection of a single side
of the bed was enough to provide occupancy information
even for areas not covered by the prior map and not yet
visited by the robot. The model of the bottle allowed the
robot to reliably recognize and locate the bottle (Figure 6),
use a suitable grasp point to pick it up, and apply a suitable
grasp force. (Videos of the demonstrator can be accessed at
http://www.roboearth.org.)

Third Demonstrator
In a third demonstrator, a compliant robot arm with accu-
rate sensing capabilities was used to learn articulation mod-
els [58] for the drawers and doors of a cupboard (Figure 9).
In a first step, a reference trajectory for the robot arm was
generated based on an initial guess for the unknown articu-
lation model. In subsequent steps, measurements of the
compliant arm’s deviation from this reference trajectory
were used to continuously refine the model estimate in a
closed-loop control structure. At the end of this learning
stage, the learned articulation model of a specific door
instance was attached to the door’s object description and
uploaded to the RoboEarth database.

In a second step, a service robot with less accurate sens-
ing capabilities downloaded the stored articulation model
and its parameters (e.g., door radius and axis of rotation)
from the RoboEarth database. Using this knowledge, this

Figure 8. The second demonstrator. A robot serves a drink to a
patient in a mock-up hospital room. By using prior knowledge
stored in RoboEarth the robot could improve its navigation,
object perception, and object manipulation capabilities and
could efficiently serve a drink. (Photo courtesy of RoboEarth
Consortium.)
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second robot was able to generate an open-loop trajectory
and successfully open the cupboard’s door. (Videos of the
demonstrator can be accessed at http://www.roboearth.org.)

Open Issues
It is not only difficult to predict the benefits and opportu-
nities but also the risks and challenges created by sharing
data between robots. The global, open-source network out-
lined in this article will likely exacerbate current challenges
concerning legal [59], [60], moral [61], [62], privacy [63],
and safety [64], [65] aspects and create new and unex-
pected risks in the future. However, these risks are cur-
rently dwarfed by the technical challenges posed by
creating aWorldWide Web for robots.

Historically, robotics has been plagued by a lack of reus-
able components [66], [67]. Today, the code and algo-
rithms used by robots are typically highly hardware
dependent and difficult to reuse across platforms [68]. Not
only the much-cited lack of a widely accepted robot oper-
ating system (ROS) [69], [70] but also the lack of standard
interfaces to robot hardware components [71] continue to
be great challenges in all areas of robotics. Such compati-
bility between robots is a necessary condition for many
aspects of a truly World Wide Web for robots. It remains
to be seen if the potential benefits of a World Wide Web-
type database for robots can provide sufficient incentive to
speed up the necessary process of interoperability and
standardization, and to what extent a worldwide storage
and an exchange of robot data can capitalize on the exist-
ing Internet standards.

Robots, unlike humans, excel at systematic and repeti-
tive data collection. Although this provides unprecedented
opportunities for obtaining consistent and comparable
data as well as performing large-scale systematic analysis
and data mining, the sheer amount of data collected by
robotics systems far exceeds that processed by current
information systems. Despite rapid progress [72], the
technical feasibility of a system that connects robots world-
wide remains unknown.

Another related issue is that of generating linked data
[42]. Humans perceive objects in relation to their environ-
ment and other objects. However, allowing robots to learn
the semantic (e.g., a bottle is a container to store liquid
food), contextual (e.g., a bottle is more likely to be found
on a cupboard than on the floor), and factual links (e.g., a
bottle is not very heavy and can be picked up quite easily)
between data remains a challenging research question.

Finally, despite a large number of potential benefits, it
is difficult to predict to what extent sharing data between
robots will be beneficial. Although data seem fundamen-
tal to robot learning and to extending robot performance
beyond preprogrammed tasks, more information does
not automatically translate into better robot performance
[73]. Future experiments will help reveal currently unex-
pected drawbacks and the benefits of sharing data
between robots.

Conclusions
Connecting robots worldwide is a challenging task beyond
the scope of any individual project. One main contribution
of this article is conceptual, outlining the key requirements
and potential benefits of the Internet for robots.

Another contribution of this article is a first demonstration
of the feasibility of a World Wide Web for robots. In the first
demonstrator, robots were able to successfully execute hard-
ware-independent action recipes and could autonomously
improve their task performance throughout multiple itera-
tions of execution and knowledge exchange using a simple
learning algorithm. This demonstrator illustrates how sharing
data between multiple robots can lead to faster learning. In
addition, it shows an example of how a robot can efficiently
execute a task, such as navigating in a new environment, with-
out explicit planning at design time. Once a good solution to
navigate through the maze had been found, all robots could
successfully navigate it even without a preprogrammed route-
finding algorithm. The final result of this demonstrator was
an improved, task-specific but platform-independent action
recipe stored in the RoboEarth database.

The second demonstrator shows how prior knowledge
can greatly increase the speed of performing complex tasks,
such as serving a drink in the semistructured environment of

(a)

(b)

Figure 9. The third demonstrator. (a) A compliant robot arm is
used to estimate an articulation model of a cupboard’s door by
learning the right kinematic trajectory to open it. The robot then
shares the model using RoboEarth. (b) A second, different robot
arm, that has to interact with the same kind of cupboard
downloads this model, reuses it to generate an open-loop
trajectory, and successfully opens the cupboard. (Photo courtesy
of RoboEarth Consortium.)
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a hospital. It also shows how reasoning can allow a robot to
execute a task that was not explicitly planned at design time.

The third demonstrator illustrates that robots with dif-
ferent hardware and control architectures can use a com-
mon database to share knowledge. It also shows how
robots can create knowledge that is useful across different
robot platforms and how robots benefit from the experi-
ence of other robots to interact with objects.

In addition to speeding up robot learning, sharing
action recipes in an Internet database may also offer other
benefits. By allowing component reuse across different sys-
tems and developers, human knowledge about the compo-
nent usage, robustness, and efficiency is pooled. This
allows incremental progress in performance and greatly
reduces the time required to test new applications [74].

While RoboEarth focuses on the reuse of data, a future
World Wide Web for robots will cover many more aspects
of connecting robots. One area of particular interest is data
collection and management. For example, a single pick-
and-place task may automatically generate a series of image
sequences under different conditions and angles, with and
without partial occlusions. Logging of this partially labeled
datamay be useful to improve or aid identification of similar
objects. Logging both successful and unsuccessful task
performance may allow to determine bounds or rough esti-
mates for object weight, center of gravity, elasticity, and sur-
face friction, all of which may be useful to bias future object
manipulations toward successful solutions. Logging context
information, such as the location, time of day, or presence
of other objects in the robot’s vicinity, may be useful to gen-
erate priors to bias future object recognition or manipula-
tion tasks for this or another type of robot that finds itself in
a partially similar situation. On most existing robot plat-
forms, such systematic data collection can be achieved dur-
ing normal operation without significant overhead for robot
performance. While the creation and maintenance of such
data repositories is challenging, robot data sets may prove
an invaluable resource for robotics.

RoboEarth’s current architecture does not solve or address
all challenges posed by creating a World Wide Web for
robots. Rather, it is a first attempt at creating such a platform
and will change and evolve with the wishes and requirements
of the global robotics community. We strongly believe that a
useful World Wide Web for robots can only be built in an
open, iterative, and collaborative process.

Future work will focus on extending the capabilities of
the RoboEarth database and on providing a series of demon-
strators based on the hospital room scenario outlined in the
“RoboEarth: Example Scenario” section. The RoboEarth
database and supporting libraries for robot task execution
will be released as open source at http://www.roboearth.org
during mid-2011.
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