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ABSTRACT

In this paper, we present an object recognition and pose es-
timation framework consisting of a novel global object de-
scriptor, so calledViewpoint oriented Color-Shape Histogram
(VCSH), which combines object’s color and shape informa-
tion. During the phase of object modeling and feature ex-
traction, the whole object’s color point cloud model is built
by registration from multi-view color point clouds. VCSH is
trained using partial-view object color point clouds generated
from different synthetic viewpoints. During the recognition
phase, the object is identified and the closest viewpoint is ex-
tracted using the built feature database and object’s features
from real scene. The estimated closest viewpoint provides a
good initialization for object pose estimation optimization us-
ing the iterative closest point strategy. Finally, objectsin real
scene are recognized and their accurate poses are retrieved. A
set of experiments is realized where our proposed approach is
proven to outperform other existing methods by guaranteeing
highly accurate object recognition, fast and accurate posees-
timation as well as exhibiting the capability of dealing with
environmental illumination changes.

Index Terms— Object recognition, 6D pose estimation,
viewpoint oriented color-shape histogram

1. INTRODUCTION

Object recognition and 6D pose estimation plays a crucial role
in a wide range of robotic applications, such as object grasp-
ing and manipulator occlusion handling. More specifically,
successful object recognition, highly accurate pose estima-
tion and near real time operation are necessary capabilities
but also tough challenges for a robot perception system.

A variety of object descriptors using different features of
the objects have been proposed to solve the problems men-
tioned above. The most popular features are currently the
SIFT [1] and SURF [2], both are extracted based on object’s
texture information. Fast Point Feature Histogram (FPFH) [3]
and Viewpoint Feature Histogram (VFH) [4] are geometry-
based shape descriptors. However, these descriptors are re-

stricted to some objects which are fully textured or distinctive
through their shape. These disadvantages make above object
descriptors to be restricted useful, since some objects in real
world are textureless and may have the same shape but dif-
ferent visual information. An autonomous robot perception
system should be able to recognize the objects with afore-
mentioned case and accurately estimate their poses.

With the massively increased usage of new-released
RGB-D sensors, which can provide geometrical and visual
information about the real scene. Object descriptor could use
multi-dimensional color and geometrical features for object
recognition and pose estimation by using such a depth sensor.
With the real scene data, the object needs to be recognized
with different poses, thus the viewpoint component could be
integrated into the object descriptor building. For this aim,
a novel framework and object descriptor for object recogni-
tion and pose estimation are proposed in this paper, which
provide the following main contributions: 1) A novel object
descriptorViewpoint oriented Color-Shape Histogramcom-
bined with color and shape features, including object view-
point component; 2) A framework which gives highly object
recognition rate and its accurate 6D pose estimation; 3) Ob-
ject pose accuracy evaluation and stability quantitive analysis
with respect to the illumination changes; 4) Live demonstra-
tions and comparisons with existing methods.

This remainder of the paper is organized as follows: Sec-
tion 2 provides the proposed framework and the detailed de-
scription of proposed VCSH object descriptor. The experi-
mental results including the pose accuracy evaluation, stabil-
ity analysis with illumination and running time performance
are presented in Section 3. Finally, Section 4 summarizes the
paper and proposes future development roads.

2. PROPOSED APPROACH

The framework of our proposed object recognition and 6D
pose estimation system is illustrated in Figure 1. In the train-
ing phase, we first build the whole 3D object model by reg-
istering all the object’s data with different poses into a sin-
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Fig. 1. Framework of object recognition and pose estimation.

gle coordinate frame. Follows with a large amount of object
patch data generated from the 3D object model, according to
synthetic viewpoint with known pose. The generated object
patch data includes potential object label and corresponding
viewpoint pose. Subsequently VCSH can be computed as a
global object descriptor from each object patch data, which
then is stored into our database. In the recognition and pose
estimation phase, the object data is segmented and clustered
from the real world scene, and we compute its corresponding
VCSH. Thereafter the closest hypothesis is retrieved from our
generated descriptor database by nearest neighbor searching,
with outputting object label and its initial pose. Finally,the
highly accurate pose can be recovered through optimization
and verification.

2.1. Synthetic Viewpoints Generation

The object model building platform consists of a rotatable
plane and a stationary Kinect sensor. After segmentation
from the plane and Euclidean distance-based clustering, ob-
ject color point cloud data{Sf} and its poses{POf} are
captured wheref is frame index. By registering{Sf} with
{POf} into a single object coordinate, the whole 3D model
O then can be generated as a cluster of color point cloud. In
order to eliminate noises, the moving least squares (MLS) al-
gorithm is utilized to smooth the whole 3D model.

For each object modelOi, wherei = 1...I, we generate
J object patch dataMj with synthetic viewpointV Pj where
j = 1...J . These generated synthetic viewpoints could be
taken as the sensor’s view direction to the object, which also
illustrates the object’s rotation respect to the sensor. Aiming
at the object full pose estimation, all the potential view direc-
tions should be considered. For that, the synthetic viewpoints
are generated on a half sphere surface, with the center of the
object modelO’s centroid and a certain radius. The synthetic
viewpoint position is generated on sphere surface in elevation
and azimuth direction with certain angle step, and its direc-
tion is point to the object’s centroid. With these generated
synthetic viewpointsV Pj , object patch dataMj is generated
according toV Pj using similar ray-casting method from the
whole 3D object modelO. The object modelO is not re-
stricted as the raw color point cloud model using our pro-
posed modeling platform, but also applicable for the invented
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Fig. 2. Left: smoothed color range and estimate the contribu-
tions for neighbor regions inHS space. Right: illustrate the
chromatic and achromatic area inSV space.

color CAD models. Then, a global object descriptor is in need
to describe eachMj with its viewpointV Pj for final object
recognition and its pose recovery.

2.2. Viewpoint oriented Color-Shape Histogram

For recognition and pose recovery for common objects, an
object descriptor which consists both color and geometrical
information is prerequisite. In particular, this descriptor could
differentiate these objects which have same shape but differ-
ent colors and also same color but different shapes. For these
requirements, a novel object descriptorviewpoint oriented
color-shape histogramcombines color and shape features is
proposed. During VCSH construction, firstly, the color of
each pointpt in object patch dataMj is smoothed ranged
and given distributions for different color ranges, wheret =
{1 · · ·T } is the point index. Secondly, object’s shape features
are estimated, which describe each point’s geometrical rela-
tionship with the viewpointV Pj and the centroidc of Mj .
Finally, these extracted color and shape feature are correlated
as VCSH for each object patch dataMj.

2.2.1. Smoothed Color Ranging

To represent the uniqueness of color feature for each object
patch dataM , its color need to be characterized and the dis-
tributions for different color ranges need to be estimated by
their color values. To be more robust to illumination changes,
the point cloud’s RGB value is convert to HSV color space
(Hue, Saturation and Value) as shown in Figure 2. The Hue
componentH is represented with 360 degrees angular dimen-
sion for different color. The saturationS ∈ [0, 1] indicates the
colorfulness and valueV ∈ [0, 1] describes the brightness.

Compared with the work [5] which only using the Hue
histogram for the color feature representation, in our proposed
VCSH, theHSV values are used for the points’ color ranging
not only in true color space, but also in gray scale. As shown
in Figure 2, there are chromatic and achromatic areas inSV
space, in which the chromatic area could be considered as
the true color space, achromatic area represents the gray scale
space. To this consider, eight histogram regionsRE with in-
dexu = {0 · · ·7} are divided for the whole VCSH building,
in which six are for true color space (chromatic) and the other



α

β

dp dc

c

p
cp

npv

v
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two for grey scale space (achromatic).
To be more detailed, firstly, we consider the six true color

histogram regionsRE0 to RE5. The six histogram regions
represent six typical colorsCR0 to CR5. The pointp’s
color’s Hue value then can be quantized into the certain color
CR. However, the hard quantization can not represent the
true color correctly. To overcome this issue, a smoothed rang-
ing method is proposed, which estimates two distributions
wH for two consecutive histogram regionsRE in true color
space. The detailed steps are following:

• IdentifyCRn: red asCR0 = 0, yellow asCR1 = 60,
green asCR2 = 120, cyan asCR3 = 180, blue as
CR4 = 240, purple asCR5 = 300. Consequently, six
histogram ranges are divided based on the color index
CR, asREu → CRn whereu = n = {0 · · ·5}.

• For color pointp, its hue valueH is ranged into two
consecutive histogram regionsREu andREu+1 asu =
⌊H/60⌋ , if u = 5, the next histogram regionREu+1

would be reset toRE0.
• Estimate two color distributions[wHu

, wHu+1
] respect

to the neighbor histogram regions[REu, REu+1] in
true color space, based on the Hue distances toCRn

andCRn+1 whereu = n:
wHu

= (H − CRn+1)/60, wHu+1
= 1− wHu

. (1)
Secondly, we consider the achromatic area which consists

of two histogram regionsRE6 andRE7. When one of the sat-
uration S and value V is near 0 in HSV space, the point color
will be represented in gray scale. In particular, ifS = 0, color
changes from black to white whenV increases from 0 to 1,
and ifV = 0, color changes from gray to the pure hue color
whenS increases from 0 to 1. Since the color in achromatic
space has high sensitive hue value with illumination changes,
the previous estimated distributionswHn

andwHn+1
in true

color space should be redesigned according to the influence
from S andV . In order to capture the nature color, a soft de-
cision method [6] is employed and we update both chromatic
and achromatic components of the histogram. The weightwC

of chromatic andwG of achromatic component are summed
to be equal unity and determined byS andV as:

wC = Sr(1/V )r1 , wG = 1− wC , (2)

wherer, r1 ∈ [0, 1]. For the best precision of the true color,
r = 0.14 andr1 = 0.9 are chosen empirically. In particu-
lar, in the achromatic area which consists of two histogram
regionsRE6 andRE7, V is quantized and these distributions

are calculated for these two regions: ifV < 0.5, w6 = wG

andw7 = 0, otherwisew6 = 0 andw7 = wG. The final
distributionswu andwu+1 considering whole true color and
gray space then have to be updated as:

wu = wHu
× wC , wu+1 = wHu+1

× wC . (3)

Finally, each pointp with HSV color value is ranged into
three histogram regions〈REu, REu+1, RE6|RE7〉 with re-
spective contributions〈wu, wu+1, w6|w7〉.

2.2.2. Shape Feature Extraction

After the color contributions have been estimated for the spe-
cific histogram regions, we are now to extract each object
patch dataM ’s shape featuresF = {f0 · · · fm} for the fi-
nal histogram building, wherem is the point number inM .
With object patch dataM represents the partial data of the
object from viewpointV P with directionv, each pointp’s
geometrical feature should be extracted in order to describe
the object shape accurately and robustly. Partly inspired by
[7], we extracted these features depends on the pointp’s re-
lationship with the centroid ofM and viewpointV P . As a
global descriptor, the surface normalnp of each pointp in M
and the centroidc of M are computed at first. The relation-
ship ofp andc represents the 3D shape of the object cluster.
The relationship ofp andV P indicates the rotation of the ob-
ject cluster respect to the sensor direction. TheV P and the
centroidc could be transformed as the 6D pose of the object.

As shown in Figure 3, the tangent plane ofp is defined as
a plane that is orthogonal top’s normalv. The centroidc is
projected to this tangent plane as a pointcp. A four dimen-
sional geometrical featuref consists of two distances and two
angles components〈dp, dc, α, β〉, which are calculated as:

dp = ‖p− c‖ , dc = ‖cp − c‖

α = arccos(np · (p− c)), β = arccos(v · (p− c)).
(4)

In object partial dataM with a certain viewpointV P , ev-
ery pointp’s geometrical featuref is calculated. Therefore,
for single object modelO which containsJ view object patch
dataM , the final geometry featureF = {f0 · · · fm} with m
points represent the certain object’s shape from the certain
viewpointV Pj .

2.2.3. Color and Shape Feature Correlation

To describe an object patch dataM with the viewpointV P
discriminatively and comprehensively as a histogram, the
VCSH descriptor should be correlated with these two differ-
ent features. In the smoothed color ranging phase, the whole
histogram is segmented into eight regions. Every component
in each point’s geometrical featuref has 30 bins, therefore
eachRE contains 120 bins inside. Eachp’s two distance
components〈dp, dc〉 are indexed by the quantization using
their values scaling fromM ’s minimum to maximum value.
Eachp’s two angle components〈α, β〉 are indexed by the
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quantization using their values with the range of 0 to 90◦. As
the correlation step, eachp’s color contributions for three his-
togram regions〈REu, REu+1, RE6|RE7〉 are added into the
geometrical certain bins〈INdp

, INdc
, INα, INβ〉 in each of

these threeRE. The whole histogram has incremental value
corresponding to color contributions from all the points inM .
During final object recognition phase, the object’s descriptor
should not change with varying distance at same view direc-
tion. However the histogram’s absolute value of each bin will
change following with the object cluster point number. To
overcome this problem, the values of histogram are normal-
ized with point number finally. The VCSH could correctly in-
dicates the certain view object’s color and shape features,no
matter with the distance from sensor to object. Thus, VCSH
could be viewed as a geometrical constrained color feature
histogram. As shown in Figure 4, the sampled object has
a blue rectangle region on the top surface. These points in
this region has significant large histogram value in the binsof
RE4, because of the similar color and geometrical features.

Consequently, the final correlated histogram has(6+2)×
(30×4) = 960 dimensions. The computational complexity of
VCSH isO(n), wheren is the point number of single view-
point object patch dataM . This dimension size and compu-
tational complexity makes VCSH feasible for real-time appli-
cation. Furthermore, the final generated histogram could rep-
resent the object’s point color and shape with high accuracy,
which gives the possibility for the highly successful object
recognition and accurate pose estimation.

2.3. Object Recognition and Pose Retrieval

With the built object VCSH descriptors database, we are now
going to get the real scene potential object cluster’s identifica-
tion labelL as recognition result and its general poseP . Our
system first segments and clusters the object clusterC from
the background. The largest plane surface could be extracted
by RANSAC [4], since all the objects are assumed that stand-
ing on a table or a planar background. All the object clusters
Ck will be segmented from the plane surface and clustered
by Euclidean distance. Based onCk, the real scene objects’
VCSH is calculated. The chi-squared distance between the
real scene object’s VCSH valueHist(C) and eachHistij in
the trained database is calculated for the best matching. Inthe
database, each object modelO containsJ number VCSHs as
the object descriptors from different viewpoints. The fastap-
proximate K-Nearest Neighbors (KNN) method is employed

Calibration Ball
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a) Raw image of modeling platform b) RGB_D data acquisition

c) Some samples of the built 3D object models 

Fig. 5. Whole object 3D modeling building, final data repre-
sents as the color point clouds.

for best matching based on kd-trees [4]. The best matched
object identification and the relative viewpoint posê〈L, P 〉
could be extracted as:

ˆ〈L, P 〉 = argmin
〈L,P 〉ij

χ2(Hist(C), Histij). (5)

Have to mention here, in VCSH definition,P in ˆ〈L, P 〉 rep-
resents the rotation of the object respect to the sensor’s view-
point. The centroid of the object cluster in real scene indicates
the current position, which is used to updateP as the object
initial pose in the real scene.

2.4. Object Pose Optimization and Verification

As the estimated poseP is recovered as the best matched pose
from the built database, however, because of the sampling rate
of the synthetic viewpoints during the database building, the
P could be not the correct pose of object. Consequently, iter-
ative closest point (ICP) method is employed for the accurate
pose optimization [8]. ICP’s accuracy and iteration speed are
strongly judged by the given initial guess. Our method could
estimate the general pose of object by extracting the closest
viewpoint in the object database. The final pose of the object
Pfinal is optimized with the extracted initial pose from the
recognition step and the ICP estimated transformTicp, which
is computed by the closed object patch data and real extracted
object cluster in real scene. After ICP, the final updated object
posePfinal = P ·Ticp is significant accurate and the iteration
speed is fast enough for the real-time recognition and pose
estimation scenarios.

The pose verification is necessary to guarantee the rec-
ognized object with estimated posePfinal is the correct hy-
pothesis in the object database. The patch object dataMrec

is extracted by the estimatedPfinal view. By the comparison
with the estimated nearest object patch dataM̂ in the recog-
nition step, the incorrect recognition or the error pose will be
rejected when the distance beyonds a given threshold.
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Table 1. Running time performance of proposed method
Feature Pose

Single Object Train Extract Recognize Estimate

VCSH 5 min 20 ms 70 ms 1.7 s
Tang 2012 7 min 5 s 1 s 14 s

3. EXPERIMENTAL RESULTS

We perform experiments where the goal is to evaluate our
proposedviewpoint oriented color-shape histogramdescrip-
tor and the system architecture. First, an object dataset con-
sisting more than 20 objects is built, where some objects have
the same shape but different color information on the surface.
As shown in Figure 5, the platform could be rotated by differ-
ent angles using a KUKA arm end-effector controller. With a
stationary Kinect sensor mounted on the robot, the color point
cloud of the object can be captured with respect to the differ-
ent rotating angles. Furthermore, a calibration ball is used to
determine and optimize the final object model’s coordination.
In total, for each object, 25 frames of data with 10◦as an angle
step are captured at different poses. Some objects have the
same shape but different color information such as the cola
and sprite tan and the different taste tea bags, see Figure 5c.

During object model building, note that, as we assume
that the object is standing on the table, its bottom part data
is not in considered for the whole object model. During the
object patch data generation, the viewpoints are sampled on
the upper half sphere surface around the object with radius
of 0.8m. For every10◦ in elevation and every2◦ in azimuth,
a synthetic viewpoint and the relative object patch data are
both generated. Therefore,7 × 180 = 1260 synthetic views
patch data for each object model are generated totally. In our
database, each viewpoint object patch data contains around
1000-2000 color points. Consequently, each object is repre-
sented as 1260 VCSH descriptors respect to different view-
points, which cover full potential poses of object. VCSH
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Fig. 7. Object pose accuracy evaluation in different frames
with different robot positions.

combines object’s visual and geometrical features, so thatit
gives the maximum capability for object recognition and ac-
curate pose estimation.

To demonstrate our superior performance compared to
state-of-the-art, we design multiple challenging scenarios.
Some special objects are chosen for the demonstrations to
show our VCSH’s stability of recognition and also pose accu-
racy. There are some objects which have the same shape but
the different visual information, some with texture or texture-
less surface. This challenge of common object recognition
and accurate pose estimation with high speed, could not be
solved by existing techniques [3, 4, 5, 9, 8]. The recognized
objects’ 3D models are projected into the real scene with their
estimated 6D poses as shown in Figure 6. Notice that the
cellphone is not recognized since it has not been built in our
model database. All the trained objects could be correctly rec-
ognized and their estimated poses are highly accurate. These
works are partially based on Point Cloud Library1.

Our framework using VCSH can reach the correct recog-
nition and pose as 92%, correct recognition but wrong pose
as 6% and 2% for wrong recognition over 100 demonstra-
tions. For the running time performance evaluation, we com-
pare with the result from [5] as shown in Table 1. Our testing
results run on AMD X6 3.0 GHz with 8GB of RAM, while
[5] uses 6-core 3.2GHz i7 with 24GB of RAM.

1http://www.pointclouds.org

http://www.pointclouds.org
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To further evaluate the pose accuracy using our proposed
approach, QUALISYS motion capture system2 is employed
to capture the ground truth of the sensor pose. The robot with
the Kinect senor moves around the stationary object and es-
timates the object’s pose. With these data transformed into
the world coordinate, we compare the estimated pose with
the ground truth to get the pose recovery accuracy, as shown
in Figure 7. The root mean square error during the whole 10
frames are 23.4 mm in translation and 1.59 degrees in rota-
tion, while in work [5] are 50mm and 10 degrees respectively.

As color information is extracted for VCSH generation,
the stability with illumination changes is a crucial aspect,
therefore needs to be analyzed. We utilize one light meter
DT1309 to estimate the object’s surrounding illumination in-
tensity under an adjustable white LED array light. The stabil-
ity is evaluated by the differences between the estimated ob-
jects’ VCSH under various illumination conditions and their
target VCSH (correct object and pose) in database. As illus-
trated from Figure 8, when the illumination intensity exceeds
50 lux, all the objects’ histogram differences remain under
220 and would be stable until 700 lux, which is the maximum
illumination intensity. Mention that, the object modelingen-
vironment is under around 230 lux, while most of the com-
mon indoor and outdoor light condition is from 150 to 400
lux. From the result of stability analysis, our recognitionand
pose estimation framework, especially VCSH object descrip-
tor is stable enough under varying illumination intensity.

4. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel framework consisting of a
global object descriptorViewpoint oriented Color-Shape His-
togram, which combines color and shape information for both

2http://www.qualisys.com/

object recognition and highly accurate object’s pose retrieval.
The proposed approach could be easily integrated into vari-
ous robotic perception system for common objects fast recog-
nition and 6D pose estimation, where no matter these objects
are texture or textureless. A set of experiments is realized
where our proposed approach is proven to outperform recent
state-of-the-art methods by guaranteeing highly accurateob-
ject recognition, fast and accurate pose estimation as wellas
exhibiting the capability of dealing with environmental illu-
mination changes. Future work will focus on the pose opti-
mization and model building of wider-variety objects.
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