
An Asynchronous Synchronization Strategy for Parallel
Large-scale Agent-based Traffic Simulations

Yadong Xu
School of Computer

Engineering
Nanyang Technological

University
Singapore 639798

xuya0006@ntu.edu.sg

Wentong Cai
School of Computer

Engineering
Nanyang Technological

University
Singapore 639798

aswtcai@ntu.edu.sg

Heiko Aydt
TUM CREATE Ltd.

CREATE Tower
1 Create Way

Singapore 138602
heiko.aydt@tum-

create.edu.sg

Michael Lees
Informatics Institute

University of Amsterdam
Amsterdam 1098 XH, The

Netherlands
m.h.lees@uva.nl

Daniel Zehe
TUM CREATE Ltd.

CREATE Tower 1 Create Way
Singapore 138602
daniel.zehe@tum-

create.edu.sg

ABSTRACT
Large-scale agent-based traffic simulation is a promising tool
to study the road traffic and help solving traffic problems,
such as congestion and high emission in megacities. Such
simulation requires high computational resource which trig-
gers the need for parallel computing. The parallelization of
agent-based traffic simulations is generally performed by de-
composing the simulation space into spatial subregions. The
agent models contained by each subregion are executed by
Logical Processes (LPs). As the simulated system evolves
over the simulation time in individual LPs, synchronization
among LPs is required due to data dependencies. Existing
work has used global barriers for synchronization which is
a type of synchronous synchronization method. However,
global barriers have very low efficiency due to the waiting of
processes at barriers. High synchronization overhead is still
one of the major performance issues in parallel large-scale
agent-based traffic simulations. In this paper, we proposed
a novel asynchronous conservative synchronization strategy
named Mutual Appointment (MA) to address this issue.
MA removes global barriers and allows LPs to communicate
individually. Since the efficiency of conservative synchro-
nization relies on the lookahead of the simulated system, a
heuristic was developed to increase the lookahead in agent-
based traffic simulations. It takes advantage of the intrinsic
uncertainties in traffic simulations. MA together with the
lookahead heuristic forms the Relaxed Mutual Appointment
(RMA) strategy. Its efficiency was investigated in the paral-
lel agent-based traffic simulator SEMSim Traffic using real
world traffic data. Experiment results showed that the MA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSIM-PADS’15, June 10–12, 2015, London, United Kingdom.
Copyright c© 2015 ACM 978-1-4503-3557-7/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2769458.2769461.

strategy improved the speed-up of the parallel simulation
compared to the barrier method, and the RMA strategy
further improved the MA strategy by reducing the number
of synchronization messages significantly.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Parallel, Discrete event ; I.6.3 [Simulation and Model-
ing]: Applications

General Terms
Algorithms, Performance

Keywords
Agent-based traffic simulation, Asynchronous conservative
synchronization, Relaxation

1. INTRODUCTION
With the fast urbanization of our modern society, road

traffic in large cities and mega-cities are facing problems
such as congestion and high emission which negatively im-
pact the comfort and health of urban inhabitants. To study
road traffic and solve urban traffic problems, the modeling
and simulation of road traffic has been a useful tool. The
modeling and simulation of road traffic can be approached
in various ways, depending on the level of abstraction nec-
essary. The levels of abstraction are commonly known as
macroscopic [16, 23], mesoscopic [22], microscopic [9], and
nanoscopic (a.k.a., sub-microscopic) [18]. Road traffic is a
complex system whose behavior is difficult to predict. As
a complex system, the behaviors of constituent components
have an impact on the whole system. From this perspec-
tive, the modeling of the behaviors of individual compo-
nents, i.e., driver-vehicle-units falls within the scope of the
microscopic and nanoscopic levels of detail. Both micro-
scopic and nanoscopic simulations can be conducted in an
agent-based approach where driver-vehicle-units are agents

that have certain behaviors and try to reach certain goals
in the simulation. Large-scale agent-based traffic simulation
is a promising method for studying the road traffic, for in-
stance, the impact of various driving behaviors on the traffic
and the influence of adopting electric vehicles (EVs) or auto-
matic vehicles in the transportation system. SEMSim Traf-
fic is a nanoscopic traffic simulator that is able to capture
this level of detail [28]. It is designed to study how different
vehicle designs and different infrastructures will influence
the transportation system when EVs are introduced at a
large-scale in mega-cities. However, one of the challenges to
conduct a simulation at a large-scale, e.g., the whole city, is
the requirement of high computational resource. To make
large-scale agent-based traffic simulations computationally
feasible, certain computing techniques should be deployed.
To harness more computational resource, parallel comput-
ing can be used. There are many critical aspects of con-
siderations on developing a parallel simulation, for exam-
ple, time synchronization [7], partitioning and load balanc-
ing [28], and interest management [14]. The problem of time
synchronization is addressed in this study. The focus is to
reduce the overhead of the time synchronization in agent-
based traffic simulation.

Existing microscopic and nanoscopic traffic simulations
are conventionally executed in a time-stepped fashion [1–
3, 17, 26]. In parallel microscopic and nanoscopic traffic
simulations, the decomposition of the simulation is usually
achieved by decomposing the simulation space into multi-
ple spatial subregions. The agent models contained by each
subregion are executed by Logical Processes (LPs). The LPs
are usually assigned to different physical processing units.
Due to the interaction of agents, there are usually data read
and write dependencies between LPs. When read or write
dependency happens between two LPs at a certain simula-
tion time, the LPs should not progress over the simulation
time until the dependency is fulfilled by the LPs exchanging
necessary data. This operation to fulfill the dependencies
is referred as a synchronization operation. The simulation
analyzed in this work is a discrete-event simulation, where
agents schedule time-stamped events which are ordered by
their time-stamps and the simulation progresses by execut-
ing the events. Synchronization strategies have been well
studied in the parallel discrete-event simulation community.
Synchronization strategies can be broadly categorized into
conservative and optimistic [7, 20]. Conservative strategies
prohibits any causality error from occurring, whereas op-
timistic strategies uses a detection and recover approach:
causality errors are detected, and a rollback mechanism is in-
voked to recover [7]. In existing work, synchronization in the
traffic simulations is generally achieved using global barriers
either in a shared memory environment [1, 2] or distributed
memory environment [3,17,26]. This method is straightfor-
ward to use. Global barriers can be deployed at the end of
time steps. This is equivalent to a synchronous conservative
synchronization strategy where all LPs participate in a syn-
chronization at the same time and usually global reduction
is used. The limitation of this synchronization method is
that all processes have to wait in front of a global barrier
during the synchronization. This may decrease the paral-
lel efficiency. Another type of conservative synchronization
strategy is asynchronous. LPs do not wait at a global bar-
rier when synchronizing in an asynchronous strategy. To
the best of our knowledge, asynchronous conservative syn-

chronization has not been used in parallel agent-based traffic
simulations.

In this study, we have developed a novel asynchronous
conservative synchronization strategy for agent-based traffic
simulations named Mutual Appointment (MA). It consid-
ered the characteristics of the behavioral models of agents.
In MA, LPs synchronize with each other using appoint-
ments. An appointment is an event scheduled at a specific
simulation time where two processes exchange data by send-
ing messages and whose time stamp is mutually made by the
two communicating partners according to their lookaheads.
Lookahead of an LP1 towards another LP2 at simulation
time t is a time interval ∆t in the simulated future within
which LP1 will not have data read and write dependency
with LP2. The lookahead values represent the ability of
an LP predicting its future behavior that may affect other
LPs. The larger the lookahead values, the less the synchro-
nization operations. Due to the characteristic of behavioral
models of agents, agent-based traffic simulations have inher-
ently low lookahead. Low lookahead limits the efficiency of
conservative synchronization strategies, therefore, a way to
increase the lookahead is required. Therefore, we developed
a heuristic to increase the lookahead. The lookahead heuris-
tic takes advantage of the intrinsic uncertainties of traffic
simulations. We claim that as long as the parallelization
does not increase the uncertainty of the simulation, certain
dependencies between the processes of the parallel simula-
tion can be violated. The heuristic allows a certain amount
of violation of dependency but keeps the output of the simu-
lation statistically unaltered. It uses the traffic flow informa-
tion at run-time to exploit the lookahead. This heuristic to-
gether with MA forms Relaxed Mutual Appointment (RMA)
strategy. Statistical tests were performed to ensure that the
output of the parallel and sequential simulations are statis-
tically indistinguishable. The synchronization strategies are
experimented in the traffic simulator SEMSim Traffic. Our
contribution to the literature is

• an asynchronous conservative synchronization strategy
for parallel agent-based traffic simulations (Section 3);
and

• a heuristic to solve the problem of low lookahead of
agent-based traffic simulations taking advantage of the
uncertainties in traffic simulations (Section 4.2)

Examples of potential usage of the proposed methods are:
enable large-scale traffic simulations to operate at or faster
than real-time; let agent-based traffic simulations generate
results faster when used as a forecasting tool in time critical
decision making situations; and reduce the running time of
scientific experiments which requires repeated runs of traffic
simulations.

The remainder of the paper is organized as follows: The
agent models and the partitioning of the traffic simulation
that our algorithm operates on is described in Section 2.
Terminology and more detail on the background are pre-
sented. Then we introduce the MA synchronization strat-
egy in Section 3, and the RMA strategy in Section 4. These
two sections are the main contribution of this work. Follow-
ing that, experiments and results are presented in Section
5. Subsequently, related work is presented in Section 6. In
the end, the conclusions and future work are presented in
Section 7.

2. PARALLEL AGENTED-BASED
TRAFFIC SIMULATION

The synchronization strategies are fundamentally deter-
mined by the behavior of the simulated models and parti-
tioning of the simulation. Agent models, the partitioning
of the simulation, and more review on conservative synchro-
nization are introduced in this section.

2.1 Models and Model Execution
The simulation space of our agent-based traffic simula-

tion is a road network which is a spatial network. The spa-
tial network consists links and nodes. Links are contain-
ers/placeholders of agents. A link may have one or more
lanes. Nodes contain the connectivity information of links
and lanes. A small road network is illustrated in Figure 1.
For simplicity, lanes are not shown.

lin
k 1

link2

lin
k

3

node1

node2

A

B C

D

sensing range of agent B

node3

node4

back
sensing

range (bsr)

front
sensing

range (fsr)

Figure 1: Agents with sensing ranges in a road net-
work.

The agent in the simulation is a driver-vehicle-unit that
contains driver behavior models and vehicle component mod-
els. Examples of driver behavior models are the acceleration
model and the lane-changing model, and examples of vehi-
cle component models are the motor model and the battery
model for EVs. An agent has a state at a certain instant of
the simulation time. The state contains multiple state vari-
ables which are classified into two groups according to there
visibility: agent-based state variables and component-based
variables. Agent-based state variables belong to the agent
and are visible to other agents, e.g., velocity and position.
The component-based variables belong to a specific model
and are usually not visible to other agents, e.g., a state-of-
charge state variable in the battery model. The state of an
agent changes as the simulation evolves with the execution
of timestamped events which contain certain update func-
tions. Events are ordered in ascending order of their time
stamp in an event list. There is one event list per LP. An LP
repeatedly executes a three-step cycle: advance the simula-
tion time to the time stamp of first event in the event list,
execute the event (and schedule future events triggered by
this event if any), and remove the event from the event list.
Events are scheduled by driver behavior models and vehicle
models [28]. This event-based execution enables the models
to be executed with suitable temporal resolution individu-
ally. An agent has a sensing range which is the area around
the agent within which the states of other agents may have
an effect on the agent’s behavior. An illustration is shown in
Figure 1. Even though the traveling direction of the agent
is unidirectional in the road network, the sensing range is
omni-directional, since the agent needs to examine the area
in front to decide appropriate accelerations, and the area
both in front and behind to decide safe lane-changes.

The models that form the main computational compo-
nents are currently the driving behavior models, i.e., the ac-
celeration and lane-changing models. Examples are Gipps’

acceleration model [9] and Intelligent Driver Model (IDM)
[27], and their corresponding lane-changing models [10, 13].
Acceleration models generates the actual velocity or acceler-
ation in the next time-step based on the current surrounding
information and characteristics of the driver and the vehi-
cle. Similarly, lane-changing models decides if a lane change
should be performed. The models schedule move events.
A move event contains both acceleration and lane-changing
and are scheduled periodically with a fixed interval. We re-
fer to this fixed interval as a move interval in the rest of
this paper. Move events change the dependency between
agents since they change the positions of agents in the road
network.

2.2 Partitioning and Dependency of Logical
Processes

The road network is partitioned into multiple spatial sub-
regions. A partitioning of Singapore into four partitions is
shown in Figure 2. Different intensities of gray represent
different partitions. An LP is responsible for executing the
events of the agents in one partition, and only has access to
the agents in the local space. The cutting of the network
is performed on links. The links that are cut and spanning
two partitions are named boundary links. A boundary link
is evenly divided between two partitions. For instance, in
Figure 3a, link2 is a boundary link. The left half belongs to
LP1, and the right half belongs to LP2. Since the driving
direction of link2 is from LP1 to LP2, we say link2 is an
outgoing boundary link of LP1, and an incoming boundary
link of LP2. LP1 and LP2 are neighboring processes.

Figure 2: Singapore road network with four parti-
tions.

As the simulation progresses, migration of an agent hap-
pens when the agent moves beyond the boundary of one
partition and enters the space of another. For example, in
Figure 3a, suppose agent B in LP1 continues moving on
link2 and its new position falls within LP2 at time t, it
should be migrated to LP2, and LP2 would be responsible
for executing future events of agent B. In this case, there
is a write dependency between LP1 and LP2 at time t. If
the position of agent C in LP2 is inside the sensing range
of agent B in LP1, the state variables of agent C that may
affect the behavior of agent B should be sent over to LP1

and kept updated to maintain the correctness of the simula-
tion. In this case, there is a read dependency between LP1

and LP2. These state variables of agent C are referred as
shared states. To help determining where shared states are,
buffered regions are defined. They are the areas along the
boundary cut of partitions with the size equal to the sensing
range of agents. The states of the agents that are inside
buffered regions and directly next to the boundary cut are

lin
k 1

link2

lin
k

3

node1

node2

A

B C

D

buffer region

in LP1

size=bsr size=fsr

boundary cut

node3

node4

buffer region

in LP2

Logical Process 1 Logical Process 2

(a)

link2 B C'

(b)

link2 B' C

(c)

Figure 3: Road network partitioning: (a) illustra-
tion of boundary cut and buffer regions; (b) view of
link2 from LP1; and (c) view of link2 from LP2.

considered as shared states. For example, in Figure 3a, the
shaded area on link2 are two buffered regions, with the left
side inside LP1 and right side inside LP2. The size of the
buffer region inside LP1 equals to the back sensing range of
agents, and the size inside LP2 equals to the front sensing
range of agents. Since agent B and C are both inside the
buffer region, shared states of agent B are sent to LP2 and
those of agent C to LP1.

In addition, the LPs that receive shared states use the
shared states to create non-local proxy agents. Proxy agents
act as representatives of the real agents in other LPs, so that
the agents can see the shared states as agents. For example,
there is a proxy agent C′ in LP1 of real agent C (Figure
3b), and a proxy agent B′ in LP2 of real agent B (Figure
3c). This is for managing the shared states more easily and
simplifying the implementation of the simulator.

2.3 Synchronization of Logical Processes
The need for synchronization originates from the read and

write dependencies between LPs. An LP should not progress
the simulation over the point when read or write depen-
dency happens until the dependency is fulfilled by exchang-
ing information with the relevant LPs. Synchronization here
means the management of the sending and receiving of mi-
grating agents and shared states. Synchronization strate-
gies can be broadly categorized into conservative and opti-
mistic [7,20]. Conservative strategies prohibits any causality
error from occurring, whereas optimistic strategies allows
causality errors to occur, and a rollback mechanism is in-
voked to recover the errors [7]. This study only deals with
the conservative approach. A synchronization strategy is
synchronous if global synchronization points are used, i.e.,
a barrier or a global reduction, where all LPs participate in
the communication. All LPs are blocked until the communi-
cation is finished. In contrast, in an asynchronous strategy,
blocking does not happen globally. When LP2 is specially
told by LP1 that it might be affected by LP1 at time t,
only LP2 is blocked at time t [20]. All other irrelevant LPs
are free to proceed their execution without participating in
this synchronization operation. Asynchronous strategy has
the potential advantage over synchronous strategy that it

may reduce the waiting of LPs and decrease the number of
synchronization messages.

A key ingredient of an conservative synchronization strat-
egy is the lookahead. Lookahead defines the ability of an
LP predicting its behavior that might affect other LPs. The
lookahead in our simulation can be defined as follows: if an
LP1 is at simulation time t, and it predicts that it does not
have any read and write dependency with LP2 until simula-
tion time t + ∆t, then LP1 has a lookahead of ∆t towards
LP2. To determine the lookahead values is to predict when
the read and write dependencies change in the simulated fu-
ture. Determining the lookahead is a critical component of
a conservative synchronization strategy.

3. MUTUAL APPOINTMENT STRATEGY
This section presents the MA strategy and the lookahead

determination algorithm.

3.1 Mutual Appointment
The basic idea of MA is that an LP communicates with

other LPs by making appointments individually with them
at certain mutually agreed time points of the simulation.
The execution of the LP will be blocked at an appoint-
ment until the appointment is fulfilled. This blocking only
happens between this LP pair. An MA contains two tasks:
exchange information of current dependency and make the
next appointment.The MAs are scheduled as synchroniza-
tion events. The logic of an MA synchronization event is
shown in Algorithm 1.

Algorithm 1: MA Synchronization Event

Definitions:
t time stamp of the synchronization event in LPi

Ai,t set of agents in LPi at t
Ci,t set of LPs having appointments with LPi at t
Mij,t set of agents migrating from LPi to LPj at t
Sij,t set of shared states sent by LPi to LPj at t
lij,t lookahead of LPi towards LPj at t
∆tij,t time interval until next appointment between LPi

and LPj at t

foreach LPj ∈ Ci,t do
// 1. prepare the content of the message

determine Mij,t, Sij,t, and lij,t;

// 2. exchange messages

send Mij,t, Sij,t, and lij,t to LPj ;
receive Mji,t, Sji,t, and lji,t from LPj ;

// 3. update the set of local agents

Ai,t ← Ai,t ∪Mji,t \Mij,t;
// 4. update proxy agents with shared

states

update proxy agents with Sji,t;
// 5. make a new appointment

∆tij,t ← min(lij,t, lji,t);
make an appointment with LPj at time t+ ∆tij,t;

end

The event is in LPi with the time stamp t. In the syn-
chronization event, there is a set of LPs that currently have
appointments with LPi, denoted as Ci,t. An LP only syn-
chronizes with its direct neighbors, therefore, Ci,t only con-
tains neighboring LPs. Note that Ci,t may not include all

the neighboring LPs of LPi and can be empty. For each
LPj in the set Ci,t, LPi performs the following five steps.
The first step is to prepare the data for fulfilling the read
and write dependency, and calculate lookahead for the next
appointment. Migrating agents Mij,t and shared states Sij,t

are determined by scanning the boundary links between LPi

and LPj . Then in the second step, LPi sends all that in-
formation to LPj . A point-to-point communication is used.
To reduce the number of messages, a single compound syn-
chronization message is used which contains three parts of
information: migrating agents (write dependency), shared
states (read dependency), and lookahead (predicted time
interval until the next MA event). At the same time, it
receives a message from LPj which contains the migrating
agents Mji,t, shared states Sji,t, and lookahead lji,t. The
partner LPj is inside an MA event with the time stamp t as
well. After receiving the message, the third step is to update
the local agents. The local agent set Ai,t is updated by re-
moving the agents in Mij,t, and adding the agents in Mji,t.
Then the next step is to update the proxy agents in LPi

with the latest shared state Sji,t. Unnecessary proxy agents
are removed, and new proxy agents are created if necessary.
The last step is to schedule the next synchronization event.
LPi determines the time interval until the next appointment
with LPj as ∆tij,t = min(lij,t, lji,t), and the next synchro-
nization event with LPj will be scheduled at time t+ ∆tij,t.
If there is no synchronization event scheduled at the sim-
ulation time t + ∆tij,t yet, a new synchronization event is
scheduled. Otherwise, the id of LPj will be added to the set
Ci,(t+∆tij,t) of the synchronization event that already sched-
uled at time t+ ∆tij,t instead of scheduling a new event.

The initial MAs are scheduled at the beginning of the
simulation for all LPs. The targets of the initial MAs of an
LP are all of its neighboring LPs. All subsequent MAs are
made based on lookaheads.

3.2 Lookahead Determination
The lookahead in the MA synchronization strategy is di-

rected, which means that an LP may have different looka-
head values towards each neighboring LPs at a certain sim-
ulation time. The lookahead values are used to make in-
dividual appointments. There are three cases considered
according to different traffic conditions.

The first case is that no agents exist in the local space.
This usually happens when the simulation just starts up.
The lookahead should be the minimum time for any newly
created agent to travel into buffer regions on outgoing bound-
ary links. Suppose the set of agents to be created locally in
LPi is NA={na1, na2, ... , na|NA|}; agent nak (1≤k≤|NA|)
is scheduled to be created natk later in the future, and re-
quires minimum traveling time ttk to travel from the point
of creation to the buffer region connecting to LPj on its
route (if the agent does not pass by LPj , ttk=∞), then the
earliest time for newly created agents to possibly affect LPj

is min(natk + ttk) later from the current time. Thus the
current lookahead towards LPj should be min(natk + ttk).
If the schedule to create new agents is not available, the
effect of new agents should be considered in another way.
Suppose the set of outgoing boundary links towards LPj is
OLij , the minimum traveling time from the start of a link
l (l ∈ OLij) to the buffer region of that link is obtl, then
the minimum time for any new agent to travel to a buffer
region is min(obtl). An example of obtl is shown in Figure

4a. The lookahead should be min(obtl). Note that all the es-
timation of traveling time here is a lower bound. The actual
traveling time is usually longer, since the actual velocities
of agents are usually smaller than the speed limit, in other
words, since agents usually do not travel with speed-limit,
ttk and min(obtl) are rather conservative estimations.

link
2lin

k1

LPi

link3

lin
k
4

new agent creation

obt2

(a)

link
2lin

k1

LPi

link3

lin
k
4

(b)

link
2lin

k1

LPi

link3

lin
k
4

new agent creation

(c)

lin
k1

link
2

LPi

link3

lin
k
4

(d)

Figure 4: Scenarios of MA lookahead calculation:
(a) no local agents exist, a new agent is being created
in a network node; (b) buffer regions are empty and
no migrating agents; (c) same with (b) with agents
being created; and (d) buffer regions are not empty.

The second case is that there are local agents, but there
are no agents inside buffer regions or migrating before the
next move event, as depicted in Figures 4b and 4c. The
lookahead is the minimum time for a local agent to travel
to a buffer region. Migration of local agents only happens
on outgoing links, therefore, the agents whose routes pass
through outgoing boundary links should be examined. Note
that new agents may be created on an outgoing link (Fig-
ure 4c). This case should also be considered. Suppose the
minimum traveling time of any existing agent to a buffer
region connecting to LPj on its route is atj , considering
the agents to be created NA, the lookahead in this case is
min(atj , min(natk + ttk)). If the schedule to create new
agents is not available, similar to the first case, min(obtl)
should be used instead of min(natk + ttk). Then, the looka-
head is min(atj ,min(obtl)).

The third case is that there are agents inside local buffer
regions or to be migrated before the next move event. Looka-
head can only be as big as one move interval, since the shared

Algorithm 2: MA lookahead determination

Definitions:
Ai set of agents in LPi

Lij set of boundary links between LPi and LPj

Ml set of agents migrating on link l, l ∈ Lij

Sl set of shared states on link l in LPi, l ∈ Lij

natk time interval before new agent k is created
ttk minimum time for new agent k to travel to any

outgoing boundary link towards LPj on its route
obtl traveling time from the start of link l to the buffer

region of l, l is an outgoing link towards LPj

atj minimum time for any agent in Ai to travel from
its current position to the buffer region of any out-
going boundary link towards LPj on its route

sa boolean - if the schedule to create agents available
Result: lookahead towards LPj

Initialize lookahead ← maximum double;
// the first case

if Ai = ∅ then
if sa then

lookahead ← min(natk + ttk);
else

lookahead ← min(obtl);
end

// the second case

else if ∀ l ∈ Lij : Ml = ∅ ∧ Sl = ∅ then
if sa then

lookahead ← min(atj , min(natk + ttk));
else

lookahead ← min(atj , min(obtl));
end

// the third case

else
lookahead ← one move interval;

end
lookahead← max(lookahead, one move interval) ;

states must be updated before the next move event takes
place. An example is shown in Figure 4d. There is an agent
inside the buffer region of an incoming boundary link link1

of LPi and another inside the buffer region of an outgoing
boundary link link2.

The minimum value of a lookahead is one move interval,
because one move interval is the assumed period of time in
which no states of the agents that may affect other agents are
updated. After estimating the lookahead, if the lookahead
value is smaller than one move interval, its value is set to one
move interval. An illustration of process of determining the
MA lookahead is shown in Algorithm 2. The worse case of
this lookahead determination algorithm happens when there
are always migrating agents or shared states, in which case
the lookahead always equals to one move interval.

4. RELAXED MUTUAL APPOINTMENT
STRATEGY

The lookahead described in Section 3.2 approaches to one
move interval when the traffic is always dense along the
boundary of LPs and there are often migrating agents and
shared states. In this case, MA may hardly have advantage
over a global barrier synchronization. This section presents
a method to increase the lookahead by exploiting the uncer-

tainty in the simulation and potentially trading-off certain
accuracy of the simulation.

4.1 Uncertainties in the Simulation
Error and uncertainty exist throughout the process of

modeling and simulation [11,21]. This is also true for traffic
simulation. Traffic simulation mimics the behavior of the
real world traffic but can never duplicate the real world.
There are always uncertainties in a traffic simulation [5].
Uncertainty is categorized into two types in literature. The
first category is aleatory uncertainty, a.k.a., stochastic un-
certainty, irreducible uncertainty, inherent uncertainty, and
variability. It is the inherent variation associated with the
physical system, in this context, real road traffic. Aleatory
uncertainty is represented as a number of streams of random
variables drawn from specified probability distributions in a
computer simulation, for example, the distribution of the
trips starting time of agents in traffic simulation. Aleatory
uncertainty can be quantified by repeated simulation runs
with different random variable streams. In scientific studies,
simulations are usually run multiple times to get statistically
meaningful results. The second category of uncertainty is
epistemic uncertainty, a.k.a., reducible uncertainty, subjec-
tive uncertainty, and cognitive uncertainty. It results from
a lack of knowledge about the simulated system. For exam-
ple, the input for traffic simulation, such as traffic demand,
is usually estimated from real world observed data or fore-
cast, and input uncertainty arises from the estimation and
forecast process. Models used in the traffic simulation are
the abstraction of the real world, and model uncertainty ex-
ists in both the model equation (e.g., certain assumption
on the function form and omitted variables) and the values
of model coefficients (usually estimated by calibration) [5].
Uncertainty in traffic simulation may be utilized to improve
the synchronization of parallel traffic simulation, which is
presented in the following subsection.

4.2 Lookahead in RMA
Consider a situation where the traffic is jammed on a

boundary link, and all agents are hardly moving, the states
of the agents do not change much, but the synchroniza-
tion is performed once per move interval according to the
MA lookahead algorithm. This frequent synchronization
may not be necessary because skipping some synchroniza-
tion events here may not have much influence on the out-
put of the simulation. As discussed, traffic simulations have
inherent stochastic uncertainties. The output of the simu-
lations has certain variability and there is no single correct
output of the simulation. This indicates that the parallel
simulation does not necessarily produce the exact output as
the sequential simulation; instead, a statistically equivalent
output is sufficient. Thus, a relaxed lookahead algorithm can
be developed, as long as the algorithm does not distort the
output of the simulation statistically. This is a similar idea
to Fujimoto’s work in [8], where the temporal uncertainty
of models are exploited to improve the synchronization of
parallel and distributed simulations.

When the lookahead is relaxed, the migration of agents
may not be achieved in time and the shared states may not
be updated in time. The direct consequence is that agents
use the obsolete states of proxy agents until the next syn-
chronization. To reduce the discrepancy between the real
agents and proxy agents, dead-reckoning is used to update

the proxy agents. An illustration of possible discrepancy
between a strict synchronization and a relaxed synchroniza-
tion is shown in Figure 5. Suppose agent B is a local agent

B C'

B C'

B C'

time t

time t+Δt

with synch

case 1

time t+Δt

without synch

disprepancy between dead-
rekoned C' and updated C'

(a)

(b)

(c)

(d)B

C'

time t+Δt

with synch

case 2

Figure 5: The effect of relaxed synchronization: (a)
agent B and proxy agent C′ at time t; (b) proxy
agent C′ at time t+∆t calculated by dead-reckoning;
(c) proxy agent C′ at time t+∆t updated by synchro-
nization; (d) same with (c), but agent C performed
lane-changing.

and agent C′ is a proxy agent in the LP at time t (Figure
5a). The real agent of C′, C, resides in another LP. As the
simulation progresses to time t + ∆t (∆t is a move inter-
val), agent B and C calculate their new states. The proxy
agent C′ should be updated with the shared states of agent
C at time t + ∆t by a synchronization operation. When a
synchronization is not performed, C′ is updated by dead-
reckoning. Discrepancy of the state of C′ may occur here
due to the difference between the real update function and
the dead-reckoning function. Figure 5b and 5c show a case
where there is discrepancy of positions between the updated
C′ and the dead-reckoned C′. Another case where the real
agent C has performed lane-change is shown in Figure 5d.
The discrepancy of proxy agent C′ may or may not lead to
discrepancy on agent B in the simulated future depending
on their relative position, relative speed, and the sensitivity
of the driver’s behavior models. Further more, even if there
is discrepancy on agent B, the discrepancy may or may not
affect the final output of the simulation.

Two factors may influence the allowed relaxation of looka-
head: dead-reckoning function and traffic condition. A sim-
ple dead-reckoning function can just assume that agents
move in a constant speed until the next synchronization.
It keeps the velocity of the proxy agents constant and up-
dates the positions accordingly. In this case, the discrepancy
is correlated with how much the velocities of the real agents
change. Therefore the potential discrepancy in different traf-
fic conditions can be estimated by investigating how the ve-
locities of agents change. Lookahead can be lengthened in
the traffic conditions where the discrepancy is potentially
insignificant. Traffic condition is typically characterized by
traffic density, speed, and flow. Density is the number of
vehicles per unit length of a roadway. Speed is the aver-
age distance that vehicles travel per unit time. Flow is the
number of vehicles passing a reference point per unit time.
An experiment studying the relationships between the aver-
age change of velocities and these three metrics is shown in
Figure 6. A road network with two connecting links l1 and
l2 were used. The traffic direction is from l1 to l2. Agents
are created on link l1, and they travel through both links.

av
er

ag
e

ve
loc

ity
 c

ha
ng

e

0

1

2

3

4

5

6

7

8

Density (vehicle/km/lane)
0 50 100 150

(a)

av
er

ag
e)

ve
loc

ity
)c

ha
ng

e

0

1

2

3

4

5

6

7

8

Average)Speed)(m/s)
0 5 10 15 20 25

(b)

av
er

ag
e

ve
loc

ity
 c

ha
ng

e

0

1

2

3

4

5

6

7

8

Flow (vehicle/hour/lane)
0 500 1,000 1,500 2,000

(c)

Figure 6: The change of velocities with respect to:
(a) density; (b) speed; and (c) flow (the line here is
a linear regression line).

Traffic flow, density, average speed, and the average velocity
change on a segment of l1 were recorded every move in-
terval. To create different traffic conditions on l1, we varied
the inter-arrival time of agents, the speed limit of l1, and the
number of lanes in l2. The average velocity change is calcu-

lated with

√∑N
a=1 [v(a,t+∆t)−v(a,t)]2

N
, where N is the number

of agents on the road segment, and v(a, t) is the velocity of
agent a at time t, and ∆t is the move interval. The result
in Figure 6 shows that there is a linear correlation between
the change of velocities and traffic flow. The correlation be-
tween the change of velocities and density or velocity is not
linear. This indicates that if the synchronization is relaxed,
the discrepancy is more likely to be greater when traffic flow
is higher. A lookahead model can be developed using traffic
flow.

We firstly define a time window windowl,t of a boundary
link l at time t as the longest time period within which syn-
chronizations can be skipped without altering the simulation
output. The window is calculated using

windowl,t = α · 1

flowl,t
(1)

where α is a sensitive factor, and flowl is the traffic flow on
link l at time t. When flowl,t = 0, windowl,t = mwl, where
mwl is the maximum window. In fact, the physical meaning
of 1

flowl,t
is the time headway which is the time difference

between two consecutive vehicles passing a reference point
on the road. Thus, this equation can also be interpreted as
the time window on a link is proportional to the time head-
way on the link. The lookahead between two LPs should be
the minimum of the time windows of all boundary links be-
tween them. Since the appointments are negotiated by both
of the synchronizing partners, it is sufficient to consider only
outgoing boundary links. Let OLij be the set of outgoing
boundary links from LPi and LPj , then the lookahead from
LPi to LPj at time t is

lookaheadij,t = min(windowl,t), l ∈ OLij (2)

The value of α controls the amount of relaxation introduced.
The optimal value of α is the one that can maximize looka-
head and do not distort the statistical output of the sim-
ulation. It may be influenced by the models used in the
traffic simulation, the road network, and partitioning. The
discrepancy on boundary links may propagate to the upper
stream and the lower stream of the link. Therefore, it may
be not possible to obtain the optimal α value. A proper α
value can be gained with testing experiments.

The lookahead determination algorithm for RMA is shown
in Algorithm 3. The algorithm begins with checking the

Algorithm 3: RMA lookahead determination

Definitions:
Ai set of agents in LPi

OLij set of outgoing boundary links from LPi to LPj

flowl current traffic flow on link l, l ∈ OLij

mwl maximum window of link l, l ∈ OLij

Result: lookahead towards LPj

Initialize lookahead ← maximum double;
if Ai = ∅ then

lookahead ← min(mwl), l ∈ OLij ;
else

foreach l ∈ OLij do
if flowl = 0 then

lookahead ← min(lookahead, mwl);
else

lookahead ← min(lookahead, α · 1
flowl

);

end

end

end
lookahead← max(lookahead, one move interval) ;

local agent population: if the local agent set is empty, the
lookahead is set to the minimum value of maximum windows
directly; if not, the outgoing boundary links are checked one
by one and the minimum value of time windows is taken as
the lookahead. If the value is less than one move interval,
set the lookahead to one move interval. The maximum win-
dow of l is calculated using the minimum traveling time of l
(length divided by speed limit).

4.3 Output Measurement
It is necessary to ensure that the output of the parallel

simulation with the RMA synchronization strategy has no
more uncertainty than the sequential simulation. If we treat
the sequential simulation as the reference, we should make
sure that the output of the parallel simulation is statisti-
cally identical to the output of the sequential simulation.
For statistical test of equivalence, the Kolmogorov-Smirnov
two-sample test or the Bootstrap method [6] can be used.
They do not make assumptions on the probability distribu-
tion of the tested variable, thus fit for our study. The output
variables measured may be different for different studies, for
example, some studies are interested in trip durations of
agents, and some studies are interested in traffic flows on
roads [5].

5. EXPERIMENTS
We conducted experiments to investigate the performance

of the MA method and the RMA method in terms of the
average lookahead, total synchronization messages sent, and
overall speed-up of the simulation. Comparison with the
conventional barrier synchronization method was made. In
the MA lookahead algorithm, the schedule of creating new
agents was not used. The simulation is implemented using
C++, and the communications are realized using OpenMPI.

5.1 Set-up
Real world data were used in the traffic simulation of our

experiments, including the road network and trips of agents.
The experiments were set up as follows: The road network
is the network of whole Singapore that consists of 43,392

nodes and 84,343 links (124,589 lanes). The trip distribu-
tion was derived from the data of the Household Interview
and Travel Survey (HITS). The acceleration model used was
the IDM model. Due to the lack of real data on the traffic
flow, the agent models are not calibrated, thus, only ap-
proximate values of the input parameters of models were
used. Therefore, the simulated traffic may not accurately re-
flect the real world. The maximum number of agents during
the peak traffic hours of the day was approximately 75,000,
which is presumably smaller than the real traffic. The mod-
els were collision-free, therefore, no accidents or emergencies
occurred in the simulation. The traffic of 24 hours from the
midnight of one day to the midnight of the next day was
simulated. The simulation warm-up period was from the
midnight to 5 am of which the statistics was excluded. The
size of a move interval was 0.5 second. The parallel simu-
lation was partitioned using METIS [12]. Partitioning was
only performed once at the beginning of the simulation, and
no dynamic load-balancing was performed. Partitioning was
performed in a way that the boundary links between LPs
tended to be the long road links.

The experiments were run on a cluster that is composed of
4 compute nodes each of which has the following hardware
configurations: 2 Octa-core Intel(R)Xeon(R)CPU E5 −
2670 0 @2.60GHz, 192GB of RAM. The compute nodes are
connected via 56Gbps InfiniBand.

5.2 Output Equivalence to Sequential
Simulation

We expect the suitable values of α vary with different par-
titioning on the network. The number of links cut usually
increases as the number of partitions increases, thus, the
same α may have higher impact on the accuracy of the sim-
ulation with more LPs. We experimented on a range of α
values to find out the effect. The sequential simulation was
firstly run twelve times with different random seeds, as the
referential output group. Then the parallel simulation was
run with different α values and different number of LPs. For
each α value and each number of LPs, the parallel simulation
was run twelve times as one group using the same twelve
random seeds as the sequential group. Statistical tests of
equivalence were performed between each parallel group and
the sequential referential group. The output variable inves-
tigated was the average trip duration of agents throughout
the simulation. The statistical test of equivalence used was
the Bootstrap method. The null hypothesis H0 of the test
was that there is no difference between the average trip du-
ration of agents in the sequential simulation and that in the
parallel simulation. The alternative hypothesis H1 was that
the average trip durations are different. Suppose the cur-
rent sequential group is A={a1, a2, . . . , a12}, and the paral-
lel group is B={b1, b2, . . . , b12}. The first step of the Boot-
strap method is resampling. In each resampling, two new
sample groups A′={a′1, a′2, . . . , a′12} and B′={b′1, b′2, . . . , b′12}
were obtained, where a′i∈A and b′i∈B. Then the difference
of the means of the two resampled groups was calculated by
d=A′−B′. We performed resampling 1000 times. Thus, we
obtained 1000 values of the difference of means. The 1000
values formed the distribution of the difference of means.
Using a 95% confidence interval, H0 would be rejected if
zero falls outside of the percentile range between 2.5% and
97.5%. Otherwise, H0 could not be rejected. The testing
result is shown in Table 1. For some α values, data were

Table 1: Acceptance of the null hypothesis using the
Bootstrap method

4 LPs 8 LPs 16 LPs 32 LPs

α = 0.2 accepted accepted accepted accepted

α = 0.4 * * * accepted

α = 0.5 accepted accepted accepted rejected

α = 1.0 accepted rejected rejected rejected

α = 1.5 rejected * * *

* data not collected

not collected since they were not necessary. For example,
if H0 could not be rejected when α=0.5, H0 must not be
rejected when α<0.5 either. This is because a smaller sen-
sitivity factor results in a smaller average lookahead which
means a more frequent synchronization, and it should lead
to less discrepancy between the parallel simulation and the
sequential simulation.

From Table 1, we can take 1.0 as a suitable α value for 4
LPs, 0.5 for 8 LPs and 16 LPs, and 0.4 for 32 LPs. The val-
ues may not be the optimum; however, the optimum value
cannot be gained without traversing through all possible α
values, which is not practical. Judging by the values we ob-
tained, we noticed that the suitable α value decreased as the
number of LPs increased. Experiments were not conducted
for more than 32 LPs due to hardware constrains. If the
RMA synchronization strategy would be used in practice,
certain prediction model for α value should be developed to
reduce the effort of obtaining α instead of running the sim-
ulation itself. The value of α using more than 32 LPs may
also be estimated. Developing a model for α can be a piece
of future work.

5.3 Lookahead and Synchronization
Messages

The direct impact of different sensitivity factor α values is
the lookahead and the number of synchronization messages.
The average lookahead values of the simulation using the
MA method and the RMA method with suitable α values
(1.0 for 4 LPs; 0.5 for 8 LPs and 16 LPs; and 0.4 for 32 LPs)
are shown in Figure 7, and the total numbers of synchro-
nization messages are shown in Figure 8. The lookahead

A
ve

ra
ge

 lo
ok

ah
ea

d

0

1

2

3

4

Number of LPs
4 8 16 32

MA
RMA
Barrier

Figure 7: Average lookahead with the MA and RMS
methods.

was measured in terms of move intervals. Figure 7 shows
that the lookahead values in the MA method were slightly
larger than one move interval. This indicates that the worse
case, in which the lookahead is one move interval, did not al-

To
ta

l M
es

sa
ge

s
(1

06)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Number of LPs
4 8 16 32

MARMA

MA
RMA

Figure 8: Total synchronization messages with the
MA and RMS methods.

ways happen. The lookahead values were larger in the RMA
method. When the average lookahead was larger, the total
synchronization messages sent in the simulation were less
(with the same number of LPs), as shown in Figure 8. The
number of total messages was reduced by a large proportion
in the RMA method compared to the MA method. The
message count in the barrier method is not shown in Figure
8 because the barrier method uses an all-to-all MPI commu-
nication every move interval to determine the neighboring
processes to communicate. The all-to-all communications
acts as barriers. The message count is not comparable to
the MA and RMA methods.

5.4 Speed-up
We investigated whether there was improvement on the

overall speed-up of the parallel simulation using the MA
and RMA methods over the conventional barrier method.
We again used α=1.0 for 4 LPs, 0.5 for 8 LPs and 16 LPs,
and 0.4 32 LPs in the RMA method. The speed-ups are
shown in Figure 9. The speed-up was calculated using the

Sp
ee

d-
up

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of LPs
4 8 16 32

RMA
MA
Barrier

Figure 9: Speed-up of the three synchronization
methods.

running time of the sequential simulation divided by the run-
ning time of the parallel simulation. Each configuration was
run multiple times and the average was taken. The sequen-
tial simulation took approximately 4 hours to simulate the
whole day’s traffic. The parallel simulations using 32 LPs
took around 50 to 70 minutes. The simulation time might
be much longer if a full city-scale traffic was simulated. We
observed that the MA method always performed better than
the barrier method, and the RMA method always performed
better than the MA method. The speed-up improvement of
the MA method over the barrier method was in the range
of 2.1% (4 LPs) to 13.6% (32 LPs), and the RMA method
over the barrier method was in the range of 17.2% (8 LPs)
to 40.7% (32 LPs). The advantage of the MA method over
the barrier method has two sources: less waiting time of LPs

since global barriers do not exist; and less communication
overhead due to the omission of global all-to-all communi-
cations. The RMA method has even less synchronization
overhead than the MA method. The reduction of the syn-
chronization overhead comes mainly from two sources: the
total size of data sent over is reduced since less shared states
are sent over (despite that the number of migrated agents
are the same); data are packed into larger messages and less
messages are sent which reduces the overall message passing
time (less start-up time for message passing).

6. RELATED WORK
The closest related work is the synchronization strategies

in other parallel agent-based traffic simulations [17,26]. The
simulation time in agent-based traffic simulations are con-
ventionally progressed in a time-stepped fashion. Synchro-
nization is performed synchronously among all LPs at the
end of time-steps. To date, we have not encountered any lit-
erature studying asynchronous conservative synchronization
in agent-based traffic simulations.

There is work on improving the synchronization of general
agent-based simulations. One attempt is to use optimistic
synchronization [15]. With an optimistic approach strategy,
dependencies between LPs can be temporarily violated, and
rollback is performed if any violation is detected. However,
the method needs to save simulation states and perform roll-
backs which are extra overheads and require more effort to
implement. The optimistic approach might be not beneficial
when the dependencies among agents are heavy along the
boundary. Another attempt to reduce the synchronization
is through asynchronous agent scheduling [25]. The depen-
dencies between agents are analyzed every update cycle and
the agents can be in different update cycles if they are not
dependent on each other. In [25], synchronization was done
by a central server that keeps the states of all agents. Pro-
cesses only communicate with the server when proxy agents
need to be updated.

Asynchronous conservative synchronization strategies have
been well studied in the parallel discrete-event simulation
community [4, 8, 20]. The performance is good in applica-
tions where lookahead can be well exploited such as queu-
ing networks [19]. Our MA strategy is very similar to the
appointment protocol in [19] which was used in a queuing
network simulation. The difference is that in our simulation
the appointments between LPs should be mutually agreed
due to the characteristic of agent-based simulations.

Another related area of work is about relaxing the syn-
chronization among LPs. An approximate time causal order
were proposed in [8] which relaxes the conventional strict
time stamp order of events. It took advantage of the fact
that temporal uncertainty of events always exists in simula-
tions. Events can be executed in an approximate order and
more events could be executed concurrently. Our relaxed
synchronization strategy focuses on improving the lookahead
of LPs without affecting the accuracy of the simulation. We
considered the characteristics of the agent-based models in
traffic simulation and analyzed the discrepancy between the
sequential simulation and the relaxed parallel simulation. A
study on the impact of relaxing the barrier synchronization
in distributed agent-based simulations was presented in [24],
however, asynchronous synchronization was not mentioned
and it was not studied how to maintain the accuracy of a
distributed simulation.

7. CONCLUSIONS AND FUTURE WORK
We have proposed a new asynchronous conservative syn-

chronization strategy for parallel agent-based traffic sim-
ulations. Its asynchronous nature reduces the waiting of
processes at barriers compared to the conventional global
barrier synchronization method. To address the low looka-
head issue in agent-based traffic simulations, we have also
developed a relaxed lookahead heuristic which improves the
lookahead by taking advantage of the uncertainty in traffic
simulations. Experiments have shown that it has improved
the parallel speed-up to a certain degree when keeping the
outputs of the parallel simulation statistically indistinguish-
able to the sequential simulation.

Future work may include: firstly, developing a prediction
model for the suitable value of α to reduce the effort of ob-
taining α, which makes the lookahead model in the RMA
method easier for practical use; the characteristics of the
road traffic should be considered; and secondly, investigat-
ing more intelligent dead-reckoning functions under different
traffic conditions which may improve the relaxation of looka-
head.

8. ACKNOWLEDGMENT
This work was financially supported by the Singapore Na-

tional Research Foundation under its Campus for Research
Excellence And Technological Enterprise (CREATE) pro-
gramme. M.L. acknowledges the support of the Russian
Scientific Foundation, Project #14-21-00137.

9. REFERENCES
[1] H. Aydt, Y. Xu, M. Lees, and A. Knoll. A

multi-threaded execution model for the agent-based
semsim traffic simulation. In Proceedings of the 13th
International Conference on Systems Simulation,
pages 1–12, Singapore, November 06–08, 2013.
Springer Berlin Heidelberg.

[2] J. Barceló, J. Ferrer, D. Garćıa, M. Florian, and
E. Saux. Parallelization of microscopic traffic
simulation for att systems analysis. In P. Marcotte
and S. Nguyen, editors, Equilibrium and Advanced
Transportation Modelling, pages 1–26. Springer US,
1998.

[3] G. D. Cameron. PARAMICS–Parallel Microscopic
Simulation of Road Traffic. The Journal of
Supercomputing, 53(1):25–53, 1996.

[4] K. Chandy and J. Misra. Distributed simulation: A
case study in design and verification of distributed
programs. IEEE Transactions on Software
Engineering, SE-5(5):440–452, 1979.

[5] G. de Jong, A. Daly, M. Pieters, S. Miller,
R. Plasmeijer, and F. Hofman. Uncertainty in traffic
forecasts: literature review and new results for The
Netherlands. Transportation, 34(4):375–395, 2006.

[6] B. Efron. Bootstrap methods: another look at the
jackknife. The Annals of Statistics, 7(1):1–26, 1979.

[7] R. Fujimoto. Parallel Discrete Event Simulation.
Communications of the ACM, 33(10):30–52, 1990.

[8] R. Fujimoto. Exploiting temporal uncertainty in
parallel and distributed simulations. In Proceedings of
the 13th Workshop on Parallel and Distributed
Simulation, pages 46–53, Atlanta, GA, USA, May
01-04, 1999. IEEE.

[9] P. Gipps. A behavioural car-following model for
computer simulation. Transportation Research Part B:
Methodological, 15(2):105–111, 1981.

[10] P. Gipps. A model for the structure of lane-changing
decisions. Transportation Research Part B:
Methodological, 20(5):403–414, 1986.

[11] J. Helton. Uncertainty and sensitivity analysis in the
presence of stochastic and subjective uncertainty.
Journal of Statistical Computation and Simulation,
57(1-4):3–76, 1997.

[12] G. Karypis and V. Kumar. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.
SIAM Journal on Scientific Computing,
20(1):359–392, 1999.

[13] A. Kesting, M. Treiber, and D. Helbing. General
Lane-Changing Model MOBIL for Car-Following
Models. Transportation Research Record: Journal of
Transportation Research Record, 1999(1):86–94, 2007.

[14] M. Lees, B. Logan, R. Minson, T. Oguara, and
G. Theodoropoulos. Modelling environments for
distributed simulation. In D. Weyns, H. Van
Dyke Parunak, and F. Michel, editors, Environments
for Multi-Agent Systems, volume 3374 of Lecture
Notes in Computer Science, pages 150–167. Springer
Berlin Heidelberg, 2005.

[15] M. Lees, B. Logan, and G. Theodoropoulos. Adaptive
optimistic synchronisation for multi-agent distributed
simulation. In Proceedings of the 17th European
Simulation Multiconference, pages 77–82, Nottingham,
UK, June 09-11, 2003. Society for Modelling and
Simulation International.

[16] M. Lighthill and G. Whitham. On Kinematic Waves.
II. A Theory of Traffic Flow on Long Crowded Roads.
Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 229(1178):317–345,
1955.

[17] K. Nagel and M. Rickert. Parallel implementation of
the TRANSIMS. Parallel Computing, 27(12):
1611–1639, 2001.

[18] D. Ni. 2DSIM: a prototype of nanoscopic traffic
simulation. In Proceedings of the 2003 Intelligent
Vehicles Symposium, pages 47–52, Columbus, OH,
USA, June 09-11, 2003. IEEE.

[19] D. M. Nicol. Parallel discrete-event simulation of fcfs
stochastic queueing networks. In Proceedings of the
ACM/SIGPLAN Conference on Parallel

Programming: Experience with Applications,
Languages and Systems, pages 124–137, New Haven,
CT, USA, July 19-21, 1988. ACM.

[20] D. M. Nicol. Principles of conservative parallel
simulation. In Proceedings of the 1996 Winter
Simulation Conference, pages 128–135, Coronado, CA,
USA, December 08-11, 1996. IEEE.

[21] W. L. Oberkampf, S. M. DeLand, B. M. Rutherford,
K. V. Diegert, and K. F. Alvin. Error and uncertainty
in modeling and simulation. Reliability Engineering &
System Safety, 75(3):333–357, 2002.

[22] S. Paveri-Fontana. On Boltzmann-like treatments for
traffic flow: a critical review of the basic model and an
alternative proposal for dilute traffic analysis.
Transportation Research, 9(4):225–235, 1975.

[23] P. Richards. Shock Waves on the Highway. Operations
Research, 4(1):42–51, 1956.

[24] O. Rihawi, Y. Secq, and P. Mathieu. Relaxing
Synchronization Constraints in Distributed
Agent-based Simulations. Jurnal Teknologi,
63(3):65–76, 2013.

[25] M. Scheutz and J. Harris. Adaptive scheduling
algorithms for the dynamic distribution and parallel
execution of spatial agent-based models. In F. de Vega
and E. Cantú-Paz, editors, Parallel and Distributed
Computational Intelligence, volume 269 of Studies in
Computational Intelligence, pages 207–233. Springer
Berlin Heidelberg, 2010.

[26] T. Suzumura and H. Kanezashi. Highly Scalable
X10-Based Agent Simulation Platform and Its
Application to Large-Scale Traffic Simulation. In
Proceedings of the 2012 IEEE/ACM 16th
International Symposium on Distributed Simulation
and Real Time Applications, pages 243–250, Dublin,
Ireland, October 25-27, 2012. IEEE.

[27] M. Treiber, A. Hennecke, and D. Helbing. Congested
traffic states in empirical observations and microscopic
simulations. Physical Review E (Statistical Physics,
Plasmas, Fluids, and Related Interdisciplinary
Topics), 62(2):1805–1824, 2000.

[28] Y. Xu, H. Aydt, and M. Lees. SEMSim: A Distributed
Architecture for Multi-scale Traffic Simulation. In
Proceedings of the 2012 ACM/IEEE/SCS 26th
Workshop on Principles of Advanced and Distributed
Simulation, pages 178–180, Zhangjiajie, China, July
15-19, 2012. IEEE.

