Situated Neuro-Fuzzy Control for
Vision-Based Robot Localisation

Jianwei Zhang, Alois Knoll and Volkmar Schwert

Faculty of Technology, University of Bielefeld, 33501 Bielefeld, Germany
Tel: ++49-521-106-2951/2952
Fazx: ++49-521-106-6440
E-mail: zhang | knoll Qtechfak.uni-bielefeld.de

Abstract

We introduce a neuro-fuzzy system for localising mobile robot solely based on raw
vision data without relying on landmarks or artificial symbols. In an initial learning
step the system is trained on the compressed input data so as to classify different
situations and to associate appropriate behaviours to these situations. Input data
may, for example, be generated by an omnidirectional vision system obviating the
need for active cameras. At run time the compressed input data are fed into different
B-spline fuzzy controllers which determine the correspondence between the actual
situation and the situation they were trained for. The matching controller may then
directly drive the actuators to realise the desired behaviour. The system thus re-
alises a tight coupling between a very high-dimensional input parameter space and
the robot actuators. It is completely free of any internal models such as maps of
the environment, the algorithms are straightforward to implement and the compu-
tational effort is much lower than with conventional vision systems. Experimental
results validate the approach.

Key words: fuzzy control, supervised learning, B-splines, omnidirectional robot
vision, localisation.

1 Introduction

Conventional one-step fuzzy control frequently encounters two problems when
dealing with complex multi-input systems. Firstly, the dimension of the input
space is too large for the control process to be tractable (“curse of dimen-
sionality”). Secondly, the correlation between a given input and the desired
output is often highly nonlinear. It is difficult to linearise the system about
a certain point; the linearisation rules are in many cases hard to find. One
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single controller, which interpolates between “similar” control situations, of-
ten appears inadequate to describe a global scenario with controller inputs
distributed over large input range intervals.

The issue we address is the application of an adaptive neuro-fuzzy system for
navigating a mobile robot in an environment which the robot — to some extent
— has been made familiar with during an initial training phase. The task of
determining its position and orientation is to be accomplished solely based on
visual information, i.e. high dimensional input data, and without resorting to
internal maps or environmental object models. The latter is particularly at-
tractive because map and model building is not only cumbersome but it also
limits the range of applications. Even though humans are used to relying on
maps for “outdoor navigation”, they manage to find their way in environments
they have seen before without being mentally aware of a map, e.g. for their own
home. It is therefore fruitful to study the localisation mechanisms of animals.
The questions are: How can cats, pigeons or salmons know “where they are”
and find a desired place where they have been before only by having observed
their environment (and possible distinctive features)? What kind of informa-
tion has to be memorised? Does a general model exist for that purpose? What
kind of features extracted from the visual data are most efficient? Are there
features related to a specific metric, e.g. a (subconscious) floor plan? Current
research indicates that hymenopterans such as bees, ants and wasps do not
resort to the concept of the mental analogue of the topographic map (a metric
map) for their navigation. Instead, they use a combination of landmark-based
routes, snapshots and the pattern of polarised light in the sky, represented by
so-called E-vectors. For further details the reader is referred to [14].

The localisation capability of animals may also be partly attributed to their
extraordinary non-visual sensors for scent and magnetic fields, which are still
too sophisticated to emulate. However, visual sensors are becoming more af-
fordable and easier to use in robotic systems. We feel that given the current
state of technology it should be possible to accomplish the task without a
plethora of sensors that are not commonly found in living organisms (such
as laser scanners, infrared detectors and large circular arrays of ultrasonic
transducers). It should also be possible to do without symbolic signs, artificial
landmarks, beacons and the like.

2 Previous Work

For navigating mobile robots, numerous approaches have been developed in
recent years because the need for a robust and accurate localisation method
is obvious. The major objective of most localisation approaches is to update
and to re-calibrate the internal control with external sensor inputs. Internal



sensors like wheel encoders are accurate within a short distance but fail in
the long run due to sliding wheel, e.g. during orientation changes. It is there-
fore common to combine odometric sensors with standard cameras. The vision
system can then be applied to recognise certain positions of the environment
and determine the robot position and orientation by using pre-calibrated data.
A simple technical solution suggests artificial landmarks, e.g. “beacons”. So-
lutions based on that approach are robust but mostly limited to industrial
and commercial environments and expensive. Moreover, if normal 2-D camera
images are used, it is often hard to tell translation changes from orientation
changes during robot motion.

In the following two subsections, robots are briefly reviewed which use optical
systems for localisation. Other approaches based on non-optical sensors, e.g.
GPS, radio navigation and localisation with ultrasonic sensors, which are not
directly relevant to the approach we propose, will not be discussed.

2.1 Nawvigation

When a multi-sensor system is used for navigation, the complexity of the
control system grows exponentially with the number of its inputs. One way
to reduce this number is to select the most expressive inputs with regard to
the desired system output (Input Selection) [8] or by statistical analysis of
the input patterns using techniques like the principal components analysis
(PCA). Hancock and Thorpe [5] implemented eigenvector-based navigation of
an autonomous vehicle. In their experiment, the image sequence of the vehicle
motion and the corresponding steering motion of a human tutor are recorded.
The collected training images are compressed with PCA. A new image without
any steering information is first projected onto the computed eigenvectors.
While the original image is reconstructed with the principal components, the
steering parameters can also be reconstructed.

In [9] the robot task is to navigate along a trained path within a corridor. All
the images along the path and the associated steering vectors are stored. Based
on a fast algorithm for pattern matching, the position and orientation of the
robot can be calculated from the information pre-stored in the image sequence.
To minimise the computation complexity, images are stored with very coarse
resolution (32 x 32 image pixels). Since the image bank can increase very
rapidly, the approach is only applicable in small working spaces.



2.2 Localisation

Based on a monocular camera system, the robot system proposed by Dudek
and Zhang [6] tried to calculate the exact robot position in a room. A camera
image is taken at each training position with constant orientation. The image
set, is preprocessed with conventional approaches like edge detection, extrac-
tion of parallel edges, and is fed into a three-layered neural network. The
interpolation error of unknown positions is very small. However, the approach
is very sensitive to rotational changes of the robot.

A flexible approach to localisation is the use of an omnidirectional vision
system. With such a vision system a global view of the environment can be
acquired without rotating the camera. Furthermore, it is relatively simple for
the localisation system to deal with new objects. Approaches employing an
omnidirectional vision system can be grouped according to the method of
extracting information and how the information is further processed. Yagi et.
al. [15] extracted edges of objects and then generated a mathematical model
of the environment. The interpolation with unknown images is performed by
solving a linear equation system generated with the training image set.

The POLLICINO system by Cassinis et. al. [4] can be viewed as a extension
of the system proposed by Yagi. The detected edges are classified according to
their colours and combined into a colour vector. In a similar way to Dudek [6],
the generated vector is used as the input of a three-layered neuronal network.

3 Vision Based Situation Assessment

In our earlier work on robot navigation [18], we developed a “situation-based”
control for input from simple infra-red proximity sensors. The aim was to dif-
ferentiate between situations: if the robot encounters many new obstacles it
has to give more weight to local collision avoidance and it must temporar-
ily reduce the weight given to goal tracking. For this purpose a “situation
evaluator” was constructed by heuristic fuzzy rules.

In a situation-based model the complete robot navigation areas are coarsely
classified. The whole control task is broken down into subtasks which can
be performed in local “situations” so that within each situation the input
patterns needed for control correlate to a certain degree. The classification
criterion can be the physical neighbourhood or a set of distinctive features.
If a learned situation is recognised, a robot position can be classified into an
area. A fine localisation can be realised by a local controller which is specially
trained for a situation, Fig. 1.
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Fig. 1. Subdividing a global scene into local control problems.

3.1 Reducing the Input Complexity

If the sensor input is high-dimensional as in the case of raw vision data, gen-
eral and scalable situation classifiers need to be developed. Theoretically, fuzzy
c-means clustering may be used for this purpose. However, applying the fuzzy
c-means method directly to a sequence of original images is computationally
expensive. If a sequence of feature projections of the original images is consid-
ered, the input dimension is lower but there still exist two practical problems.
If the dimension of the eigenspace is too small, the loss of information gives rise
to ambiguity and complex situations cannot be clearly separated. If, by con-
trast, the dimension of the feature space is selected great enough to uniquely
classify the desired situations, the computation time for cluster calculation is
often not affordable. Additionally, it is necessary to find clusters which are
coherent with regard to the desired outputs.

In the following, we first propose an approach of using Qutput Related Features
(ORF), an improved variant of PCA for supervised learning, to reduce the high
dimension of the input space. Such a method works well if the observed process
is constrained within a low variance scenario where the input patterns bear a
certain similarity. For a global scenario which does not meet this requirement,
we suggest to apply the situation-based control scheme. The complexity raw
input data, i.e. the visual images, is reduced by compression techniques and
then fed into a situation classifier, which, in turn, steers several situation-
specific controllers.

Situation-based control architecture has been applied in autonomous mobile
robots to handle complex systems, [2,3]. Using fuzzy controllers to implement
such an architecture is reported among others in [16,18,7,12]. Most of the
above systems make use of low-dimensional sensor data. In this work, we use
high-dimensional vision data for localisation without using complex algorithms
for extracting geometric features. Therefore, how to represent, classify and



recognise situations using vision data becomes a new problem.

3.1.1 PCA

PCA has been mainly applied to data compression and pattern recognition [11,13].
Recently, this technique is also applied for reducing the dimension of the input
space of a general control problem, [5],[10].

For an input space X; x Xy x---x X,,, if all the variables z; to x,, may vary over
all their universes in the sampling procedure, input data will be scattered over
the whole input space and possible compression ratios are low. Nevertheless,
if the observed high dimensional process runs continuously, the input vector
often varies only gradually. If the observations meet certain constraints, e.g.
different images are taken within a local scenario of the robot environment
while the robot is not moving too fast, in most cases the input vectors are
similar to each other. In other words: the observed high-dimensional input
data are highly correlated.

Let us assume an input vector £ made up of the random variables (21, xo, . .., Zs)
originating from a pattern-generating process. In our case ¥ is the stacked one-
dimensional image vector with 80 x 20 elements resulting from 80 pixel rows
and 20 pixel lines with dimension m. First, the expectation value ji and the
covariance matrix @Q of these vectors are computed according to

(B(21), E(z2), -, E(wm))"
E((&@ - )@ - i)'

i
Q
The eigenvalues and eigenvectors can then be computed by solving
Aid; = Qa;

where the \; are the m eigenvalues and the @; are the m-dimensional eigenvec-
tors of Q. Since Q is positive definite, all eigenvalues are positive. Extracting
the most significant structural information from the set of input variables
(x1,22,...,xy) is equal to isolating the largest n eigenvalues Aq,..., A\, with
(n < m) and their corresponding eigenvectors a;. If we now define a transfor-
mation matrix

we can reduce the dimension of &' by

pP=A-% dim(@) =n



i.e. by projecting Z into the subspace spanned by @ ...d,. This projection
is illustrated in the left part of Fig. 2. In a subspace spanned by the feature
vectors, we can easily apply a universal function approximator, in our case
a B-spline fuzzy controller, by covering ORFs with linguistic terms, see the
right part of Fig. 2.
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Fig. 2. A neuro-fuzzy model for visually-guided control.

Depending on how “local” the measuring data are and therefore how simi-
lar the observed sensor images look like, a small number of eigenvectors can
provide a good summary of all the input variables. The dimension n should
be determined depending on the discrimination accuracy needed for further
processing steps vs. the computational complexity that can be afforded. It can
be possible that two or three eigenvectors supply most of the information in-
dices of the original input space. The determination of n for our experiments
is currently purely heuristic and an automatic method is subject of further
study.

The eigenvectors of a covariance matrix can be efficiently computed by the
perceptron approach [13]. Each input data vector is multiplied with the eigen-
vectors and becomes a point in the eigenspace. A sequence of continuous input
data is transformed into a manifold in the eigenspace. Fig. 3 shows an exam-
ple of an image sequence in our scenario, Fig. 4 gives the projection of these
images in a three-dimensional eigenspace.



Fig. 3. Sample images of a motion along a wall.

3.1.2  Output Related Features

As outlined above, PCA is a suitable approach for dimension reduction. With
the first n dimensions of the eigenspace, the original image can be recon-
structed to a pre-defined resolution. Since the magnitude of the eigenvalue
corresponds to the variability of a random variable, problems may occur with
input variables whose variance is low but that are nevertheless significant for
controlling the process. Think of a traffic scene in which a small light that
changes from green to red is much less salient than, say, the large changes in
the image caused by cars passing by.

In such situations, with pure PCA applied to the input data set, a large
number of eigenvectors are needed to represent control input variables in an
appropriate way. A solution to this problem is to use a set of vectors that
directly correlate input and output space, instead of using the eigenvectors
of the input data. Features that should affect the output are called Output
Related Features (ORF).
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Fig. 4. Projection of images into a manifold in a 3D eigenspace.

Based on a single-layer feed-forward perceptron network, the ORFs can be
extracted through training with the Hebbian learning rules. Assume that the
training data are denoted by z; (j = 1,...,k). If one ORF weight vector is
trained which is denoted by @, then the network output P is:

P = Zajxj = El:Tf = fTC_I: (1)

Unlike PCA, which maximises the variance of the input data along the weight
vector (eigenvector), the learning rule for the ORF weight vectors is to min-
imise the direct error, i.e. the difference between the desired and real values of
the output. Obviously, this requires both the input x and the desired output
Ys (in our case the absolute position of the robot in a given coordinate system)
to be available. Then, one element a; of the weight vector @ can be modified
as follows:

Aaj =n(Ys — P)x; (2)

where 7 is the learning rate. To calculate more than one ORF weight vectors,
denoted by a;, (i = 1,2,...), we use an approach similar to that proposed
by Yuille et al. [17]. The computation begins with the first ORF weight vec-
tor (i=1) using (2). For calculating further a;(i > 1), all the input data are
projected onto the last ORF vectors, i.e. dy, ..., d;_1, through which the com-
ponents of the input vector, lying parallel to the ORF vector, are calculated.
These components are subtracted from the input. The element a,; of the vector



a; can be then adapted by:

i—1
Aaij =N (YS — PZ) (l’j — Z Pkakj> . (3)
k=1

Unlike the eigenvectors the ORF weight vectors are not orthogonal. Therefore,
they cannot be used for reconstructing the original data unambiguously. How-
ever, for a supervised learning system, ORFs are more efficient than principal
components (alone) because they take into account the input-output relation.
When modelling a complex non-linear system, the benefit of finding the ORF's
is to determine a small number of the most significant features and to isolate
them through a linear transformation. The rest of the task, i.e. modelling the
non-linear part, is performed by a fuzzy controller.

3.2 Fundamentals of Situation Representation

In principle, if a global eigenspace is used to project the situation-related im-
ages, the projections of the images that fall into one situation form a specific
manifold. If the dimension of the eigenspace is large enough, these manifolds
are easy to separate, i.e. situations can be distinguished simply by identify-
ing the point F' in the eigenspace that the images are projected onto. Figs. 5
and 6 illustrate the process in a simplified manner. If represented this way,
the match between a situation and a new image can simply be defined as the
Euclidean distance between F' and the manifold of this particular situation.
To differentiate between the situations (“walls” in Fig. 5), more dimensions
than shown in the figures are needed (12 in our experiment).

- JRESE TR RN
IR I A I
T R U
R RNy RN
I DA U

Situation 1 Situation 2 Situation 3

Fig. 5. Views from the robot camera used in Fig. 7.
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Fig. 6. Situation manifolds in eigenspace. These three manifolds represent parts of
the situations shown in Fig. 5.

3.3 Transformation of the Omnidirectional Vision Data

For identifying the situations in our context we have developed the omnidi-
rectional vision system for mobile robots shown in Fig. 7, which provides a
complete view of the environment. To fully utilise the global and sometimes
redundant information, it is separated into overlapping parts. These parts are
input to the controller (Fig. 8). The viewing area of the camera is divided into
multiple sections of the same size. In our experiment, it was found that a view-
ing area of 180° is in most practical cases sufficient for a unique localisation
of our robot. Each of sectors A, B and C covers an angle of 90°. All sectors
are independently transformed and normalised. This way, an object in arbi-
trary colour will not influence the normalisation of other sectors. Afterwards,
these sectors are combined into pairs which are denoted as pseudo-segments. A
pseudo-segment covers a viewing area of 180°. In the experiments, one ORF
vector is computed for each combined viewing area. The projections of all
three ORF vectors are the input of a fuzzy controller that interpolates the
x-/y-position.

With the help of the sectoring technique, an unexpected new object or change

of the environment at run-time can be detected and the corresponding sector
can be discarded for interpolation.
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Fig. 7. The mobile robot with an omnidirectional camera.
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Fig. 8. Sectoring by constructing pseudo-segments.

3.3.1 Situation Classification without Global Eigenspace

Although the global eigenspace provides a universal approach for representing
different situations compactly, it is memory-intensive because all the eigenvec-
tors as well as the situation manifolds must be stored. On-line projection into
the global eigenspace and search in the manifolds to find the nearest neighbour
are computationally expensive and hence time-consuming.

To classify situations, the variance of the projections of the pseudo-segments
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on their respective ORF vectors are used as follows:

e If the robot is located in a situation which it has been trained for, all the
projections deliver the same variance.

e If the robot is located in other situations, all three projections differ very
much.

Therefore, the situation with the smallest variance is identified as the correct
one. Since ambiguity of certain degree in the grey-level image-based perception
always exists, the correctness of such a situation classification is evaluated in
a probabilistic sense. To increase the reliability, the use of further sensors, e.g.
the R-, G- and B-channel of colour images, may easily be added to increase
the robustness of the classification.

4 Applications

In this section we describe both the hardware implementation of our localisa-
tion system and the software implementation. We also show a number of real
images taken during several wall following runs of our robot.

4.1  Ezperimental Setup

The vision system consists of only two components: a subminiature B&W
camera looking “upright” and a conical mirror of polished aluminium. The
complete setup is shown in Fig. 7. The test environment consists of a miniature
“doll’s house” of 40cmx40cm in size. The walls are coated with textured
wall paper and the “room” includes several pictures, windows and doors. As
a typical problem with high-dimensional input, we investigate the situation
shown in Fig. 9.

To automate the process of collecting training images, the built-in infrared
proximity sensors are used for guiding the robot along a wall. Readings of the
motor encoders are reliable over a short distance when only a single motion
is performed; in conjunction with the proximity sensors they are used as the
input data for training the B-spline fuzzy controllers. All higher level tasks are
performed on a standard Pentium 100 PC running under Linuz. The PC and
robot communicate via an RS-232 interface. Images are acquired by a low-cost
frame-grabber.
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4.2 Implementation

The robot starts at an arbitrary position in the room. It moves straightforward
until sensor readings indicate the presence of a wall. This wall is recorded as
the initial situation. As the robot detects the end of the wall, it turns parallel
to the wall perpendicular to the first one. Every 15 mm an image is taken by
the vision system and the position supplied by the wheel encoders is recorded.
To enhance the robustness of the system against motion uncertainties like
slight rotation, the robot is rotated deliberately at every position (in seven
consecutive steps) to learn the effect of (unwanted) rotation on the camera
input.

To make the input patterns less prone to changes in illumination conditions,
all images are min-/max-normalised to the interval [0,1]. The normalisation
reduces the sensitivity against brightness fluctuations.

The concentric images are further converted into planar images via a standard
tangent transformation. The converted images cover the range of —45 to 225
degrees. Only the slice between 0 and 180 degrees of this area is used, thus
reducing the dimension of the input set to m = 80 x 20 (pixels). Finally, the
average image in each situation is subtracted from each image. This process
is illustrated in Fig. 9.

Fig. 10 shows the situation-based control architecture we implemented on this
robot. As described in subsection 3.3, after the sectoring the pseudo-segments
are prepared first and then each of them is projected onto the ORF weight
vectors. In our experiment, the three first ORFs extracted from the three
pseudo-segments are used as inputs for the B-spline fuzzy controller, i.e. n = 3.
This three-dimensional ORF vector plus the recorded internal x-/y-positions
are taken as input/output pairs for training the fuzzy controllers.

Fig. 11 shows four sequences of raw images that are assigned to different
situations. Since the ORF vectors possess the same dimension as the original
data, they can be converted into images. Fig. 12 and 13 illustrate the ORF
vectors after addition of the average images, without any rotation and with
seven “artificial” rotations, respectively.

4.3 Using the Adaptive B-Spline Neuro-Fuzzy Model

To interpolate between any two samples of the training set, fuzzy controllers
can be used. In the following implementation, fuzzy controllers constructed
according to the B-spline model [19] are used. This model provides an ideal
implementation of the CMAC architecture [1].
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(a) 2D image of a corner.

(b) Conical image of the complete
scene.

PN R

(c) The tangent transformed image.

Fig. 9. Image transformation for the robot, (a) — (b) — (c).

In the B-spline model we define linguistic terms for input variables with B-
spline basis functions and for output variables with singletons. This requires
fewer parameters than other set functions such as trapezoid, Gaussian, etc.
The output computation becomes very simple and the interpolation process
is transparent (details are explained in [19]). We note that there are two main
reasons for utilising a B-spline fuzzy controller in this context:

e The global minimum of the squared error function is guaranteed to be found
if the partitioning of the input space is fixed;
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e Supervised learning using gradient descent is easy to implement and enables
rapid convergence.

At run time (i.e. after the learning phase) the input data are first projected
onto the ORF vectors, then mapped to the output variables based on the
fuzzy control model, Fig. 2. The fuzzy rule-base is generated by gradient de-
scent supervised learning. The performance of the controllers can be enhanced
further by optimising the shape of the B-spline basis functions used as fuzzy
sets, Fig. 14. The principle of this optimisation is to move the fuzzy sets into
the direction of the data point causing the maximum error.

Using the ORF-based fuzzy control approach to reconstruct the robot position,
the maximum error with the test data can almost invariably be reduced to 3%
or less. By comparison, the maximal test error of a PCA approach is at least
ten times larger.

All controller outputs are interconnected using two multiplexers addressed by
the situation index I. The implemented system currently achieves a refresh
rate of about 10 ... 12 cycles per second (standard image processing hardware
on the Pentium 100).

5 Discussion

We showed that a localisation approach based on the visual appearance of an
arbitrary environment as the sole input is feasible. The experimental environ-
ment is comparable to a typical living room or office, where mobile robots can
find potential applications for service jobs. The further development of this
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Fig. 11. Image sequence of the training situation 1 - 4.
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(a) Situation 1
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Fig. 12. The first ORF vectors with addition of the average image (0 rotations).

(a) Situation 1 (b) Situation 2 (c) Situation 3 (d) Situation 4

Fig. 13. The first ORF vectors with addition of the average image (7 rotations).
approach aims at achieving the following features:

Scalability. The situation-based approach can be scaled almost arbitrarily.
If the movement area is extended, new situations can be learned to cover
the new area. Additionally, the computation time required and memory
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Fig. 14. Input variables (eigenvectors) modelled with B-spline basis functions.

expenses are only linear in the number of situations.

No geometric model. No additional information of the environment is need-
ed. Without usage of sophisticated geometric models, the direct mapping
leads to a significant reduction of computational costs.

Universal method. The conventional robot vision algorithms based on seg-
mentation, geometric feature extraction, etc. must always be adapted to
specific environments. The proposed method is generally applicable to en-
vironments including any kind of objects.

Low cost. The necessary hardware components are off-the-shelf low-cost stan-
dard products. The performance/price ratio is very good in comparison with
other systems that need special hardware.

This approach can be applied to a large set of control problems of complex sys-
tems. Actually, we have also used it successfully in the vision-based grasping
with manipulators. The limits of single one-step fuzzy controllers are over-
come; the system input need not be low-dimensional. The situation-based
control scheme is also “cognitively adequate”. Computation complexity grows
polynomially.
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We are currently investigating some improvements. At the moment the Sit-
uation Classifier is realised by physical grouping. It is desirable that in the
future the learning system be capable of automatically dividing a large num-
ber of sequences into appropriate situations according to the interpolation
precision required and the maximum memory allowed. Another issue is the
size of the visual area to receive good interpolation results. Since the amount
of memory needed for the local controllers is directly related to the size of
the feature vectors, the input images should be as small as possible. If, by
contrast, the images are too small, major distinctive features are lost. An au-
tomatic adaptation to the best size is an important objective. Furthermore,
it is feasible to replace the crisp situation multiplexing with a soft-switching
controller. Moreover, it is also necessary to combine this localisation approach
with other mobile robot tasks like collision avoidance, object recognition (e.g.
for grasping) and tracking.
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