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A Two-Arm Situated Artificial Communicator for
Human–Robot Cooperative Assembly
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Abstract—We present the development of a robot system with
some cognitive capabilities, as well as experimental results. We
focus on two topics: assembly by two hands and understanding
human instructions in nonconstrained natural language. These
two features distinguish human beings from animals, and are,
thus, the means leading to high-level intelligence. A typical appli-
cation of such a system is a human–robot cooperative assembly.
A human communicator sharing a view of the assembly scenario
with the robot instructs the latter by speaking to it in the same
way that he would communicate with a child whose common-sense
knowledge is limited. His instructions can be underspecified,
incomplete, and/or context dependent.

After introducing the general purpose of our research project,
we present the hardware and software components of our robots
needed for interactive assembly tasks. We then discuss the control
architecture of the robot system with two stationary robot arms
by describing the functionalities of perception, instruction un-
derstanding, and execution. To show how our robot learns from
humans, the implementations of a layered learning methodology,
memory, and monitoring functions are introduced. Finally, we
outline a list of future research topics related to the enhancement
of such systems.

Index Terms—Cognitive science, cooperative systems, learning
control systems, multiple manipulators, natural language inter-
faces.

I. INTRODUCTION

ENDOWING a robot system with the ability to carry on a
goal-directed multimodal dialogue using natural language

(NL), speech, gesture, gaze, etc., for performing nontrivial tasks
is a demanding challenge not only from a robotics and a com-
puter science perspective, but it cannot be tackled without a deep
understanding of linguistics and human psychology [5]. There
are two conceptually different approaches to designing an in-
terface architecture for incorporating NL input into a robotic
system: the Front-End and the Communicator approaches.

A. Front-End Approach

The robot system receives instructions in NL that completely
specify a task the instructor wants to be performed. The input
is analyzed and the necessary actions are taken in a subsequent
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separate step. Upon completion of the task, i.e., after having car-
ried out a script invoked by the instruction fully autonomously,
the system is ready for accepting new input. This approach is
ideal for systems that have to deal only with a limited set and
scope of tasks, which do not vary much over time either. Inad-
vertent changes of the environment resulting from the robot’s
actions, which would require a reformulation of the problem,
cannot be considered. Neither is it possible to make specific
references to objects (and/or their attributes) that are relevant
only to certain transient system states because neither the pro-
grammer nor the instructor can foresee all of these states. Ex-
amples of this approach can be found in [1], [6], and [10].

To overcome the limitations of this approach, the concept of
the “Artificial Communicator” was developed, which we briefly
outline in the following.

B. Communicator Approach

If the nature of assembly tasks cannot be fully predicted, it
becomes inevitable to decompose them into more elementary
actions. Ideally, the actions specified are elementary in such a
way that they always refer to only one step in the assembly of
objects or aggregates, i.e., they refer to only one object that is
to be assembled with another object or collection of aggregates.
The entirety of a system that transforms suitable instructions
into such actions is called anArtificial Communicator(AC). It
consists of sensor subsystems, NL processing and further cogni-
tive modules, and the robotic actors. From the instructor’s point
of view the AC should resemble aHuman Communicator(HC)
as closely as possible [8]. This implies several important prop-
erties of AC behavior.

1) All modules of the AC must contribute to an event-driven
incrementalbehavior: as soon as sufficient NL input
information becomes available, the AC must react.
Response times must comply with human waiting toler-
ances.

2) One of the most difficult problems is the disambiguation
of instructor’s references to objects. This may require the
use of sensor measurements such as integration of robot
vision or further NL input resulting from an AC request
for more detailed information.

3) In order to make the system’s response seem “natural,”
some rules ofspeech act theoryshould be observed. The
sequence of actions must follow a “principle of least as-
tonishment,” i.e., in a given state the AC should take the
actions that the instructor would expect it to take. Fur-
thermore, sensor measurements and their abstractions that
are to be communicated about must be transformed into
a form comprehensible for humans.
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4) It must be possible for the instructor to communicate with
the AC about both scene or object properties (e.g., object
position, orientation, type) and about the AC system it-
self. Examples of the latter are meta-conversations about
the configuration of the robot arms or about actions taken
by the AC.

5) The instructor must have a view of the same objects in the
scene as the AC’s perception system.

6) The AC must exhibitrobust behavior, i.e., all system
states, even those triggered by contradictory or incom-
plete sensor readings as well as nonsensical NL input
must lead to sensible actions being taken.

Altogether, the AC must be seamlesslyintegratedinto the
handling/manipulation process. More importantly, it must be
situated, which means that the situational context (i.e. the state
of the AC and its environment) of a certain NL and input of fur-
ther modalities is always considered for its interpretation. The
process of interpretation, in turn, may depend on the history of
utterances up to a certain point in the conversation. It may be
helpful, for example, to clearly state the goal of the assembly
before proceeding with a description of the elementary actions.
There are, however, situations in which such a “stepwise re-
finement” is counterproductive, e.g., if the final goal cannot be
easily described. Studies based on observations of children per-
forming assembly tasks have proven to be useful in developing
possible interpretation control flows.

From the engineering perspective, the two approaches can
be likened toopen-loop control(Front-End Approach) and
closed-loop control(Communicator Approach) with the human
instructor being part of the closed loop. Several projects on
communicative agents realized with real robots have been
reported, e.g., [2] abd [9].

Our research work described in the following sections is
embedded in a larger interdisciplinary research project aiming
at the development of ACs for various purposes and involving
scientists from the fields of computer linguistics, cognitive
linguistics, computer science, and robotics. For performing as-
sembly tasks and to facilitate human interaction with language
and gestures, we have been developing a two-arm robotic
system to model and realize human sensorimotor skills. This
robotic system serves as the major test bed of the ongoing
interdisciplinary research program of the project SFB1 360
“Situated Artificial Communicators” (SACs) at the University
of Bielefeld, Germany [13].

II. SAC

There is ample evidence that there exists a strong link be-
tween human motor skill and cognitive development, e.g., see
[7]. Our abilities of emulation, mental modeling, and planning
of motion are central to human intelligence [3] and, by the way,
a precondition for anticipation, but they also critically depend
on the experience we make with our own body dynamics as
we plastically adapt our body’s shape to the environment. As
a basic scenario, the assembly procedure of a toy aircraft (con-
structed with “Baufix” parts, see Fig. 1) was selected. A number

1Collaborative research centre funded by the Deutsche Forschungsgemein-
schaft (DFG).

(a)

(b)

Fig. 1. Assembly of a toy aircraft. (a) Baufix construction parts. (b) Goal
aggregate.

Fig. 2. Two-arm multisensor robot system for dialogue-guided assembly.

of assembly parts must be recognized, manipulated, and assem-
bled to construct the model aircraft. In each of these steps, a
human communicator instructs the robot, which implies that the
interaction between them plays an important role in the whole
process (Fig. 2).

The physical setup of the SAC system consists of the fol-
lowing components.

1) Two six-degrees-of-freedom PUMA-260 manipulators
are installed overhead in a stationary assembly cell. On
each wrist of the manipulator, a pneumatic jaw gripper
with integrated force/torque sensor and “self-viewing”
hand–eye system (local sensor) is mounted. As an op-
tion, a third manipulator with hand camera installed on
the side can be applied to help with fixating or active
exploration tasks.
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Fig. 3. Control architecture of the SAC for perception, instruction understanding, and execution.

2) Two cameras with controllable zoom, auto-focus, and
auto-exposure provide the main vision function. Their
tasks are to build two-dimensional (2-D)/three-dimen-
sional (3-D) world models, to supervise gross motion of
the robot as well as to trace the gesture and gaze of the
human instructor.

3) A microphone and loudspeakers are connected with a
standard voice recognition system to transform spoken in-
structions to word sequences and to synthesize the gener-
ated speech output.

III. CONTROL ARCHITECTURE

As the backbone of an intelligent system, the control archi-
tecture of a complex technical system describes the function-
ality of individual modules and the interplay between them. We

developed an interactive, incremental architecture for the SAC
according to Fig. 3. An HC is closely involved in the whole as-
sembly process.

For clarity, the whole architecture is partitioned into three
blocks: Perception (right bottom), High-Level Cognitive Func-
tions (upper half). and Execution (left bottom).

A. Perception Modules

The tasks of the perception system include self-perception
and the perception of the physical environment as well as the
human instructor. The complete robot state is specified by the
joint and Cartesian positions of the arm, the posture of the hand,
and the forces/torques exerted on the latter. This information
can be acquired by the robot internal sensors like encoders/po-
tentiometers and force/torque sensors. The current robot state is



654 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 4, AUGUST 2003

the input to the “monitoring” module. Another interesting topic
on the supporting role of the robot state to help better under-
standing emotional intervention instructions like “Halt!” when
the robot is moving near to the assembly surface. The assembly
objects in the environment are observed by multiple cameras—a
major function of sensor-based robotics.

To better handle the “human-in-the-loop” problem, human
perception is viewed as one important extension of autonomous
robots. Therefore, we track visual information about the human
instructor like gesture and gaze with the static and articulated
cameras. The naturally spoken instructions of the human in-
structor are input through a microphone and recognized as word
sequences. The sensor management contains the data fusion and
sensor integration, supplies the specified values of “robot state,”
“speech perception,” and “visual perception.” The speech and
visual perception results are the main inputs for the high-level
cognitive functions outlined below.

B. High-Level Cognitive Functions

The SAC and the HC interact through natural speech and a
small set of hand gestures. First, an instruction is spoken to
the robot system and recognized with the speech recognition
engine. In the current system,ViaVoice recognizes only sen-
tences which the grammar we developed allows. In practice,
hundreds of grammatical rules can be used. If the recognition
succeeds, the results are forwarded to the speech recognition/un-
derstanding module.

1) Transforming Instructions to Elementary Operations:By
their very nature, human instructions are situated, ambiguous,
and frequently incomplete. In most cases, however, the semantic
analysis of such utterances will result in sensible operations. An
example is the command “Grasp the left screw.” The system has
to identify the operation (grasp), the object for this operation
(screw), and the situated specification of the object (left). With
the help of a hand gesture the operator can further disambiguate
the object. The system may then use the geometric knowledge
of the world to identify the right object. Other situated examples
are: “Insert in the hole above,” “ Screw the bar on the downside
in the same way as on the upside,” “ Put that there,” “ Rotate
slightly further to the right,” “ Do it again,” etc.

The output of the analysis is then verified to check if the in-
tended operation can be carried out. If in doubt, the SAC asks
for further specifications or it is authorized to pick an object by
itself. Once the proper operation is determined, it is given to the
execution module on the next level. The final result on this level
consists of anElementary Operation(EO) and the objects to be
manipulated with the manipulation-relevant information such as
type, position/orientation, color, and pose (standing, lying, etc).

An EO is defined in this system as an operation which does
not need any further action planning. Typical EOs are:grasp,
place, insert into, put on, screw, regrasp, andalignment. The
robustness of these operations mainly depends on the quality of
the different skills.

2) Planning and Monitoring:Based on the planning
module, an assembly task of the toy aircraft, or of subag-
gregates, is decomposed into a sequence of EOs. The final

decision about the motion sequence depends on the instructions
of the human user as well as the generated plan. Theplanning
module should not only be able to understand the human
instructions, but it should also learn from the human guidance
and improve its planning abilities gradually. It receives an
EO from instruction understanding. By referencing theaction
memory, theplanningmodule chooses the corresponding basic
primitive sequence for the operation. This sequence is a script
of basic primitives for implementing the given EO. The task
here includes planning of the necessary trajectories, choosing
the right robot(s) and basic exception handling.

Monitoring plays an important role in making an intelligent
system robust. It is also used frequently by a human being in
manipulation and speaking, especially in a new environment
or for a new task. Monitoring and potential replanning for re-
pair actions result in the nonlinearity of the understanding–plan-
ning–execution cycle, but they represent one essential function
in the cognitive architecture of a robot. Furthermore, it is mean-
ingful to add a diagnosis function which can provide hypotheses
about the reasons of diverse failures.

The unexpected events during the robot action can be, for
example:a force exceeds a defined threshold; a camera detects
no object; singularities; collisions,etc. If such an event occurs,
it is reported to the planning module.

Theplanningmodule receives an event report that is gener-
ated by theexecutionmodule described below. In normal op-
erations, themonitoringmodule updates the action memory. It
also detects the event failures. If it is found that the robot can
continue and/or take repair actions, theplanningmodule will
generate an appropriate plan. Otherwise, themonitoringmodule
sends a request to thedialoguemodule to ask the human com-
municator how to handle the exception and waits for an instruc-
tion. After the execution of each operation, theknowledge base
is updated.

3) Memories: In the knowledge base, only semantic and
procedural knowledge is used. In our current implementation
this knowledge is still hard coded. It can be viewed as long-term
memory to a certain degree, which will be extended by learning
approaches in our future research. Short-term memories exist
in perception modules, which are used for scene recognition,
dialogue preparation, and action (sensorimotor functions).
Learning of another important type of memories, the episodic
memory, has been preliminarily studied for the assembly
scenarios.

According to empirical investigations, episodic memory rep-
resents one of the most important components of human in-
telligence. Remember that mental simulation and planning use
episodic memory as the basis. The diverse multisensor data with
high bandwidth of our robot such as vision system, joint an-
gles, positions, force profiles, etc., can obviously not be saved
in their raw format for an arbitrarily long period of time. There-
fore, coding approaches based on appearances and features are
suggested for summarizing and generalizing experiences from
the successfully performed operations. The multisensor trajec-
tories and the motor signals are “grounded” in the learned op-
eration sequences. Fig. 4 depicts the instruction for building an
“elevator control” and the corresponding sensor trajectory.
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Fig. 4. Instruction sequence with sensor trajectory for building an “elevator control.” The parameters of the instructions “PlugIn,” “OpenHand,” and “MoveARel”
(relative movement along the approach axis of the tool frame) can be flexibly set. Different instruction sequences leading to the same aggregate are fused by a
generic approach.

C. Execution Functions

Sequences are executed by thesequencer, which activates dif-
ferent skills on theexecutionlevel.

1) Robot Skill Library: The complexity of the skills can
range from opening the hand to collision-free control of the
two arms to a meeting point. Advanced skills are composed
of one or more basic skills. Generally, three different kinds of
skills are defined.

1) Motor skills: Open and close gripper; Drive joint to;
Drive arm to; Rotate gripper; Move arm in approach di-
rection; Move camera, etc.

2) Sensor skills:Get joint; Get position in world; Get force
in approach direction; Get torques; Check if a specific po-
sition is reachable; Take a camera picture; Detect object;
Detect moving robot; Track an object, etc.

3) Sensorimotor skills: Force-guarded motion; Vi-
sion-guided gross movement to a goal position; Visual
servoing of the gripper to optimal grasping position, etc.

2) Control by a Neuro-Fuzzy Model:We developed a uni-
versal neuro-fuzzy method as the underlying model for robot
skill learning [12]. Our experimental results show under the
most diverse conditions that we can extract geometric fea-
tures based on the calculations of moments to encode the
positioning information and to find nongeometric parameters
based on combining principal components. Therefore, if the
input is high dimensional, an efficient dimension reduction
can be achieved by projecting the original input space into
a minimal subspace.

Variables in the subspace can be partitioned by covering them
with linguistic terms (the right part of Fig. 5). In the following
implementations fuzzy controllers constructed according to the
B-spline model are used [11]. This model can be classified as an

Fig. 5. Perception-action mapping is realized based on a neuro-fuzzy model.

adaptive, universal function approximator using regularization
approaches. It provides an ideal implementation of the cerebellar
model articulation controller (CMAC) model.

We define linguistic terms for input variables with B-spline
basis functions and for output variables with singletons. This
method requires fewer parameters than other set functions such
as trapezoid, Gaussian function, etc. The output computation
is very simple and the interpolation process is transparent.
We also achieved good approximation capabilities and rapid
convergence of the B-spline controllers. Both self-supervised
and reinforcement learning have been applied to this model
to realize most of the sensorimotor skills [12].

D. Layered Learning

Learning the interplay of perception, positioning, and ma-
nipulation is the foundation of a smooth execution of a com-
mand sequence of a human instructor. If a command refers to
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(a) (b)

(c) (d)

Fig. 6. Learned assembly process for building a simple aggregate. (a) Mounting a ledge. (b) Grasping a cube. (c) Mounting the cube. (d) Goal state reached.

an EO, the disambiguation of the instruction based on multi-
modality is the key process. The autonomous sensor-based exe-
cution of these instructions requires adaptive, multisensor-based
skills with an understanding of a certain amount of linguistic la-
bels. If complex instructions are used, however, the robot system
should possess capabilities of skill fusion, sequence generation,
and planning. It is expected to generate the same result after a
repeated instruction even if the starting situation has changed.
The layered learning approach is the scheme to meet this chal-
lenge.

Under this concept, tasks are decomposed from high to low
level. Real situated sensor and actuator signals are located on
the lowest level. Through task-oriented learning, the linguistic
terms for describing the perceived situations as well as robot
motions are generated. Skills for manipulation and assembly
are acquired by learning on this level using the abovementioned
neuro-fuzzy model. Furthermore, the learning results on the
lower levels serve as the basis of the higher levels such as
EO’s, sequences, strategies, planning, and further cognitive
capabilities.

To learn the operation sequences automatically for two arms,
we developed a method for learning cooperative tasks. If a single
robot is unable to grasp an object in a certain orientation, for ex-
ample, it can only continue with the help of other robots. The
grasping can be realized by a sequence of cooperative operations
that re-orient the object. Several sequences are needed to handle
the different situations in which an object is not graspable for
the robot. It is shown that a distributed learning method based
on a Markov decision process can learn the sequences for the in-
volved robots, a master robot that needs to grasp and a helping
robot that supports it with the re-orientation. A novel state-ac-
tion graph scheme is used to store the reinforcement values
of the learning process [4]. Fig. 6 shows an assembly process

Fig. 7. Finished aggregates that can currently be built in multimodal dialogues
by the SAC assembly robot.

learned by the state-action graph representation. The aggregate
composed of a screw, a ledge and a cube is to be assembled. We
use the object description and its graph matching algorithms to
find out whether the object to construct is a subassembly of the
goal aggregate (positive reward) or not (negative reward). This
will give a reward whenever a part is successfully attached to
the growing aggregate.

E. Experimental Results

Fig. 7 shows typical aggregates that can be built with the setup
as developed up to now. Here, we briefly describe a sample
dialogue which was carried out between the SAC and the HC
in order to build the “elevator control” aggregate (number 1 in
Fig. 7) of the aircraft out of three elementary objects. The ob-
jects were laid out on the table, and there were many more ob-
jects positioned in an arbitrary order on the table than necessary.
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The HC had a complete image in mind of what the assembly
sequence should be. Alternatively, one could have used the as-
sembly drawings in the construction kit’s instructions and trans-
lated them into NL.

The first SAC input request is output after it checked that
all modules of the setup are working properly. The necessary
classification and subsequent steps are based on the color
image obtained from the overhead color camera. After the
SAC finds out if all objects are present and after going through
an optional object naming procedure, the HC input “Take a
screw!” first triggers the action planner, which decides which
object to grasp and which robot to use. Since the HC did not
specify either of these parameters, both are selected according
to the principle of economy. In this case, they are chosen so as
to minimize robot motion. The motion planner then computes
a trajectory, which is passed to the RCCL/RCI subsystem
(Robot Control C Library/Real-Time Control Interface). Since
there are enough bolts available, the SAC issues its standard
request for input once the bolt is picked up.

An HC input “Now, take the three-hole slat!” results in
the other robot picking up the slat. Before this may happen,
however, it has to be cleared up, which slat to take (SAC:
“I see more than one such slat” and HC: “Take this one!”

). This involves the incorporation of the gesture
recognizer. Under the instruction “Screw the bolt through the
slat,” the screwing is triggered, involving the peg-in-hole EO
mentioned above followed by the screwing EO. For reasons
of space, the subsequent steps of the dialogue have to be
omitted here; they show how error handling and many other
operations can be performed—most of which humans are not
aware of when they expect machines to do “what I mean.”

IV. FUTURE WORK

Among the many topics to be explored in future research,
some important ones can be listed as follows.

• Seamless communicator—Interfaces will be closely cou-
pled with planning and monitoring. Ideal action needs to
be inferred based on motion and action planning while
considering the context and the human preference.

• Active intentiondetectionbasedonmultiplecues—Speech,
gesture, and motion sequences (human demonstrations)
will be integrated and combined with contexts, knowledge,
and personal preference. The cross-modal interplay will
be investigated. Since the system resources are limited,
sensory input needs to be selected by using factor analysis,
signal synthesis, and tracking focus of interests.

• General human perception—Human motions are captured
withoutusingartificialmarkers.Wide-range,activecamera
configurationsareappliedtohumanrecognitionandprecise
gaze perception, even under conditions like low-quality
input and occlusions. The robustness of the voice input
in real environments should be significantly improved.
This task is even more challenging if non-close-speaking
microphones are used.

• Grounded learning of multisensor events, sequences, and
human activities—Long-term memory should be learned
from short-term memory so that symbols, sequences,
names, and attributes are anchored in the real sensor/actu-
ator world. To enable the arbitrary transition between dig-
ital measurements and concepts, symbolic sparse coding,
granular computing, fuzzy sets, and rough sets will be
investigated and integrated. The sensor capability can be
extendedbyusing linguisticmodelingofhumanperception
and sensor fusion so that information which is difficult to
measure, incomplete, or noisy can be perceived. Learning
on the higher level should be conducted to select action
strategies and to generate intelligent dialogues. This will
require the tight integration of more components and
more knowledge. The combination of grounded learning
and communication will make human–robot interaction
work like interaction with a growing child, which will
be really entertaining.
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