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Abstract— This paper describes a new approach for coopera-
tive localization by using both internal and external sensors. In
contrast to the state-of-the-art methods, the proposed approach
analyses the statistical properties of the systematic error during
the transformation phase. A factor graph is formulated which
jointly estimates both the biases and the locations. The proposed
approach is evaluated by using simulated data from odometry,
GPS and radar measurements. The experiment demonstrates
excellent performance of the proposed approach in comparison
to traditional techniques.

I. INTRODUCTION
Interest in cooperative localization has grown exponen-

tially in the past decade (e.g. [1], [2], [3]), as it enables
a vehicle to autonomously perform better environment per-
ception. By fusing data from disparate sources, the volume
of surveillance and the reliability and precision of the state
estimation process are significantly increased.

Many approaches have been employed by utilizing fil-
tering techniques to provide an on-line estimation of the
positions. Classical approaches like the Kalman filter, in-
cluding the Extended Kalman Filter (EKF) [4], or Unscented
Kalman Filter (UKF) [5], are considered as the workhorse
to recursively calculate the posterior mean and covariance.

An alternative solution, compared to filtering techniques,
is the graph-based formulations for batch processing. The
benefit is the flexibility to nonlinear models in contrast to
filtering techniques. It addresses the nonlinear issues by using
optimization algorithms such as Gauss-Newton iterations or
the Levenberg-Marquardt algorithm [6]. Many approaches
have been developed like the

√
SAM algorithm[7], its incre-

mental variant iSAM [8] and the g2o framework [9].
In practice, as the data is acquired from disparate sensors

with heterogeneous capabilities, the transformations often
introduce systematic errors in cooperative localization. Thus,
sensor registration is considered to eliminate the systematic
errors. Various approaches have been investigated and di-
vided into centralized [10] and decentralized solutions [11],
[12]. The related work has already demonstrated some pre-
liminary results. However, the position is often overestimated
without the ground-truths.

In this paper, we analyze the statistical properties of the
systematic errors with respect to the mean and covariance
[13], [14]. Then, the nonlinear least square method is utilized
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to jointly estimate biases and positions from noisy measure-
ments.

The remainder of this paper is structured as follows:
Sec. II briefly describes the background of the cooperative
localization. Sec. III introduces more details of the nonlinear
least square optimization. Sec. IV presents experimental
results. Finally, the paper is concluded in Sec.V.

II. BACKGROUND DESCRIPTION

In this section, the cooperative localization is achieved by
fusing data from simulated GPS, odometry and radar. We
choose these sensors as they each offer a disparate way of
observing the state of the vehicle (absolute location, relative
change in location and location of an external target). The
description of the proposed scenario is as follows:

• Using GPS, the ego-vehicle is able to localize itself in
the 2D Cartesian coordinate system.

• Using odometry, the ego-vehicle is able to measure the
movement in the 2D Cartesian coordinate system.

• Using radar, the ego-vehicle is able to localize itself in
the 2D polar coordinate system.

Measurements from both GPS and odometry consist of
the ground-truth and random noises, whereas radar measure-
ments consist of the ground-truth, random noise and the bias.

Fig. 1 shows the measurements from both unbiased GPS
and biased radar sensors in the global coordinate system.
Although radar has high precision, the systematic error is
significantly influenced by the bias. The goal of this paper
is to take the systematic error into account as part of the
state estimation process in order to jointly estimate both the
sensor bias and vehicle position.

III. NONLINEAR LEAST SQUARE OPTIMIZATION

In this section, the factor graph is described to handle the
nonlinear issues during the estimation.

A. Overview of factor graph

A factor graph is a bipartite graph which explains the
complex functions with simpler functions. Hence it allows
to compose complex problems using local computations. In
general, a factor graph could be implemented in various
models including Bayesian networks [15], Markov random
fields [16] and junction graphs [17].

In this paper, the entire trajectory is estimated as an
optimization problem by using the factorized probability
distribution. The localization is then represented by esti-
mating the trajectory x = {xi|i ∈ 0, ..., n} given a set
of observations from GPS zg = {zg|i ∈ 0, ..., n}, radar



Fig. 1: Measurements from both unbiased GPS and biased
radar sensors
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Fig. 2: Factor graph for localization

zr = {zr|i ∈ 0, ..., n} and odometry u = {u|i ∈ 0, ..., n}.
Thus the joint density is written as:

P (x, zg, zr,u) ∝ P (x0)

n∏
i

P (xi+1|xi, ui)
m∏
k

P (zk|xik)

(1)
where zk ∈ {zg, zr} denotes the measurement, originating
from either GPS or radar.

Fig. 2 shows a simple graphical representation of the dis-
tribution in form of a factor graph. Note that the factorization
is done based on Gaussian distributions for the process and
measurement models as:

xi = fi(xi−1, ui)− wi ⇔ P (xi+1|xi, ui+1)

∝ exp(−1

2
||fi(xi−1, ui)− xi||2Γi) (2)

zk = hk(xik)− vk ⇔ P (zk|xik)

∝ exp(−1

2
||hk(xik)− zk||2Σk) (3)

where h and f denote the measurement and process models,
and v and w are the corresponding noises with covariance
matrices Σk and Γi.

In this paper, the goal is to calculate the maximum
likelihood estimation (MLE) by using the nonlinear least

square method:

θ̄ = argmaxP (θ|z,u) =

argmin{
n∑
i=1

||fi(xi−1, ui)− xi||2Γi +

m∑
k=1

||hk(xik)− zk||2Σk}

(4)

Since radar measurements are acquired in polar coordi-
nates, a nonlinear transformation between polar and Carte-
sian coordinate is established to use radar measurements.

B. Systematic error and sensor bias

This section summarizes the statistic properties of the sys-
tematic error, by using our previous work in [18]. Assuming
radar also contains bias, the corresponding measurement is
thus defined as:

rm = r̄ + rb + r̃; (5)

θm = θ̄ + θb + θ̃; (6)

where r̄ and θ̄ denote the ground truth, and rb and θb denote
the corresponding biases. Also r̃ and θ̃ are assumed to be the
Gaussian noises with zero mean, and standard deviations σr
and σθ. Hence new measurements are acquired as follows:

xm = rm cos θm (7)

ym = rm sin θm (8)

The transformed measurement can also be represented as
the combination of the true value and the systematic error.

xm = rm cos θm = (r̄+rb+ r̃) cos(θ̄+θb+ θ̃) = x̄+ x̃ (9)

ym = rm sin θm = (r̄+rb+ r̃) sin(θ̄+θb+ θ̃) = ȳ+ ỹ (10)

where x̄ = r̄ cos θ̄ and ȳ = r̄ sin θ̄ denote the true values and
x̃ and ỹ denote the systematic errors.

Rearranging Eq. (9) and Eq. (10), the representation of the
systematic errors is acquired. For clarity, only the systematic
error in x direction is derived which is given as:

x̃ = rm cos θm− r̄ cos θ̄ = r̄[A−cos θ̄]+rb[A]+ r̃[A] (11)

and

x̃2 = r̄2[A− cos θ̄]2 + r2
b [A]2 + r̃2[A]2 + 2r̄rb[A− cos θ̄][A]

+ 2r̄r̃[A− cos θ̄][A] + 2r̃rb[A]2 (12)

where

A = cos θ̄ cos θb cos θ̃ − sin θ̄ sin θb cos θ̃

− sin θ̄ cos θb sin θ̃ − cos θ̄ sin θb sin θ̃ (13)

Thus the expectation and covariance of the systematic
error can be explicitly calculated as

E[x̃] = r̄[cos θ̄ cos θbe
−σ2

θ/2 − sin θ̄ sin θbe
−σ2

θ/2 − cos θ̄]+

rb[cos θ̄ cos θbe
−σ2

θ/2 − sin θ̄ sin θbe
−σ2

θ/2] (14)



and

E[x̃2] = r̄2[B + cos2 θ̄ − 2 cos2 θ̄ cos θbe
−σ2

θ/2

+ sin 2θ̄ sin θbe
−σ2

θ/2] + r2
bB + σ2

rB

+ 2r̄rb[B− cos2 θ̄ cos θbe
−σ2

θ/2 + sin 2θ̄ sin θbe
−σ2

θ/2/2]
(15)

where B equals

B = cos2 θ̄ cos2 θb(1 + e−2σ2
θ )/2 + sin2 θ̄ sin2 θb(1 + e−2σ2

θ )/2

+ sin2 θ̄ cos2 θb(1− e−2σ2
θ )/2 + cos2 θ̄ sin2 θb(1− e−2σ2

θ )/2

− sin 2θ̄ sin 2θbe
−2σ2

θ/2 (16)

Similarly, the corresponding error in y direction is calcu-
lated. However, it is observed that the calculated bias has a
significant influence on the systematic error, which depends
on the knowledge of the ground-truth. Hence the systematic
errors are calculated on condition of the noisy measurements.

Based on the Eq. (14) and Eq. (15), the conditional first
and second order moments are calculated as:

E[E[x̃]|rm, θm] = rm[cos(θm − θb) cos θbe
−σ2

θ−
sin(θm − θb) sin θbe

−σ2
θ − cos(θm − θb)e−σ

2
θ/2]

+ rb cos(θm − θb)e−σ
2
θ/2 (17)

E[E[x̃2]|rm, θm] = C× [M + D− 2D cos θbe
−σ2

θ/2

+ F sin θbe
−σ2

θ/2] + r2
b [M] + σ2

r [M ]

+ (2rbrm − 2r2
b )[M−D cos θbe

−σ2
θ/2 +

1

2
F sin θbe

−σ2
θ/2]

(18)

and

E[E[ỹ]|rm, θm] = rm[sin(θm − θb) cos θbe
−σ2

θ+

cos(θm − θb) sin θbe
−σ2

θ − sin(θm − θb)e−σ
2
θ/2]

+ rb sin(θm − θb)e−σ
2
θ/2 (19)

E[E[ỹ2]|rm, θm] = C× [N + E− 2E cos θbe
−σ2

θ/2

− F sin θbe
−σ2

θ/2] + r2
b [N] + σ2

r [N]

+ (2rbrm − 2r2
b )[N−E cos θbe

−σ2
θ/2 − 1

2
F sin θbe

−σ2
θ/2]

(20)

where
C = r2

m + r2
b + σ2

r − 2rmrb

D = cos2(θm − θb)
1 + e−2σ2

θ

2
+ sin2(θm − θb)

1− e−2σ2
θ

2

E = sin2(θm − θb)
1 + e−2σ2

θ

2
+ cos2(θm − θb)

1− e−2σ2
θ

2

F = sin 2(θm − θb)e−2σ2
θ
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Fig. 3: Visualization of proposed factor graph

M = D cos2 θb
1 + e−2σ2

θ

2
+ E sin2 θb

1 + e−2σ2
θ

2
+

E cos2 θb
1− e−2σ2

θ

2
+ D sin2 θb

1− e−2σ2
θ

2
− F sin 2θb

e−2σ2
θ

2
(21)

N = E cos2 θb
1 + e−2σ2

θ

2
+ D sin2 θb

1 + e−2σ2
θ

2
+

D cos2 θb
1− e−2σ2

θ

2
+ E sin2 θb

1− e−2σ2
θ

2
+ F sin 2θb

e−2σ2
θ

2
(22)

Thus the uncertainty of the transformed measurement is
represented as:

var(x̃) = E[E[x̃2]|rm, θm]− E2[E[x̃]|rm, θm] (23)

var(ỹ) = E[E[ỹ2]|rm, θm]− E2[E[ỹ]|rm, θm] (24)

Furthermore, to acquire an unbiased transformation, the
converted measurement needs to eliminate the systematic
error as follows:[

rm cos θm − E[E[x̃n]|rm, θm]
rm sin θm − E[E[ỹn]|rm, θm]

]
C. Graph representation

Receiving data from odometry, GPS and radar sensors, the
factor graph is established with different factors and nodes.
Fig. 3 illustrates the proposed factor graph with three vehicle
nodes, one bias node, two odometry factors, three GPS
factors and three radar factors. It is observed that the radar
factors are dependent on both the measurements and the bias.
Given the statistic properties of the converted measurements,
the nonlinear least square method is utilized to optimize the
corresponding states.

Within the factor graph presented in Fig. 3, the important
contribution of this work is related to the Bias node. This
node contains the unknown bias as state. The bias then
is estimated and optimized by usage of the information
provided by the GPS and Odometry sensors.



IV. EXPERIMENT

In this section, simulated data was used to evaluate the
performance of the proposed approach both quantitatively
and qualitatively. During the simulation, the GTSAM library
[19] is utilized to perform the nonlinear optimization. The
radar measurements have manually introduced systematic
biases for both range and bearing. The odometry noise is
given by zero mean, and deviation of (0.1m, 0.1m), the GPS
noise is given by (3m, 3m) and the radar noise is given by
(0.1m, 0.01rad).

To better evaluate the proposed approach, we also com-
pare with the normal measurement implementation (original
nonlinear least square method developed in GTSAM without
considering the biases), and the Taylor expansion based least
square method (referenced in [20]).

Fig. 4a, 4b and 4c illustrate the performance of the
proposed approach in scenarios of low bias, whereas Fig. 5a,
5b and 5c exhibit the performance of the proposed approach
in scenarios of high bias. It is observed that the biased
measurements strongly influence the accuracy of the state
estimation. However, by considering bias and eliminating the
systematic error, the result of the proposed approach is close
to the ground truth.

Table I and II give more details of the scenarios including
the given values of biases, the estimated biases and the
RMSE (root mean square error) of all approaches. To better
evaluate the performance, ideal measurement RMSE (origi-
nal nonlinear least square method in GTSAM with manually
eliminating biases) is also given in all scenarios.

As shown in Table I, the performance between the pro-
posed approach is close to the Taylor expansion. This is
mainly due to the fact that the given biases are relatively
small. Although the nonlinear issues exist, the performance
of the first-order Taylor expansion is close to our approach.
However, as shown in Table II, the performance of our
proposed approach is significantly improved compared to
the Taylor based least square method in scenarios of high
biases. This is done by incorporating the proposed bias model
for precisely estimating the first and second order moments.
Table I and Table II demonstrate excellent performance of the
proposed approach in comparison to traditional techniques.

V. CONCLUSION

In many applications where filtering and smoothing algo-
rithms are used to fuse sensor data from disparate sources,
the accuracy of the state estimation process often suffers
from biased sensors. These biases can strongly influence
the accuracy of the state estimation process and generally
require an expensive and time consuming calibration by
expert engineers.

In this paper, a graph-based solution is proposed to esti-
mate the bias in sensor measurements by considering it as an
uncertain state variable. To achieve this goal, the systematic
error is analyzed with respect to its statistic properties, in
reference to other sensory information. A nonlinear least
square method is applied to optimize the corresponding
states in the system, subsequently estimating the sensor bias.

The experiment demonstrates excellent performance of the
proposed approach in comparison to traditional techniques.

This work has significant benefits from the perspective of
self-calibrating systems and has application across a variety
of domains, in particular it has application to highly assisted
and autonomous driving. In this application, it is possible
for sensors to lose calibration or be physically moved over
time. The introduction of this technique may allow the cen-
tral fusion architecture to auto-calibrate its sensors, greatly
improving the safety and reliability of the whole sensor suite.
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Fig. 4: Performance of all approaches in low bias scenarios
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