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ABSTRACT
Nowadays, multi-core processor architectures have been widely
adopted in main domains e.g., embedded, general-purpose, real-
time systems, etc. Diverse thermal managements have been pro-
posed to manage the temperature under various constraints. This
has made the selection of the right thermal management policy
difficult. Designers need to validate any resource distribution
decision in design phase on the target architecture, e.g., by using
a re-configurable thermal framework running in the user-space. In
this paper, we first analyze the requirements that such a framework
should satisfy. Then, we propose McFTP: a thermal framework
fulfilling all the requirements. For this purpose, an intermediate
interface is defined to isolate thermal management policies from the
low-level implementations. A set of commonly used temperature
control mechanisms are implemented as a library which can be
accessed via the interface. With these features, McFTP can not
only implement a thermal management policy at high-level of
abstraction, but also execute the user-defined task-set for real
thermal evolution. We demonstrate the effectiveness and efficiency
of McFTP by implementing it with two works in the literature on a
Dell hardware platform.

1. INTRODUCTION
As technology for microprocessors swifts in the nanometer

regime, power density is rapidly increased and has become one
of the constraints to higher performance, especially for multi-
core processors. Hot temperature, caused by high power density,
severely hampers the reliability and performance of microproces-
sors. The traditional thermal managements which are designed
for typical thermal conditions, i.e., physical cooling devices, are
challenged by the significant spatial and temporal variation of chip
temperature, for the sake of cost-effectiveness [24]. To meet such
challenges, Dynamic Thermal Management (DTM) techniques
have been proposed to control the temperature actively.

There have been plenty of DTM researches which are based on
various temperature control mechanisms such as Dynamic Voltage
and Frequency Scaling (DVFS), Dynamic Power Management
(DPM), job scheduling and task migration. Designers need
to select the proper thermal management policy to manage the
temperature on the target platform under various constraints, e.g.,
peak temperature constraint or real-time constraint. These policies
are often evaluated by simulation programs, which simulate
the execution, power dissipation and temperature evolution of
the processor according to user-defined models. The thermal
management results obtained from simulation have little credibility
since the adopted processor power and thermal models are usually
simplified for efficiency. Moreover, when targeting commodity
setups, that is, systems with off-the-shelf hardware and software
environments, the timing behaviour of the system is influenced
by the operating systems and the computer architecture. These
concerns are often ignored in simulation programs. Nowadays,
DTM researches show a trend towards multi-core architectures in
which multiple cores work concurrently as a set of heat sources.
Thermal management policies must properly arrange the execution

of different tasks on different cores to optimize the temperature or
performance while considering the heat influence between different
cores. This makes comparing and selecting thermal management
policy more complex.

We argue that validating the effectiveness of all selections in
the early design phase on the target architecture is essential to
select the right thermal management policy for commodity setups.
These validating procedures can be accomplished by prototyping
the policies on real hardware platforms with a high-level thermal
framework. Such a framework should enable the designers to
prototype the policies in a fast and efficient manner. To compare
the performance of different policies, it also should offer results that
can reflect the real influences of thermal policies to the temperature
on the target platform. Specifically, such a framework must

• realize basic thermal-aware controlling mechanisms, i.e., a
temperature control mechanisms library,
• allow the implementation of customized thermal manage-

ment policies with minimal effort,
• evaluate thermal policies according to the temperature of real

processors,
• have minimal requirements on the hardware and underlying

software for better compatibility.

We study how to develop such a framework in this paper.
The traditional frameworks of evaluating thermal management
policies either are based on the power and thermal simulators of
a processor [1, 2, 18, 20, 22, 23] or utilize a customized version of
one standard operating system kernel to support the new thermal
management technique [12, 16]. Therefore, these implementations
either have little credibility in validating the effectiveness of the
policies on real platforms or are difficult to maintain and place
strict requirements on the hardware and software environment.
Moreover, some researchers implement their work in user-space
with a standard Linux kernel [11]. However, these implementations
are limited to the specified policies and can be hardly re-used for
validating other policies.

In this paper, we propose the Multi-core Fast Thermal Proto-
typing (MCFTP) framework, which is an open-source1 thermal
framework meeting all the aforementioned requirements. First,
MCFTP utilizes the physical processors to execute real tasks or
benchmarks. The temperatures of the cores are obtained by reading
hardware thermal sensors built inside the processor instead of using
thermal simulators. Second, MCFTP implements several basic
thermal management mechanisms, including frequency-scaling,
sleep state switching, task-migration and job scheduling. With such
a thermal library, MCFTP enables the comparison and evaluation
of a large set of thermal management policies. Third, MCFTP
defines a Configuration Manipulation Interface (CMI), which
separates the policies from the detailed low-level implementations.
CMI defines a set of easy-to-use sub-interfaces to control the
low-level execution of workload on the physical cores. Thus,
customized thermal management policies can be quickly realized
as the designer only needs to implement the high-level algorithms

1https://github.com/ThermalSimulationProgram/McFTP



of the policies. Finally, MCFTP has wide compatibility as it resides
in the user-space and has little interaction to the kernel-space.
In addition, MCFTP has few requirements on the hardware, i.e.,
only the Advanced Configuration and Power Interface (ACPI) and
hardware thermal sensors, which are common features of modern
processors. We also implement the proposed framework on the
top of POSIX-compliant operating systems targeting a Dell Core-
i7 desktop platform and study its performance. The effectiveness
of MCFTP is demonstrated by two existing thermal and power
management policies with 33 benchmarks. The efficiency of
MCFTP, i.e., the running overheads of proposed framework, is also
investigated by experiments on two platforms.

2. RELATED WORK
A large number of works have been proposed to evaluate multi-

core thermal management policies in different levels of accuracy
and for different applications. In this section, we briefly discuss the
closest thermal evaluation frameworks.

The majority of thermal frameworks are programs that obtain
the temperature traces by simulating firstly the power dissipation
and then the temperature evolution of the target processor. In
general, such frameworks have three major components, namely
the processor simulator, the power simulator and the temperature
simulator. The processor simulator does the logical simulation
of the processor and provides access and usage statistics to
relevant architecture and microarchitecture blocks. A famous one
is the Gem5 [3], which encompasses system-level architectures
as well as processor microarchitectures. It supports various
commercial ISAs (Instruction Set Architecture), including Alpha,
ARM, SPARC, MIPS, POWER, RISC-V and x86 ISAs. It also
supports processors of homogeneous and heterogeneous multi-core
architectures. It performs cycle-accurate simulation and computes
the number of accesses to all units during the execution of a
benchmark. The second component, i.e., the power simulator,
computes the power dissipation estimates of the processors and
interconnect primitives. Wattch [4], a framework for analyzing and
optimizing microprocessor power dissipation, enables architecture-
level power dissipation exploration through a cycle-accurate model
of a single-core processor. To accurately model the power of
multi-core architectures, a novel power, area and timing modeling
framework called McPAT [15] is proposed. Finally, the power
estimation of the processor is fed to the temperature simulator to
compute the temperature trace. A well-known thermal simulator
is the HotSpot [14]. It calculates temperature evolution based
on an equivalent circuit of thermal resistance and capacitance
that correspond to microarchitecture floorplan blocks and essential
aspects of the thermal package. Combining the aforementioned
or other similar tools, many simulators and frameworks have been
presented in literature. Typical examples are the SESC [19],
the work proposed in [13], the framework presented in [23] and
the work in [8]. Although the above frameworks can accurately
simulate the logical behaviour w.r.t. thermal management policies,
the correctness of the temperature evolution strongly depends
on and could be limited by the power and thermal parameters,
thermal model and floorplan description. Thus, evaluating thermal
management policies in such methodology lacks evidence of the
effectiveness of the policies.

Instead of adopting software simulators to get the temperature,
some researchers validate their policies by implementing them
on real platforms based on a customized version of standard
operation system kernels. Zhu Changyun et al. implement
the proposed ThermOS run-time thermal management algorithms
within the Linux 2.6.8 kernel in [25]. Several parts of the kernel,
including performance-counter based power modeling and power-
thermal budgeting, have been modified in the implementation.
Similarly, Hettiarachchi et al. in [12] test their theoretical
results on an Intel i7-950 multi-core processor with modified

Linux kernel (2.6.33.7.2-rt30 PREEMPT RT). Compared to the
thermal-simulator-based methods, such implementations offer
more evidence of the results. Since these policies are integrated
within the modified kernel, high timing accuracy is also provided.
The downside of such implementations is that it could be costly
to extend them to new software platforms as they have specified
requirements to the operating system kernel. Moreover, some
implementations run, at least partly, in the kernel-space and
could affect other functionalities of the system and increase the
instability. There are also some thermal-aware policies that have
been tested in the user-space of a standard operating system.
The examples could be the feedback thermal controlling approach
in [11] and the hierarchical power management in [17]. The main
drawback of these test beds as well as the aforementioned kernel-
customizing implementations is that they are merely designed for
the proposed policies in their work. Thus, extending them to new
thermal management policies could be costly or even impossible
since it requires re-modification, re-verification and re-testing of
the implementations. The framework proposed in this paper is
designed to be a general platform and can implement a large set of
thermal policies with little effort. To the best of our knowledge, this
is the first user-space thermal framework that evaluates different
thermal management policies by the temperature of processors on
real hardware platforms.

3. BACKGROUND

3.1 Workload Model
The basic unit of the workload model is a task τ. An instantiation

of a task is termed as a job. The jobs of a task can arrive with
a period p and a jitter j. Moreover, the execution times of the
jobs are bounded by the worst-case execution time Cwc and best-
case execution time Cbc. To cope with the definition of real-time
systems, a job might have a relative deadline D, which specifies the
maximal allowed time between its release and complete instants.

3.2 Review of Thermal Management Policies
Thermal management policies aim to find the optimal resource

management scheme which can effectively control the peak
temperature, thermal gradient and occurrence of hot spots on the
chip. Based on when such optimization procedure is performed,
thermal management policies can be divided into two groups.

• Offline policy. Offline policies usually solve the resource
management problem in design time or compile time
according to the information of workloads and hardware
platforms.
• Online policy. Online policies work online and adaptively

manage the hardware and software resources according to
the current state or the history of the system.

There have been plenty of temperature control techniques or
mechanisms. Examples could be clock gating, power gating,
dynamic voltage and frequency scaling, stop-go, job scheduling
and task migration. Although implemented in different hierarchical
levels of the system, such mechanisms share the same idea, i.e.,
controlling the power dissipation characteristics of a micropro-
cessor for lower temperature or smoother heat distribution. Four
temperature control mechanisms that have been widely adopted in
various thermal management policies can be listed below.

• Dynamic voltage and frequency scaling (DVFS). This
mechanism dynamically scales the supple voltage or clock
frequency of a microprocessor to reduce the dynamic power.
• Dynamic power management (DPM). This mechanism

dynamically switches a microprocessor to low power states
in which both dynamic and leakage power can be decreased.
Note that no workload can be handled in these states.



• Thermal-aware job scheduling. The execution of the jobs can
be reordered via this mechanism to optimize the temporal
variation of the temperature.
• Thermal-aware task migration. This mechanism dynamically

adjusts the task mapping on the microprocessor to balance
the temperature and thus reduces thermal gradient.

A thermal management policy is usually based on one or more
of aforemention mechanisms. The proposed framework in this
paper implements all the above mechanisms and supports offline
and online thermal management policies that are based on any
combination of these common mechanisms.

3.3 Power Model and Management

3.3.1 Review of Power Dissipation
Temperature strongly depends on the power dissipation of

microprocessors. Many existing thermal management policies
control the temperature by lowering the total power dissipation.
The power consumption of a microprocessor consists of the
dynamic switching power and the leakage power. The dynamic
power can be calculated by below equation.

Pd = αCVdd
2 f (1)

where C is the load capacitance, Vdd is the supply voltage, f is
the clock frequency and α is the activity factor, i.e., the fraction
of transistors that switch each cycle on average [5]. The leakage
power is caused by leakage current and can be given as:

Pl = IleakageVdd (2)
where Ileakage is the leakage current and is influenced by the
temperature. There exist various technologies to reduce the
dynamic and leakage power consumption. The typical one for
reducing dynamic power can be the Clock Gating, which removes
the clock signal from a circuit and thus cuts off the dynamic power
of the gated section. The supply voltage can be lowered or removed
to decrease the leakage power consumption. Such technology is
termed as Power Gating, which can reduce the temperature more
effectively since the leakage as well as the dynamic power is
lowered.

3.3.2 Advanced Configuration and Power Interface
To enable robust operating system-directed motherboard de-

vice configuration and power management of both devices and
entire system, the Advanced Configuration and Power Interface
(ACPI) [9] is developed as the common industry interface. In
ACPI, several power states are defined for processors. These power
states can be divided into two classes. A graphical representation
of the power states is plotted in Fig. 1.

• Processor Performance States (P-states), which specify
different levels of performance of operating processors.
• Processor Power States (C-states), which define different

power saving levels of idle processors.

P-states are typically implemented with the Dynamic Voltage
and Frequency Scaling technologies on microprocessors. When a
microprocessor is in P0 state, it provides the maximal performance
and may consume the maximal power. A performance state Pj
is termed as a higher state than Pi if i < j. The microprocessor
offers lower performance when it is in a higher performance
state. Consequently, the power consumption is reduced. In Linux
operating system, the P-states can be controlled manually via the
interface provided by ACPI.

Processor power states are designed at C0, C1, C2, C3, ...,
Cn. In ACPI, four standard C-states are defined, i.e., C0, C1,
C2 and C3; The C0 power state is an active power state where
processor can executes instructions. The performance level and
power consumption at C0 are defined by the current P-state. The
C1 through Cn power states are the processor sleeping states
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Lower power C0
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Figure 1: Processor P-states and C-states defined in ACPI. The power of
C0 state depends on the currently used P-state. The red blocks at the curves
connecting C0 and other C-states indicate the latency when the processor
returns back to C0. Note the empty red frame indicates no latency.

where the processor consumes less power and dissipates less heat.
Since the processor does not handle any workload when it’s in a
sleeping state, more aggressive power saving technologies such
as power gating of whole cores can be applied. Temperature
can be significantly lowered when a sleeping state is entered.
However, exiting a C-state to normal working state introduces
a certain latency which depends on the level of the C-state.
Generally, the greater power saving when in the C-state , the
longer the latency [9]. In [21], the actual wake-up latencies of C-
states of several x86 processors are measured for various recover
frequencies. When the operating system expects a certain time
span before the next task, C-states will be used to save power.
The specific C-state is determined based on the trade-off between
power saving effect and the restore latency. Unlike P-states, C-
states cannot be controlled directly in application level. However,
they can be reached indirectly by eliminating workloads on the
core, e.g., the Dynamic Concurrency Throttling [10] and the idle
waiting policies.

4. CHALLENGES AND DESIGN APPROACH
In this section, we discuss the challenges and the design

approach of our MCFTP framework through a concrete example
by adopting different multi-core thermal management policies.
Suppose we have a dual-core processor executing two tasks, a
hot task A and a cool task B. A task is termed as hot when
executing it leads to a higher temperature on the core. Each core
is associated with a buffer storing the waiting jobs. Now, consider
the case that the temperature of core 1 is significantly raised by
continuously executing jobs of task A while the temperature of core
2 is still in normal range, as shown in Fig. 2a. The large thermal
gradient between two cores at this scenario hampers the stability
and reliability of the processor. Moreover, modern processors
usually require the temperature to be lower than certain threshold.
Therefore, the temperature of core 1 should be decreased in this
example.

To lower the temperature of a core in a multi-core processor, one
may propose to use power management techniques, such as DVFS
and DPM, as shown in Fig. 2a. The DVFS techniques could be
utilized to lower the frequency on the core such that the dynamic
power is reduced. In addition, the core can also be switched to
C-states by using DPM techniques such as power gating. Power
management techniques reduce the temperature at the expense of
lowered performance. To maintain the same level of performance,
the job queue scheduling technique serves as an alternative method
to reduce the thermal gradient, as shown in Fig. 2b. One may
switch the positions of the two task A jobs at core 1 and the two
task B jobs at core 2. In this way, core 1 will execute two cool
task jobs so that its temperature can be lowered. Moreover, one can
further preempt the current running job on core 1 with the cool task
B job in the waiting queue to reduce the temperature. It turns out
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Figure 2: Examples of mechanisms to manage the temperature of multi-
core processors.

that temperature can be controlled by diverse types of mechanisms.
Note that in the example, we just consider online thermal policies
that are based on only one of such mechanisms, not to mention
offline policies and hyper policies combining two or more of these
mechanisms. It’s not clear how to implement these various thermal
policies on top of a standard operating system nor how to abstract
and extract their common characteristics such that we can reuse one
in another. We aim to solve these problems with MCFTP.

The objective of MCFTP is to provide multi-core system
designers a tool which enables the fast evaluation of various
type of thermal management policies, e.g., offline or online,
DVFS-based or task migration-based, or hyper ones combining
two or more temperature control mechanisms, etc. The challenges
in the design of MCFTP, i.e., the implementation of various
thermal management policies and the reuse of their common
characteristics, are met by introducing an intermediate interface
named configuration manipulation interface (CMI). Four basic
thermal controlling mechanisms mentioned in Section 3.2, DVFS,
DPM, job queue scheduling and task migration, are defined
in CMI. Thermal management policies can access these basic
mechanisms via a set of unified, pre-defined interfaces and do not
need to handle the detailed implementation of the mechanisms
on physical cores and the potential correlation between them.
In this way, thermal management policies are isolated from the
implementations of low-level mechanisms, thus can be evaluated
in a fast and reliable manner.

This work does not concentrate on optimizing the temperature
for different thermal management policies. Neither does this
work claim that the temperature results of this proof-of-concept
implementation on any (general purpose) operating systems are
identical to those obtained from lower-level implementations.
The primary goal of this work is to decouple the high-level
description or principles of thermal management policies from
the low-level implementations which depend on the system
specification. This framework enables system designers to gain
more complete understanding of the thermal management policies
with temperature results from real hardware platforms instead of
simulation programs.

5. CONFIGURATION MANIPULATION IN-
TERFACE

In this section, the Configuration Manipulation Interface is
introduced in detail by discussing the sub-interfaces defined in it.

As shown in Section 4, many temperature control mechanisms
are available on multi-core processors to manage the temperature
or heat distribution of the cores. Based on these mechanisms,
various thermal management policies can be proposed to optimize
the temperature or performance of multi-core processors. To

Table 1: The state table in CMI. Note that Si could be an arbitrary state
among the sleep state (0) and available frequencies. Li should be a positive
real number denoting the length of the state in pre-defined time unit.
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Figure 3: An example of MCFTP controlling the power states of a core
according to two state tables. We consider the core has three available
frequencies, which are f1, f2 and f3. State table 1 is applied at t1 and
repeated twice. Then, state table 2 is applied at t2.

implement a customized thermal management policy in a fast
manner with minimal effort, Configuration Manipulation Interface
(CMI) is proposed as the intermediate interface between high-
level algorithms of the policies and the low-level implementations
of the basic temperature control mechanisms. CMI enables easy
and robust control or combination of these basic mechanisms to
manage temperature, hot spots and thermal gradient of multi-core
processors. Next, we introduce the sub-interfaces defined in CMI
for designers to access DVFS, DPM, job scheduling and task
migration mechanisms.

5.1 Power Management
The evaluated thermal policy can control the power dissipation

characteristics of a core in the processor via this interface. The
dynamic and leakage power are managed through the DVFS
and DPM mechanisms defined in the ACPI of the processor,
respectively. The policy needs to provide a state table to specify
how to control the power dissipation state of a core.

A state table has two columns, as shown in Tab. 1. The first
column lists the order of demanded states of the core. A zero
means to pause the execution of a job so that the core can switch to
the sleep state. A positive number specifies the running frequency
of that core. Since the available frequencies of a core in ACPI
are defined by a set of discrete points, the given frequency will
be rounded to the nearest available one if it does not equal any
frequency in the set. The second column depicts the time length
of the corresponding state. The start time of each state is the end
time of the previous state. Specifically, the first state is adopted
immediately once the state table is given. An example of the state
table is demonstrated in Fig. 3. It is worth noting that the state
table will be repeated continuously to control the power dissipation
of the core until a new state table is provide to replace the old one.
With the state table, the evaluated thermal policy can control not
only the length each core stays in each power dissipation state but
also the order of the states.

5.2 Job Scheduling and Task Migration
We consider that upon arrival, the jobs of all tasks are inserted

into a set of queues associated with the cores and wait to be
executed on the corresponding core. In default, the queue behaves
as a First-In-First-Out (FIFO) buffer. New jobs are inserted at
the back of the queue and the job at the front of the queue will
be executed firstly. Depending on the temperature of the cores,
a thermal management policy may need to change the order of



the job queue or move one job to another queue. In CMI, the
following actions are defined for thermal policies to perform job
queue scheduling.

• Advance. This action advances a job by a given number of
job positions in the same queue.
• Recede. Similarly, this action recedes a job by a given

number of job positions in the same queue.
• Move. This action moves a job in one queue to the specified

position in another queue.
• Preempt. When the policy performs this action, the current

running job, if exists, on the core connecting this queue
will be preempted by the front job in the queue. Then, the
preempted job is placed at the front of the job queue.

The above four actions can be accomplished by calling functions
advanceJobInQueue, recedeJobInQueue, moveJobToAnotherQueue
and preemptCurrentJobOnCore, respectively.

In addition to job queue scheduling, CMI also provides the
interface for task migration. Thermal management policies can
migrate the current running hot job from an overheated core to a
cooler core to balance the temperature with such interface. Simply
invoking the function taskMigrate with the source and target core
indexes will make the framework perform the task migration.

5.3 Dynamic Information and Task Allocation
In addition to thermal-aware interfaces, CMI also provides the

interface to collect dynamic information about the state of the cores
as well as the job queues. For each core, such information structure
contains the temperature, current power state, the on-going job, the
length for which the on-going job has been executed, etc. For each
job queue, its dynamic state is abstracted by a vector containing the
pointers to the waiting jobs. Thermal management policies can use
the dynamic information to make decisions during run-time.

A task allocation interface is also defined in CMI. When a new
job arrives, this interface is called to decide where the job should
be instantiated. This interface can be static, that is, defined by
the designer in design phase, or dynamic, i.e., determined by the
evaluated policy online according to the dynamic information of
the cores. In default, CMI creates a static allocator which allocates
all the jobs evenly on the cores. This default task allocator can
be substituted by a customized one via the registration interface
discussed in the next section.

5.4 Registration Interface
As discussed in Section 3.2, thermal management policies can be

classified into two categories, namely offline and online policies.
These two types of policies work in different manners and phases.
An offline policy finds the optimal resource management scheme,
e.g., the state table for controlling power and/or the task mapping
on the processor, in design phase and applies the scheme at the
beginning of the experiment. An online policy may dynamically
change the power state of the cores or schedule the jobs according
to the current state of the processor. To support the evaluation
of both types of policies, CMI defines a registration interface
to register an offline (function setOfflineThermalPolicy) or
online policy (function setOnlineThermalPolicy) in design
phase. The registered policy will be invoked automatically based
on its type. As aforementioned in the previous section, CMI
defines a task allocator to determine on which core a new job
should be executed. Designers can also set the task allocator
via this interface. To define a static allocator, designers can call
setTaskRunningCore to statically link the jobs of a task to one
specific core. In the same way, a dynamic task allocator can be
explicitly set by calling setTaskAllocator.

In this section, we have introduced five major sub-interfaces
defined in CMI. With them, our framework gains high flexibility
in evaluating various thermal management policies working in
different manners and replying on different temperature control
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Figure 4: The proposed Multi-core Fast Thermal Prototyping Framework.

mechanisms. Note that it is not necessary to cover all the details
of CMI in this paper. CMI also defines a set of interfaces and
functions for the convenience of implementation of the policies.
They are omitted due to their simplicity.

6. MULTI-CORE FAST THERMAL PRO-
TOTYPING FRAMEWORK

After introducing the Configuration Manipulation Interface,
we discuss the overall structure of Multi-core Fast Thermal
Prototyping Framework. Fig. 4 graphically demonstrates the
overall structure of MCFTP. As shown in the figure, MCFTP
can be divided into two parts by CMI, one is composed of
the functional components of the thermal management policy
and the other part consists of the low-level implementations for
executing the decisions of the policy on the actual processor. CMI
isolates two parts and thus enables a predictive behavior of thermal
management policies. MCFTP is composed of below components.

6.1 Dispatcher
A dispatcher is defined for each task. The dispatcher supports

periodic, periodic with jitter and sporadic task timing models. A
dispatcher creates jobs of the task based on the task timing model.
When a new job is created, the dispatcher sends the job instance
to CMI by calling addJob instead of directly appending the job to
one of the job queues. Then, if the pre-defined task allocator is a
static one, CMI directly gets the index of the core on which the job
should be executed from the allocator. Otherwise, CMI invokes the
dynamic task allocator defined in the thermal management policy
to determine the core index. Finally, the new job is appended to the
corresponding job queue.

6.2 Thermal Management Policy
This component is defined by the designer. It should contain

full functional descriptions of the policy such as calculating
frequencies, determining the state tables for the cores, job
scheduling policies, etc. The comprehensive information about the
processor can be obtained via the dynamic information interface
in CMI. Then, the thermal policy can manage the resources on
the processor via the power management, job scheduling and task
migration sub-interfaces. Moreover, the designer may also define
a dynamic task allocator in the policy to dynamically assign new
jobs to proper cores, as aforementioned in Section 5.4.

6.3 Temperature Watcher
This component periodically reads and saves the temperatures of

all the cores of a real processor. When the dynamic information
interface in CMI is invoked, the temperature watcher provides the
latest temperatures of the cores.
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Figure 5: The operation semantics for Power Manager and Worker entities.
[e]<<s indicates receiving an event e from sender s. [e]>>r refers to
sending an event e to recipient r.

6.4 Power Manager
The power manager controls the frequencies and power states

of all cores according to the state tables obtained from CMI.
It controls the power states of the cores based on the clock
frequency and C-states switching mechanisms defined in ACPI.
The operation semantics of a power manager is outlined in Fig. 5a.
After receiving one or more new stable table from CMI, the power
manager is in updating state. It saves the stable table and then
calculates the time instance when the next frequency or power state
transition happens. If the next action time instant has not been
reached, the power manager stays at idle state until the next action
time. Then, the power manager is in controlling state and takes the
corresponding action. After the action, the next action time instant
is also updated. For a frequency transition, a power manager simply
changes the core frequency via the interface provided by ACPI.
In the case of switching one core to sleep, it sends a deactivate
event to suspend the worker associated with that core. Then, the
idle-waiting policy is adopted to stop the worker occupying CPU
times so that the core can switch to sleep state, i.e., C-states. At the
next action time, the power manager first sends an activate event
to wake up the worker from sleep state and then switch the core to
target state.

6.5 Worker
The operation semantics of a worker is depicted in Fig. 5b. For a

n-core processor, n workers are created to virtually represent the
cores. Each worker is associated with a job queue storing the
waiting jobs. After receiving a deactivate event from the power
manager, a worker switches to sleep, whichever state it is current
in. When the power manager sends an activate event to it, a
worker switches to idle state if there is no on-going job, otherwise
it switches to active state to execute that job. If current job is
finished and the job queue is empty, a worker sends an event to
CMI to inform the job completion and then goes to the idle state,
waiting for new jobs. Moreover, to perform job preemption or task
migration, a worker can also be interrupted from active state by
CMI with a preempt event. After being preempted, a worker is in
idle state to load new jobs from the queue, if they exist. If the
job queue is not empty, a worker switches back from idle state
to active state and executes the first job in the queue by calling
function fire.

7. PORTABLE IMPLEMENTATION
In previous sections, we defined Configuration Manipulation

Interface and presented the overall structure of MCFTP framework.
The abstract operation semantics of the power manager and
worker was also described. In this section, we discuss a specific
implementation of MCFTP which utilizes the API provided by

POSIX standard. The POSIX standard has been widely supported
by operating system including many variants of UNIX and Real-
Time Operating System (RTOS).

The main goal of MCFTP is to evaluate and compare the
performance of different thermal management policies on actual
hardware platforms in an efficient manner. The evaluation process
should be fast, safe and reasonable accurate. We implement
MCFTP in user-space level as we argue that a user-space tool that
can be accessed easily is the first choice if the designer wants to
compare different thermal management policies in early design
phase. The main concern is the relative thermal optimization
performance of the policies among each other, not the absolute
performance. Although implementations in kernel-space are more
accurate in timing and power consumption controlling, it may
be infeasible to prototype thermal management policies in early
design phase when the actual hardware and software environment
has not been specified. Moreover, the flexibility of MCFTP
for different operating systems is also significantly limited if it
modifies the kernel. Prototyping thermal management policies in
user-space is more efficient and provides greater interoperability.

7.1 Implementation Requirements
To implement MCFTP, two basic features should be supported

by the hardware environment. First, the processor must support
the Advanced Configuration and Power Interface (ACPI) such that
MCFTP can control the power dissipation by putting the processor
in different P-states and C-states. Second, the temperatures of
different cores can be sampled by sensors as the comparison criteria
among thermal management policies. In Linux environment, the
sensors built inside processors can be read via the tool lmsensors.

Besides the hardware environment, the operating system must
support several functionalities to realize the framework in user-
space. First, MCFTP should have the access to the aforementioned
ACPI and thermal sensors. Second, the concurrent execution of
multiple entities must be provided for running the components in
MCFTP. Third, preemptive priority scheduling of the concurrent
execution should be supported. Finally, timers are necessary to
support the time-triggered power manager.

7.2 Multi-thread Implementation
Given a POSIX-compliant operating system, we implement

MCFTP by a set of interacting threads that are assigned different
priorities. The priority-based scheduler in the kernel selects the
thread with higher priority to execute on the cores. The thermal
policy thread has the highest priority p0. In this thesis, pi refers to
a higher priority than p j if i < j. The dispatcher is assigned priority
p1 and the power manager has priority p2. Then, the temperature
watcher gets the priority p3. For a n-core processor, at most n
worker threads can be created and each worker is assigned to one
core. The workers run on different cores but have the same priority
p4. Note that apart from worker threads, the aforementioned
threads can be attached to arbitrary cores in the processor, which
can be customized by designers. Moreover, these threads work
in a time-triggered manner. They execute their tasks at the pre-
determined time instant. When finishing their tasks, they update
the next time instant and then block themselves such that lower-
priority threads on the same core can get chance to execute.

7.3 Power Management Implementation
MCFTP controls the frequency of each core via the ACPI

interface provided in the operating system. Firstly, our framework
tries to set the Linux CPUFreq governor as the userspace
with the module modified from the tool cpupower. Then, the
scaling governor files in the kernel are dynamically modified
by the power manager thread according to the state tables given by
the thermal policy.

Switching a core to sleep state is accomplished by the idle-
waiting policy with the POSIX semaphore library. A worker thread



pauses its execution and blocks itself only corresponding to user-
defined suspend checkpoints when it receives a deactivate event
from the power manager. When reaching a suspend checkpoint,
the worker thread first calls the function sem trywait(&suspend).
The value of semaphore suspend is initialized as zero and can only
be incremented by the power manager via sending a deactivate
event, i.e., calling sem post(&suspend). The worker thread exits
from the suspend checkpoint and performs normal functionalities
if the return value of function sem trywait(&suspend) indicates
no deactivate event has been detected. Otherwise, the worker
thread blocks itself by calling function sem wait(&resume).
Similarly, the value of resume is also initialized as zero and
can only be incremented by the power manager via invoking
sem post(&resume), that is, sending an activate event. The code
of the suspend checkpoints is provided as a library to the designer.

7.4 Task Preemption Implementation
The job scheduling and task migration interfaces defined in CMI

both require that our framework can preempt the task currently
executed by the worker thread. To enable task preemption,
we implement a specific class named TaskLoad holding all the
information related to task preemption. Similar to the sleep
mechanism mentioned in previous section, TaskLoad defines the
preempt checkpoints to stop the execution when CMI wants to
preempt the job. Another semaphore named stop is defined to
check whether CMI has notified a job preempt request. If so,
the thread firstly saves all the data related to the job execution
and records the unique identity of the checkpoint. Then, it stops
the execution of the job. The object of TaskLoad holding all the
dynamic information is returned to CMI for job scheduling. When
this job is executed by a worker again, the thread first jumps to the
preempt checkpoint where the preemption happens by checking the
identities of the checkpoints. Then, it continues the execution of the
job with the saved data in the object.

8. EXPERIMENTAL EVALUATION
In this section, the performance of proposed MCFTP framework

is evaluated. Firstly, we investigate the effectiveness of MCFTP
in managing the temperature via the configuration manipulation
interface. Then, we implement two existing thermal managements
in MCFTP, one is proposed in [7], namely O-PBOO, and the other
policy is presented in [6], which is termed as BWS. Finally, we
report the running overhead of MCFTP on two platforms that have
different computing power abilities.

8.1 Temperature Experiments
In this section, we investigate the effectiveness of our framework

by reporting the temperature evolution of the cores when the
frequency scaling, sleep switching and task scheduling are utilized
to manage the temperature. We used a Dell Optiplex 9020
desktop personal computer as the experiment hardware platform.
It contains an Intel i7-4770k processor with four physical cores.
Each core has 15 available running frequencies between 800MHz
and 3.4GHz, when the ‘acpi-cpufreq’ driver is adopted. The C-
states defined for every core are C0, POLL, C1, C3, C6 and C7
if the CPUidle drive is ‘intel idle’. The cores can switch to C-
state C7 when they have no workload to handle. The Hyper Thread
feature of the processor is disabled in the BIOS (Basic Input/Output
System) of the computer. Three air cooling fans are built inside
the computer as the cooling system. The experiment ambient
temperature is 20 ◦C. All experiments are done in the 3.16.0-53-
generic Linux kernel environment. During the evaluations, the
system runlevel of the operating system is set to the lowest level
1 such that only essential system services are running. Four worker
threads are created and each one is attached to one core. The other
threads such as dispatcher, power manager are evenly attached to
all the cores. MCFTP framework is implemented in C++ language

Table 2: The state table applied in our experiment. Note the zero frequency
means sleep state.

state (MHz) length (second)
3400 500
800 500
2100 500
3200 500

0 500
3400 500

0 5 10 15 20 25 30 35 40
25

35

45

55

65

(a) core 0

0 5 10 15 20 25 30 35 40
25

35

45

55

65

(b) core 1

0 5 10 15 20 25 30 35 40
25

35

45

55

65

(c) core 2

0 5 10 15 20 25 30 35 40
25

35

45

55

65

(d) core 3
Figure 6: The temperature evolutions of the processor cores when state
table Tab. 2 is applied to them.

and compiled by G++ 4.8.4 with optimization level O3 turned on.
In the first experiment, we test the temperature evolution of

the cores when they execute jobs in different frequencies. The
benchmark SQRT-RAND are executed on all the four cores. For clear
demonstration, the four cores apply the same state-table, which
is shown in Tab. 2. The temperature evolutions of four cores
are depicted in Fig. 6. From the figure, we observe that (1) the
temperature of the cores increases quickly from the initial idle
state-steady temperature (around 25 ◦C) to a temperature about
65 ◦C. Then the temperature changes depending on the running
frequency. Note that when the cores switch to sleep state (2000
to 2500 second), the temperature deceases to the initial idle state-
steady value and is lower than that of 800MHz frequency state.
(2) The increase in temperature is not linear to the increase in
frequency. For example, the temperature is raised about 10 ◦C
from 800 MHz to 2100 MHz while a nearly 20 ◦C temperature
increase is resulted by a frequency increase from 2100 MHz to
3200 MHz. The reason is that the dynamic power dissipation is
linear to the square of the frequency, as we discussed in Section 3.
(3) We can also observe that although all the cores adopt the same
state table, the temperature of them are not identical. For instance,
when running in 800MHz and 2100MHz (500 to 1500 second), the
temperatures of core 1 and core 3 are higher than that of core 0 and
core 2. This is expected because the cores are on different locations
in the processor floorplan. Thus, the heat removing capacity may
be different for different cores.

In the second experiment, we show the effect of task scheduling
policy. Two tasks, one is a hot task τA and the other is a cool task
τB, are adopted. We implement a simple task scheduling policy,
which assigns the hot task τA to the cores dynamically according to
the experiment time. Similarly, the cool task is assigned to the next
cores in a circular manner. The temperature results are plotted in
Fig. 7.

From this experiment, we can make some interesting observa-
tions. First, the temperature of a core strongly depends on the
workload it executes. This validates that task migration and job
queue scheduling can be effective in controlling the temperature.
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Figure 7: The temperatures of the cores when a hot task τA and a cool task
τB are executed on different cores.
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Figure 8: The temperatures of PBOO and BWS for the benchmark set.

Thermal management policies can select proper tasks to the cores
according to their temperatures for thermal balance. Second, the
temperature of a core is also influenced by other cores. In the
first 2000 seconds, core 2 and core 3 have no workload but are
both heated up by core 0 and core 1. Third, similar to previous
experiment, the temperature of different cores can be different even
for same workload. Fig. 7 shows that core 2 is less sensitive to the
hot task τA, compared to other cores.

In the third experiment, we implement two thermal-aware
management policies in MCFTP with 33 benchmarks from the
CPU stress tool Stress-ng. The first approach, termed as O-
PBOO, is a static one that periodically switches the cores to sleep
state [7]. The second approach, namely BWS, is an online one and
switches the core to sleep state dynamically. For each policy, we
run the benchmark for 100 seconds and wait for 100 seconds before
next benchmark to cool the processor. The average temperatures
of the four cores in different cases are shown in Fig. 8. We can
observe that BWS outperforms O-PBOO in all cases. This is
reasonable since O-PBOO is a static policy which is determined
in design phase while BWS is an online one which works in run-
time. Compared to O-PBOO, the average and maximal temperature
reductions of BWS are 1.5 K and 3 K. Another observation is the
temperature of the processor changes when different benchmarks
are executed. This further strengthens the conclusion made in the
second experiment that the temperature strongly depends on the
workload it executes.

8.2 Efficiency Experiments
In this section, we study the efficiency of MCFTP by reporting

the overhead introduced by the framework in different scenarios.
To study the efficiency on platforms with different computing
capacities, in addition to the aforementioned Dell platform, we also
use another embedded environment, a Raspberry Pi (RPI) Model
B v1.2 with a 1.2GHz 64-bit quad-core ARMv8 CPU running the
Linux 4.1.19-v7 kernel. In this platform, MCFTP framework is
compiled by G++ 5.4.0 with optimization level O3 turned on.

MCFTP has the following roles. The first one is to execute
the user-defined tasks. The second one is to run the thermal
management policy, if the policy works in run-time. Anything
else can be considered as overhead. Specifically, we consider the
sum of the CPU times spent by the power manager, temperature
watcher, dispatchers and the checkpoints in workers as the
overhead of MCFTP. The overhead is incurred by creating and
registering new jobs, reading thermal sensor interface, managing
job queues, parsing state tables, sending de/activate signals, writing
the frequency controlling interface and checking the state of
the checkpoints. Since the overhead of checkpoints depends
on how the designer programs the task code, i.e., the number
of checkpoints, we first study the overhead of MCFTP without
checkpoints and then report the overhead of checkpoints separately.

In the first experiment, we do not consider the overhead of
checkpoints. Therefore, the total overhead is the sum of the
CPU times spent by the power manager, temperature watcher and
dispatchers. We investigate how the overhead varies when (1)
the job arriving period changes and (2) the power state switching
frequency changes. For the first scenario, we vary the arriving
period of jobs from 30ms to 100ms. In the second scenario, a two-
state state table is used and the switching period increases from
60ms to 480ms with step 6ms. In each scenario, 750 task-sets are
generated. Each task set contains five tasks with the same period.
The total utilization of the task set is set as 0.5. The execution times
of the tasks are randomly chosen between 1ms and the period. The
experiment run-time is set as 10 seconds. The overhead is measured
using the POSIX-CPU-timers for the power manager, temperature
watcher and dispatcher threads, normalized over the total run-time.
Fig. 9 shows the measured overheads plotted against the job arrival
period and state switching period, for both platforms. From the
figure, we can make following observations.

• Task period-dependence. The total overhead decreases when
task period increases. This is expected since less jobs are
created and managed.

• Power state switching period-dependence. Similar to the
above observation, increasing the switching period mainly
decreases the overhead incurred by the power manager
thread.
• Platform-dependence. The overhead is higher (around 3×)

on the Raspberry Pi platform than the overhead on Dell
desktop platform. However, the overhead is still below 1%
of the total run-time.

The second experiment investigates the overhead incurred by the
checkpoints in our framework. We study how the overhead changes
when the total number of checkpoints increases. The two types
of checkpoints, i.e., the suspend and preempt checkpoints, have
same number in the experiment. We vary the total number from
20000 to two million with step 20000 and repeat the experiment 50
times for each scenario. Again, we adopt the POSIX-CPU-timers to
measure the time spent by checkpoints. Fig. 10 plots the overheads
of different numbers of checkpoints. Following observations can
be made from the figure.

• number-dependence. The overhead increases (approx-
imately) linearly with respect to the total number of
checkpoints, which is straightforward as the framework has
to check more states.
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Figure 9: MCFTP overhead in different scenarios on two platforms having
different computing capabilities.
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Figure 10: Checkpoints overhead for different platforms.

• Platform-dependence. On the Raspberry Pi platform, the
overhead is higher (around 10×) than that on Dell desktop
platform.

9. CONCLUSION
In this paper, we present the Multi-core Fast Thermal Prototyp-

ing (McFTP) framework, a new thermal framework for evaluating
general thermal management policies. The variety of thermal
management policies is supported by pre-implementing a set of
widely used temperature control mechanisms and combining them
freely. An intermediate interface named configuration manipu-
lation interface is defined to separate the thermal management
policies from low-level implementations. MCFTP is designed
in user-space and has little interaction to the kernel-space, thus
supporting a large variety of target platforms. We implement
MCFTP with four basic temperature control mechanisms on
top of POSIX-compliant operating systems. Its effectiveness is
demonstrated by implementing two existing two works on a Dell
desktop platform with a four-core Inter-I7 processor. We also
investigate the efficiency of MCFTP by reporting its overheads on
two platforms, i.e., the Dell platform and a Raspberry Pi.
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