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Abstract— While a number of efficient methods have been
proposed for approximating backward reachable sets, no syn
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thesis method via backward reachable sets has been develdpe | [
for estimating and enlarging the region of attraction (RA). This T \-ﬁ_

-
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paper shows how to use backward reachable sets to enlarge
the estimate of the RA of linear discrete-time systems, by T
using an optimal static feedback controller. Two controlle ||
design methods are provided: the first method enlarges the —
estimate of the RA via invariant sets, whose existence is ansd

by zonotope containment; the second method provides the
optimal control input by using Lyapunov stability and quadr atic

stabilization. The backward reachable set is represented \b

zonotopes which give a good compromise between accuracy
and efficiency. The effectiveness of both methods is illustted —r—H
by a numerical example. | — ____
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I. INTRODUCTION L

The region of attraction (RA) of a given equilibrium point L ‘T’
is the set of initial points from which the trajectories of a ]

system converge to the considered equilibrium point. The
asymptotical stability of operating points can be directly
established if the RA is known. Recently, the importanceig. 1. Different strategies for approximating the backivezachable sets.

of estimating the RA has gained a lot of interest and itghe red box indicates the unsafe set whose backward reacketd are
. outer-approximated by gray boxes; The green box indicdtesstafe set

implementations spread quickly to areas such as chemiGgose backward reachable sets are inner-approximatedayybgixes. The
reaction assessment [1], clinical immunotherapy [2], andirection of system evolution is shown by some trajectories

biological processes [3].

In order to estimate the RAnethods based on Lyapunov’s
theoremhave proven to be an efficient way [4]-[9]. In [4], stable equilibrium point, if one selects the target set smal
the exact RA can be obtained by solving a partial differéntiganough near the equilibrium point. However, the backward
equation (Zubov equation), but this equation is generalljpachable sets are usually computed with respect to an
difficult to solve, which gives rise to a number of approachegnsafe set, like aircraft collision avoidance and stapilit
using the sublevel set of Lyapunov functions. The estimasyajuation of underwater vehicles [13], [15], where outer-
tion problem can be transformed to solvable conditiongpproximations of the exact backward reachable sets are
like Linear Matrix Inequalities (LMI) [5], Sum of Squares computed. By contrast, for estimating the RA, one would
(SOS) programming [10], Bilinear Matrix Inequalities (BMI |ike to ensure all the trajectories initializing in the estite
[6], and generalized eigenvalue problems [9]. Meanwhilgg pe convergent to the equilibrium point. Thus, we compute
various types of Lyapunov functions are used, like quadratihe inner-approximation of the RA, which is shown in Fig. 1.
Lyapunov functions [5], polyhedral Lyapunov functions,[8]  To compute the backward reachable gtlerian methods
polynomial Lyapunov functions [6], pointwise maximumgare mostly used, which require gridding of the state space,
Lyapunov functions [11], and rational polynomial Lyapunovyhich means that they can not escape the curse of dimension-
functions [9]. ality. Lagrangian methodare an alternative since they avoid

Non-Lyapunov methodalso exist for estimating the RA gridding of the state space, and they have been successfully
[12]-{14]. Among these approaches, thackward reach- ysed to compute forward reachable sets [16]-[18]. In [19], a
able setsapproach provides the domain from which thegynamic programming technique is proposed and reachable
trajectories of a system converge to some selected targgits are approximated by using ellipsoidal techniques. In
set, thus making it useful for estimating the RA of a glverlzo], a Lagrangian method is proposed for Computing the

) ) . viability kernel via ellipsoidal representation. In [14], this
The authors are with the Department of Informatics, Teddnigniver-

sity of Munich, 85748 Garching, Germany. E-mafhand, ri zal di , method is extended by using polytopic and support vector
el gui ndy, al thof f }@n. t um de representations. However, the problem of estimating and
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enlarging the RA is rarely considered via backward reachablvherelV € R"+»*" andc € R™ denotes the center. Another

sets. expression for zonotope is the generator representatien (G
Motivated by the work in [20], and by adopting the controlrep):
purpose of our previous work [21], this paper proposes a Z(,G)={z €R": 2 =cdGE} )

Lagrangian method based on a zonotopic set representation.
Different from the existing literature, this paper uses thgyhere

backward reachable sets to estimate and enlarge the RA by S={CeR™: ||(e <1} ©)
designing an optimal controller. Specifically, the contrib R
tions of this paper are listed as follows: c € R™ denotes the centef € R™*™ : G = [g1,...,gm]

« A method is proposed for checking the zonotope cordenotes the generator matrix of the zonotope. We gall
tainment via Semi-Definite Programming (SDP). Based generator which is a column vector of matti¥ for all

on this method, an optimal control input is obtained for = 1,..., m. This definition shows the fact that a zonotope
enlarging the backward reachable set as the estimateisfbuilt by the Minkowski sum of a group of line segments
the RA by solving a BMI. (Section-11I.A) l; = [-1;1] - g;, where[—1;1] is the unit interval [18], [22],

« By exploiting the Lyapunov stability theory, an op-[25]. The following example illustrates the constructidnao
timal control input is computed for each step basedonotope.
on quadratic stabilization. The backward reachable set Example 1:Consider a zonotopg&; (c;, G1) where
as the inner-approximation of the RA is maximized
under the computed control input by solving a convex |1 _ |1 01
.. . . 1 = ) Gl - . (4)
optimization problem. (Section-II1.B) 2 110

Il. PRELIMINARIES Let g%i) be thei-th column vector of7; and define the line
Notations:N, R: natural and real number se®;.,R,.: segmentg; = [—1;1] g™, fori=1,2,3. Fig. 2 shows how
nonnegative and positive real number séts; origin of R™;  the zonotopeZ; is constructed by a group of line segments.
Ry R™\{0,,}; S™*™, S1*", S}1": symmetricn x n matrices,
symmetric positive and positive definite<n matrices|z||2:
Euclidean norm lg-norm) of vectorz; ||zso: lso-norm of
vector z; [a;b]: an interval{z € R : a < z < b};
AT transpose ofd; A > 0 (A > 0): symmetric positive
definite (semidefinite) matri¥; A ® B: Kronecker product
of matricesA and B; tracd A): trace of matrixA; diag(v):
a square diagonal matrix with the elements of veatan
the main diagonal;4 @ B: Minkowski sum of two sets4
andB, i.e.,

cdly chl Dl
AeB={a+b: ac A, be B};

CH(A, B): Convex hull of sets4 and 5, i.e., I
CHA,B)={1-a)a+ab:ac Abe B,ac0,1]};

In this section, we first introduce the definition and some
basic properties of zonotopes. Then, we concisely show the h

main idea to obtain the stability region of an equilibrium i

point based on the computation of backward reachable sets.

This section ends with a formal problem formulation. cOhOhd

A. Zonotopic Sets Fig. 2. Construction of zonotope step-by-step.
A convex polytope? C R™ is the convex hull

of a group of vertices, i.e,CH(v®, ... v(™))

Another explanation of (2) is that a zonotogéc, G) is
an affine image of a unit cubé&l € R™ : ||(|l < 1}
under a linear mapping usingl., norm, just as an ellipsoid
expressed by halfspaces (H-rep): For halfspacesP = E—{reR": o zpcnfR( ﬁdb <1) iJs an affine irrr:age

n . . npXn np
{e€R": H-x<d HER™™,deR™}[22]. of a unit ball {¢ € R™ : ||¢||» < 1} under a linear mapping
Zonotopes are special convex polytopes with central syn}z using thel, norm. Note that for a single ellipsoidal

metry. This s_ymmetry allows _the .zonoto_pgs_ to be express(ret(ajpresentation, the complexity is fixed for a selected/hile
by the following two expressions: The infinity-norm repre-

. . the complexity of representations using convex polytopes
sentation (l-rep) (See [23], [24] and references therein): and zongtope); can bpe arbitrarily high [36]. In othgr v)\//orgls

{z eR": ||[W(z —)]|e < 1}, (1) by using polytopes and zonotopes, an increasing accurate

S av® s v e R a; € Ry, S0 o = 1)
Besides the vertex representation (V-ref),can also be



representation can be obtained according to a higher us&-the measurable static feedback input of system f5),
defined complexity. The order. = - shows the complexity R" x ¢/ x N — R" is a linearizable nonlinear function
of zonotopic representations. satisfying the local Lipschitz condition. Assume that syst
The applicability of a set representation depends largelp) has a locally stable equilibrium point and without loss
on whether required operations satisfy the closure prgperbf generality, the origin is set to be the equilibrium point
The following two basic set operations are considered i thof interest. From now on, the argumeritsand = will be

paper: omitted whenever possible for brevity of notation.
« Linear mappingBA := {Ba : a € A}; The backward reachable set is a set that can be steered
« Minkowski sum:A® B:={a+b: ac A, be B}, into a given terminal set (or called target set) under a serie

where B € R™*", and A, B C R™. The closure of these ©Of controlinputs. Specifically, given a terminal timeand a

set operations for different set representations is shown {erminal set7’, the backward reachable sétk, 7) at time
Tab. I. stepk is defined as follows.

Definition 1: (Backward Controlled Reachable Set) The
backward reachable sé@t(k,7) of system (5) at time step
k < ki is the set of states(k), for any of which there exists
a series of control inputg(z(k)), . .., u(x(k,— 1)) such that
the system is driven from (k) to z(ky) € T, i.e.,

{z(k) e R": Ju(r) € U,
(1 +1) = f(@(7), u(xz(7)),7), z(kt) € T,

TABLE |
THE CLOSURE OF SET OPERATIONS FOR DIFFERENT SET
REPRESENTATIONS

Ellipsoid Zonotope Polytope

Linear mappin closed closed closed
pPing Uk, T)=4 Vr=k, ..., (k—1}, k< ky

Minkowski sum not closed closed closed
T, k = kt.
Zonotopes are preferred not only because of the closure for 0

the above two operations, but the computations of these oper pefinition 2: The RA of system (5) is the set of initial

ations are also efficient via G-rep [18], [27]. For zonotopestates for which the system asymptotically converges to the
Z1(c1,Gr), 22(c2,G2) € R™ and matricesB € R™*",  origin, i.e.,

G € R Gy € R ™2 the number of operation is

shown in Tab. II. R = {a(0) e R": lim _x(732(0), u(r)) = 0n}, (6)
T—r+00
TABLE wherey is the solution of system (5). O

THE NUMBER OF BINARY OPERATIONSn,, FOR ZONOTOPIC CALCULUS .. .
P Based on Definition 1, the following result shows how

backward reachable sets can be used to estimate the RA.

Set operation np Lemma 1:Given a terminal sef” C R, if the backward
reachable set at time stdpalways contains the backward
Z1(c1,G1)®Z2(ce, G2) = Z(c1+4c2, [G1 Ga)) n reachable set at the next time step, i.e.,
BZ = Z(B -1, B-G1) 2nyn(m1 + 1) W(r+1,T) CU(r,T), ¥r =k,...,(k —1), (7)

. _then, the backward reachable set at time &tépan estimate
Though convex polytopes are closed for the operatloncﬁ the RA, i.e.,U(k,T) C R

of linear mapping and Minkowski sum, the complexity Proof: Since7 C R, based on Definition 1, one has that

of both operations is exponential via H-rep. in the Wors%here exists ai(k; — 1) steering®(k, — 1,7) to T. Taking
case scenario [28]. By contrast, as shown in Tab. Il, th efinition 2 into account. one has théft(kt T =T C

computation is more efficient via G-rep and the complexit o
increases moderately for both operations in Tab. I. In au)jﬁ—l(kt —1,7) € R. Analogously, it yields that

dition, there exist some effective order reduction methodsy c w(r +1,7) C U(r,T)C R, Vr =k, ..., (k — 1),

to control the complexity of zonotopes. Both outer- and

inner-approximations with reduced order are proposed favhich ends this proof. O
reachability analysis, making the zonotopic set membprshi Let us propose the main problem we are concerned with:
a balanced representation between accuracy and complexfind an optimal static feedback controllefz(k)) at time
stepk such that the estimate & is maximized with respect

B. Problem Formulation to a measure(¥(k, 7)), i.e., solving
Consider the nonlinear time-varying discrete-time system
p=sup p(¥(k,T))

k+1)= k), k), k), 5
alk+1) = fla(k), u(z(k), k) ®) Y+ L, T)CU(T), Vr =k, (ke — 1),
wherez(k) € R™ is the state vector at the sampling time s.t. U(k) =T

k, (0) € R™ is the initial stateu(-) : R* — U C R™ (8)



1. M AIN RESULTS Zy, = {xz2 € R™ :  |Hz(z2 — c2)|lc < 1} with

In this section, we propose two methods to estimate thd1 € R™ " and Hy € R™*", 2, C Z, if there exists a
RA. The first one provides a control strategy based oROSitive scalad < A <1 and the following LMI holds:

the zonotopic containment. The other one searches for the Qu Q12 Q13
optimal controller via quadratic Lyapunov stability. Algo Q= «  —X2HTH, XATH, | >0, (15)
rithms based on solving tractable optimization problengs ar * % —HTH,

proposed for both methods. _
wherex denotes the terms for the symmetfy; € R™s*"

A. Enlargement based on Zonotopic Containment and H, € R™*™ gre extended matrices &f; and H, with

We consider a discrete-time linear system with a statigzs = max{mi, m2} and the expressions
feedback controller, 7 [ H, ] 7 [ H, ]

1= ) 2 = 3
z(k + 1) = Az(k) + Bu(k), u(k) = F(k)z(k), (9) O(ms—m1)xn O(ma—ma)xn

with A € R"*", B € R" ™ and F € R™*"_ Note that we 2Nd ) ) ) )
use the linear system (9) to illustrate the main idea of our@u1 = (1 —=A)? = (Haco — AHic1)" (Haca — AHicr),
approach, which can be extended to the linearizable namline @12 = >\(>\_H101 __HQCQ)T_Hla
systems as in [17]. Qs = (AHicy — Hyeo)THo.

Remark 1:For this model, we assume that Proof: 2, C 2, holds if there exists & < A < 1 such

« The pair (4, B) of system (9) is controllable, from that

which one has thatl(k) + B(k)F(k) is invertible. _ _
. the control input is bounded and(k) is constrained ~ * — [H12(# = e2)llc = AL = [[H1 (2 — c1)]|c) = 0, (16)

by an arbitrary hyper-rectangle: e, [[Hi(z —c1)|loo < 1= ||Ha(z — c2)||eo < 1. One can
./r == {F . Fq,] S [E”an]L (10 rewrite (16) as
t=1,...,7, j:l,,n} ||H2(:1:_62)||oo_)\||H1($_Cl)||ooS]-_)\y (17)
O

i . which is equivalent to the following inequality by replagin
For system (9), we use the zonotopic set membership 991 and H, with [, and fy:

represent the backward reachable sets. Specifically, ¢éet th ~ -

terminal set7” be defined byT” = ¢, & G,=. From (9), we [Ha(z — c2)[loc = A|Hi(z —c1)|oc <1 =X (18)

have This condition holds if

HHQ(J?—CQ)—)\Hl(]}—Cl)HDO <1l-2A (19)

Uk, T)=(A+BF(k))"'W(k+1,7). (11)

Then, by iteratively using (11), the backward reachable set

at time stept can be computed as based on the properties of the norm: a|| Al = ||@4||co
_ for anya > 0 and ||A — Bll > [|Allcc — || B|lsc- From
Uk, T) = cx ® GLE, (12)  Lemma 2, one has that (19) holds if
with T CONFT (o _
= — {C c R™ : ||<||oo S 1}7 ||H2({L fg) )\Hl(x i Cl)HQ S 1 3\, (20)
ck = A(k)ey, G = A(k)Gy, which yields that Ha(z — c) — ANHy (2 — 1)) T (Ha (x— c2) —
kil -1 (13)  AA,(z — 1)) < (1 — N)2. This is equivalent to
Atk =11 (A + BF(T)) . .
7=k 1 1
Before we propose the main result, we present the follow- v | Q| x| =0, (21)
ing lemma. x €
Lemma 2 ([29]): For a finite dimensional vector space,which ends the proof. 0
the l, norm andl., norm satisfy the following inequality Remark 2:Let us observe that the expression of zono-
topes in Lemma 3 is I-rep rather than G-rep. Thus, a transfor-
lzlloo < llllz < Vl|2]|oo. (14 °P P P

mation from G-rep of zonotopes to I-rep is needed. Consider
O  the zonotopeZ(c,G) = {x e R" : z = ¢+ G(, ||¢|loo < 1},
The ellipsoidal calculus is well developed and is relatetet ¢ € R ande = ¢+ G¢, one hag, = G, (¢ — ¢), where
to convex optimization [30], where the ellipsoid contaimhe G, is the left inverse of matrbG. Since (|~ < 1, a
can be established efficiently by an LMI condition viaexpression is obtained that= {e¢ € R™ : |G} 5 (6—¢)||o0 <
the S-procedure [31]. However, the problem of zonotope}. Note thatG, ;G = I,,, andGy.;, exists only ifG has full
containment is rarely considered. The following resultegiv column rank. Thus, regarding a generator maf¥ix R™*™,
a solution for this problem via solving an LMI. 1) for the case of parallelotopes, one has thatk(G) = m
Lemma 3 (Zonotope Containmentgiven zonotopes [32], it yields that(G7G) is invertible and(GTG)~'GT is
2 = {ry € R* : |Hi(z1 — a1)]lo < 1} and aleft inverse oiG; 2) for general zonotopes with G-rep, one



needs to first change the form to H-rep (by using the methahd Hy, Hy., are the left inverses of generator matrices

in [22]), from which I-rep can be easily obtained.

G, Gry1, respectively, then¥(k, 7) = Z(cx, Gy) is an

In addition, it is worth noting that condition (15) is inner-approximation ofR.
only a sufficient condition. It is still an open question to Proof: Since G; has full column rank, according to the
find a necessary and sufficient LMI condition for zonotope&ontrollability of system (9) and (13), one has th@f is a

containment. O
We give an example to illustrate the above result.
Example 2:Considerz; (ci, G1) and Z5(cq, G2) with

0 500 0
“a= { 10 }’ G1 = { 0 500 ]’
_[1w0] 4 _[900 300
“2=1 0 ["%27 1300 900 |°

For this case, one haH; = G;' and H, = G;'. From
(15), it yields thatQ > 0. Thus, 2, C Z,, which is shown

in Fig. 3. O

1000

&80

Zy
—1000 Z
—1000 0 1000
T

Fig. 3. Example 2 for illustration of zonotope containmefihe green

shape indicates€; and the red one indicates,.

Now, we propose a new method based on zonoto

containment.
Theorem 1:For system (9), assume th@t = Z(c;, Gy)

and matrixG, has full column rank. If there exist a positive

scalar0 < A < 1 and a series of control inputs(k) =
F(k)x(k) with F(k)
optimal value of the following optimization:

p= r%in trace(S(Fy))

Qr11 Qr12 Qr13
Qr = x  —=NH[ Hpn MHE Hp | >0,
* * —Hj Hy,
diag(Fr11 — Fyy, Fui — Feaa, - -
Fk,nun - Enun7 Fknun - Fnu,n) Z 07
(22)
where
S(Fx) = (A—FBFk)T(A—FBFk),
Qr1 = (1—X)?— (Hpcx — AHpy1cp41)"
(Hicp — AHpq16k41),
Qriz = MNAHgpicgp41 — Hier)T Hyya,
Qris = (AHgq1cks1 — Hyer)T Hy,

full-column-rank matrix. Thus, for ang € N, G, has a left
inverse H, = Gi—_1et. SinceGiy1 = (A + BFy)G, and
Gr_1ettGr = I, One has that

H = Hk+1(A + BFk),

where Hy1 = (G}, Gry1) 'GE,;. If there exist a pos-
itive scalar0 < A < 1 and control inputsF; such that
Qr > 0, from Lemma 3, one can conclud&(cy, Gx) C
Z(cp—1,Gr-1).

By taking¥ (k, T) = Z(ck, Gi) into account, one has that
the backward reachable set at time steplways contains
the backward reachable set at time skep 1, i.e.,

U(r+1,T) CU(r,T), Vr=k,...,(k—1). (23)

Thus, from Lemma 1, it yields thak(k,7) C R.

Finally, let us choose the Frobenius norm of the gen-
erator matrix as a measure of zonotopes used in [25].
In order to enlarge the backward reachable $¢k, 7),
one can maximize the Frobenius norm of the correspond-
ing generator matrix, i.e.p(¥(k + 1,7)) = ||Gkl|% =
trace((Gx)T (Gk)), which is equivalent to maximizing
trace(((A+BFk)il(GkJrl))T((A—*'BFk)ileJrl)). To do
this, considering the facts that the eigenvalues(@f4 +
BF,)")T((A+ BF,)™")) are positive and are reciprocals
of corresponding eigenvalues ¢fi + BF;)T (A + BFy),
one can maximizetrace(((A + BF) ™ (Gr+1))" (A +
BF},)"'Gi11)) by approximately minimizingrace((A +
BF;,)T(A+ BFy)), which ends this proof. O

Remark 3:For this result, it is worth noting that: Con-

Rfraints in (22) is a Bilinear Matrix Inequality (BMI) [31].

One strategy to solve this problem is by replacing the
quadratic terms by new variables and outer-approximating
the bounds of these new variables [33]. Another strate-

(denoted asF, to the end) being ?he gy is the alternating SDP method (Gauss-Seidel method),
k

which iteratively solves SDP via switching variables toigvo
guadratic terms [34]. O

B. Enlargement based on Quadratic Stabilization

Besides the zonotope containment method, Lyapunov sta-
bility methods have been proven to be efficient for estingatin
the RA. In this subsection, we propose a method to enlarge
the backward reachable set based on quadratic stabilizatio

Let us consider the system (9) where the assumptions in
Remark 2 are satisfied. The main idea of this method is to
compute a feasible feedback control matfixto ensure the
quadratic stability, i.e., the poles of the matrilx+ BF are
kept in a region of the unit disk. In this way, the backward
reachable sets are guaranteed to be the estimate of the RA.

Lemma 4:The system (9) isy-stable (i.e. stable with
converging ratey) if there exist matriced?V e S}’" and



Y € R™*" such that where

T T pT R(W,Y) = (AW + BY)T (AW + BY),
W WA" +Y*'B >0, (24)
AW + BY w _
Y, me i Whis Fi Wi ),
then,FF = YW ! ensures the quadratiestability of system (27)
(9). B _
Proof: By calculating the Schur complement of (24), one Yij = Zmax(ﬂikwkiv FirWii),
has =
. T 1 foralli=1,...,n,,j=1,...,n, andv,(f) is the vertex
W= (WAT +Y B)W™ (AW + BY) >0, (25) zonotope\IJ( ) then, the backward reachable set satisfies
L U(k—-1)CR.
which yields that for any: > 0 andz(k) # 0, Proof: From Lemma 4, the first inequality of (26) ensures
T that there exist matrice®/ € , Y € R™>*" and a
2(k)T (WAT YT BTYW-L(AW + BY )a(k) positive scalary € R, such that system (9) is-stable.
N (BT Wa(k) > ok + 1) Wa(k + 1). ’ In addition, the second inequality of (26) enables that the
backward reachable s&t(k, T) is contained in an ellipsoid
Thus, consider a quadratic Lyapunov functiéh(k) = z(k)TWax(k) < 1.WhiCh is a contractive and invariant set.
2(k)TWz(k), one has/ (k + 1) < ~V (k), which completes From Lemma 5, if ther_e exists a control inpb(k — 1) =
this proof. 0 Y(k—1)W(k—1)"! satisfying (26), one has (k—1) € R.

Remark 4:Regarding Lemma 4, for the case of= 1 Furthermore, the last inequality of (26) holds on the
(24) reduces to the Schur stability of system (9). [  condition that -
Lemma 5:Consider a series of backward reachable sets Y, <VYi; <Yy (28)

U(ko, T), U(ko+1,7),..., U(ke, T), provided that there is - sigering (27) and the interval arithmetic of additionan
ak with ¥(k,7) C R, then for anykg < k < k,k € N,

multiplication

there exists a group of control input$r), 7 = k, ..., k — ~

such that¥(k, 7) C R. a+b = Ja+ba+b], (29)
Proof: Let us observe from Definition 1 that the backward d-a = [min(da,da), max(da,da)],

reachable set has the following semigroup property: For all

ko < k < k., fora € [a,@ C R, b € [b,b] andd € R, it further yields that
- the last inequality of (28) holds if’(k) is constrained by a

U(ko, T) = U (ko, U(k, T)) hyper-rectangle given by Remark 2.

Finally, regarding the objective function of (26), we use th
under the control inputs(7), 7 = ko, ..., ks — 1. Thus, there generalized Frobenius norm as our measure of a zonotope,

exists a group of control inputs(7), 7 = k, ...,k — 1 such 1-€-

that U(k,7) can be steered int@(k,7T), an_d there also (R
exists a group of control inputg(r), 7 koo ke — w 4 a
such that¥(k,7) can be steered mt@(k:t, 7). By takmg = l1Z(er-1, Gr)llp-w
Definition 2 into account, if¥(k,7) C R and ¥(k,T) = = tl"ace((G£_1)(W_l)T(W_l)(kal))
T C R, it yields that under the control inputs(r), that a2 trace(G;{((AJrBYW—l)_1)T(W_1)TW_1
7=k, ...k —1,¥(k,T) C R, which completes this proof. ’
0 (A+BYw-H=1G,
Theorem 2:Consider the system (9) satisfying the as- _ trace(Gg((AW+BY)*1)T(AW+BY)*1G,€),

sumptions in Remark 2, if there exist matricds ¢ S77}",
Y € R"«*", a positive scalary € R, and criteriap such  from which one could observe that maximiziftg 1 || r—w
that can be approximated by minimizingrace(R(W,Y)). In
) other words, the backward reachable $ék — 1) is enlarged
P=0y trace(R(W,Y)) by the measure of the generalized Frobenius norm, which
ends the proof. O

{ yW WAT + YT BT ] >0
AW + BY w 7 IV. ANUMERICAL EXAMPLE
1 UI(CT)T (26) The computation is carried out by using MATLAB 2015a
o™ >0, Vr=1,...,n, on a standard laptop with an Intel Core i7-4712MQ processor
k . and an 8GB DDR3 RAM. The MATLAB toolboxes CORA
diag(Y11 —XH,YH_— Yii,..., [35] and MPT3 [36] are used to compute the zonotopic

Yoon — Y Yonun — Ynun) >0, and polyhedral sets, and toolboxes CVX, SDPSOL, SeDuMi,

L n,no



SDPT3, and LMITOOL are used for solving BMI and semi-
definite problems (For various LMI solvers, see [34] and
references therein).

We consider the following model: 100r W (ky — 1,7)
z(k+1) = (A+ BF(k))x(k)
Wi A:[o.s 0.1] B:[z 1] 2 0p
0.2 06 |’ 1 1’
andFy; =0.1, F;, = 0.5, F1, = 0.3, F12 = 0.5, Fy, = —100}

0.2, Fo1 = 0.3, Fy, = 0.3,F9, = 0.6, where the origin

0, is a locally asymptotically stable equilibrium point with
an unbounded RA. Let us denote the control strategy base
on Theorem 1 as Strategy 1 and denote the control strateg

based on Theorem 2 as Strategy 2. -100.0 991 100.0
First, we use Strategy 1 to compute the backward reach-
able sets and enlarge the estimated RA. we set the terminal Fig. 4. Computation results by using Strategy 1.

set asT = Z(ct1, Gr1), Where

0 1 0
Ct1:|:0:|7Gt1:|:0 1}'

For each time ste@, an optimal control inputf, can be
obtained by solving (22). Then, the backward reachable se 100}
U (k,T) can be computed from (13). The computation result
by using this strategy is shown in Fig. 4. Let us consider a
setT = {x € R : 45 < o <55, 95 < x4 < 105).  _ of (ke —4,7)
ObserveY is in the backward reachable s&(k, — 4,7), 8 \I}kt —5,7)
from Definition 1, we obtain the result that can be steered ’
into the target sef” in 4 time steps by using the optimal (ke —3,7)
control inputsF'(ky — ), fori =4,3,2, 1. —100y Uk —2,7)
Moreover, we can also apply Strategy 2 to compute ‘ ’
the estimated RA. The terminal set is selected7as=
Z9 (Ctg, Gtg), where L N .
c—{l}G—[2O} 100 xlO 100
t2 — 1 ) t2 — 0 2 .
The computation result is shown in Fig. 5. Note that différen Fig. 5. Computation results by Using Strategy 2.
from Strategy 1, Strategy 2 does not require a set contain-
ment condition. In other words, the backward reachable set
is not ensured to be an invariant set. See from Fig. 5 that V. CONCLUSION AND DiscUsSsION
W (ke — 3) is not contained in¥ (k; — 4). An approach is proposed for estimating and enlarging the
TABLE Il RA of linear discrete-time systems from a new perspec-

tive: computing the backward reachable sets. A Lagrangian
method is used via zonotopic representation. Firstly, we
propose a method for checking the zonotope containment via
solving a Semi-Definite Programming (SDP). Based on this
kp=5  kp=10 kp=20 kp=30 kp,=40 method, an optimal control input is obtained for enlargimeg t
backward reachable set as the estimate of the RA by solving
an optimization problem with Bilinear Matrix Inequalities
Strategy 2 4.36 847 1536 2276  31.28 (BMils). Secondly, based on the Lyapunov stability theory,
an optimal control strategy is proposed for each step via
The computational time of the proposed methods is givequadratic stabilization. The backward reachable set as the
in Tab. lll. Strategy 1 is not as efficient as Strategy 2; it isnner-approximation of the RA is maximized under the
due to the fact that (22) needs to solve an optimization withroposed control strategy by solving a convex optimization
constraints of BMIs, and BMI solver relies on some iterativgproblem.
algorithm (e.g., Gauss-Seidel method) to find the suboptima The main conservativeness of these approaches stems
solution [34]. from the following two facts: 1) for the method based on

THE COMPUTATIONAL TIME ¢, [sec] FOR DIFFERENT STRATEGIESAND
THE SELECTED BACKWARD TIME STEPk},.

Strategy 1 7.84 15.68 29.64 47.32 73.91




zonotope containment, only a suboptimal solution can he4]
obtained for the BMI problem (22), and the Frobenius norm
of generator matrix is adopted for approximating the volume
of zonotopes, which is non-convex with regards to th@s]
control variables [32]; 2) for the method based on quadratic
stabilization, like other methods using Lyapunov stapilit
theory, it also suffers from the fact that a Lyapunov funetio
zTWa is required. In order to reduce the conservativenesB8!
one promising convex approach is proposed by using the
moment theory and the occupation measure, and conditions
of LMIs are obtained other than BMI [12]. Another possiblell7]
way is to construct a convex approach for enlarging the
volume of zonotopes (see the analysis problem in [25]),
to which our future effort will be devoted. Furthermore,[18]
we are also interested to extend this method to linearizable
nonlinear systems, hybrid systems and large-scale cybero]
physical systems [27], [37].
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