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Abstract—This paper addresses robust discrete-time consensus
problem of multiple agents with uncertain structure, where the
network coupling weights are supposed polynomial functions of
an uncertain vector constrained in a semialgebraic set. Based
on the Lyapunov stability theory, a necessary and sufficient
condition for robust discrete-time consensus is proposed. Then,
we investigate the robust discrete-time consensus with positive
weighted network, and a necessary and sufficient condition is
also provided based on the property of an uncertain matrix.
Corresponding sufficient conditions for robust discrete-time con-
sensus are derived by solving a linear matrix inequality (LMI)
problem built by exploiting sum-of-squares (SOS) polynomials.
Some examples illustrate the proposed results.

I. INTRODUCTION

Recent years have witnessed an increasing number of re-
searches on cooperative control, in particular significant efforts
have been made to study consensus problems of multi-agent
systems. Most of relevant researches focus on the multi-agent
systems with fixed topology, and corresponding consensus
protocols have been extensively investigated. It has been
shown that for system with first-order dynamics, consensus can
be achieved if and only if the associated network has a directed
spanning tree, while for system with second-order dynamics,
not only is consensus determined by the topology, but also the
Laplacian matrix whose real and imaginary components of the
eigenvalues contribute to reaching consensus [1], [2].

Besides the fixed topology, in order to make a more realistic
multi-agent model, a growing number of attentions have been
paid to the system with random network, uncertain pertur-
bations, misbehaving agents and unmeasurable inputs [3]–
[5]. [6] exploits nonlinear couplings among a nonidentical,
nonlinear network with continuous-time dynamics described
by Euler-Lagrange equations. [7] investigates a periodically
time-varying topology where agent obtains its position and ve-
locity states only at sampling time. Another type of switching
topology, the stochastic switching topology driven by a finite
ergodic Markov chain, is proposed and studied in [8]. The
robust consensus of multi-agent systems with diverse input
delays is studied in [9], which assumes there is asymmetric
linear perturbations of coupling weights in communication
network, while [10] supposes a linear perturbation in input
control affecting velocity states. In order to address constraints
of communication, [11] employs the proximity graph to model
the limited range of interaction channel. Numerous though
kinds of transforming structures of multi-agent systems are,
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none research has been interested on the robust discrete-
time consensus where the coupling weights of network are
disturbed by polynomial functions of uncertain parameters.

This paper investigates robust discrete-time consensus prob-
lems of multi-agent network with uncertain parameters con-
strained in a given set. Specifically, the coupling weights
of network are assumed to be polynomial functions of an
uncertain vector, which is constrained in a semialgebraic
set. Firstly, a necessary and sufficient condition is provided
for robust discrete-time consensus by exploiting Lyapunov
stability theory. And then, for the same problem, we derive a
sufficient condition by solving a linear matrix inequality (LMI)
problem built by using SOS matrix polynomials (see e.g.
[12] about LMIs and [13] and references therein about SOS
polynomials). In addition, based on analysis of the eigenvalues
of an uncertain matrix, this paper proposes a necessary and
sufficient condition for robust discrete-time consensus with
positive weighted network. Based on this condition, a suffi-
cient condition for robust discrete-time consensus is derived by
solving an LMI problem built by exploiting SOS polynomials.
Some numerical examples illustrate the proposed results.

The paper is organized as follows. Section II provides
the problem formulation and some preliminaries about graph
theory and SOS polynomials. In Section III, the conditions
for robust discrete-time consensus are provided. In Section
IV, some numerical examples are reported. Lastly, Section V
concludes the paper with some final remarks.

II. PRELIMINARIES

A. Problem Formulation

The notation used throughout the paper is as follows:
- N,R: natural and real number sets;
- A′: transpose of A;
- A > 0 (A ≥ 0): symmetric positive definite (semidefi-

nite) matrix A;
- 0n: origin of Rn;
- 1n = (1, . . . , 1)′Rn;
- In: n× n identity matrix;
- img(A): image of matrix A;
- ker(A): null space of matrix A;
- A⊗B: Kronecker product of matrices A and B;
- spc(A): set of eigenvalues of A ∈ Rn×n, i.e.

spc(A) = {λ ∈ C : det(λIn −A) = 0}.

According to graph theory, a weighted and directed graph G
can be described by three elements, i.e. G = (A ,E , G), where
A = {A1, ..., An} is a finite, nonempty set to describe the set



of n nodes of a multi-agent system, E is the set of directed
edges belonging to A × A and G is a weighted adjacency
matrix displayed by G = (Gij)n×n. A directed edge from
Aj to Ai is defined by Gij and it represents an information
transmitting channel from the j-th node to the i-th node, where
vehicle Aj and vehicle Ai are called parent node and child
node respectively. In this paper, a directed graph is investigated
to model the network of multi-agent systems.

A directed path from Ai to Aj is defined as a sequence
of directed edges (Ai, Ai1),(Ai1, Ai2),...,(Ail, Aj) in directed
network with distinct nodes Aik, k = 1, . . . , l. A graph G is
called a strongly connected graph if there is a directed path
between any pair of distinct notes Ai and Aj . If a node i
has the property that, for any node j different from i, there
is a directed path from i to j, we define node i as a root. A
directed tree is a directed graph where exactly one root exists
and except the root, every node in G has exactly one parent.
A spanning tree of a directed graph is a directed tree in which
graph edges connect all the nodes of the graph. We say a graph
has a spanning tree if any subset of edges involves or forms
a spanning tree [14].

Uncertain multi-agent systems are considered in this paper.
For robust first-order consensus, the discrete-time consensus
scheme for a network with n agents can be expressed by

xi(k + 1) =
1∑n

j=1 Gij(θ)

n∑
j=1

Gij(θ)xj(k), i = 1, . . . , n

(1)
where xi ∈ R is the state of the i-th node, θ ∈ Rr is an uncer-
tain vector, and Gij(θ) : Rr → R is the (i, j)-th entry of the
uncertain weighted adjacency matrix G(θ) = (Gij(θ))n×n.
The uncertain vector θ is constrained in a set as θ ∈ Ω where

Ω = {θ ∈ Rr : si(θ) ≥ 0 ∀i = 1, . . . , h} (2)

for some s1, . . . , sh : Rr → R. In the sequel we will assume
that Gij(θ) and s1(θ), . . . , sh(θ) are polynomials. Moreover,
we say that G(θ) is positive if Gij(θ) > 0 for all i, j and for
all θ ∈ Ω, otherwise G(θ) is called non-positive.

Based on the multi-agent system defined above, we propose
the problems of robust discrete-time consensus.

Problem 1. To establish if, for any initial state, the uncertain
multi-agent system with scheme (1) achieves consensus, i.e.

lim
k→∞

xi(k)− xj(k) = 0

∀θ ∈ Ω, ∀xi(0) ∈ R, ∀i, j ∈ {1, 2, ..., n}.
(3)

Problem 2. To establish if, for any initial state, the uncertain
multi-agent system achieves consensus with scheme (1) and
with positive weighted network, i.e.

lim
k→∞

xi(k)− xj(k) = 0 Gij(θ) ≥ 0

∀θ ∈ Ω, ∀xi(0) ∈ R, ∀i, j ∈ {1, 2, ..., n}.
(4)

In order to address these problems, we rewrite (1) as

x(k + 1) = D(θ)x(k) (5)

where x = (x1, . . . , xn)
′ is the state vector, and D(θ) =

(Dij(θ))n×n is an uncertain matrix given by

Dij(θ) =
Gij(θ)∑n
j=1 Gij(θ)

. (6)

It is worth pointing out that the uncertain matrix D(θ) has the
property that

n∑
j=1

Dij(θ) = 1 ∀i = 1, . . . , n. (7)

B. SOS Polynomials

A powerful tool for establishing whether a (multivariate)
polynomial is nonnegative consists of establishing whether it
is a SOS polynomial via an LMI feasibility test.

Specifically, let f(x) be a polynomial of degree 2m in x ∈
Rr. Then, f(x) can be written as

f(x) = x{m}′
(F + C(δ))x{m} (8)

where x{m} ∈ Rσ(r,m) is a vector containing all monomials
of degree less than or equal to m in x, and the length of x{m}

is expressed as

σ(r,m) =
(r +m)!

r!m!
, (9)

F ∈ Rσ(r,m)×σ(r,m) is a symmetric matrix, and C(δ) is a
linear parametrization of the linear subspace

C =
{
C = C ′ : x{m}′

Cx{m} = 0
}
. (10)

The representation (8) is known as Gram matrix method
[15] and square matrix representation (SMR) [16]. This rep-
resentation was introduced in [16] for establishing whether a
polynomial is SOS via LMIs. Indeed, f(x) is SOS if there
exist polynomials f1(x), f2(x), . . . such that

f(x) =
∑
i

fi(x)
2 (11)

and this condition holds if and only if there exists δ such that
the following LMI feasibility test holds:

F + C(δ) ≥ 0. (12)

This techniques can also be used in the case of matrix
polynomials. Specifically, let M(x) be a symmetric matrix
polynomial of size s× s of degree 2m in x ∈ Rr (this means
that all the entries of M(x) are polynomials of degree 2m in
x). Then, M(θ) can be written as

M(θ) = ∆(M̄ + E(δ),m, s) (13)

where

∆(M̄ + E(δ),m, s) = (θ{m} ⊗ Is)
′(M̄ + E(δ))(θ{m} ⊗ Is),

(14)
M̄ ∈ Rsσ(r,m)×sσ(r,m) is a symmetric matrix, and E(δ) is a
linear parametrization of the linear subspace

E =
{
E = E′ : (x{m} ⊗ Is)

′E(x{m} ⊗ Is) = 0
}
. (15)



The representation (14) allows one to establish whether a
matrix polynomial is SOS via LMIs. Indeed, M(x) is SOS if
there exist matrix polynomials M1(x),M2(x), . . . such that

M(x) =
∑
i

Mi(x)
′Mi(x) (16)

and this condition holds if and only if there exists δ such that
the following LMI feasibility test holds:

M̄ + E(δ) ≥ 0. (17)

It is worth mentioning that SOS polynomials have been
exploited in optimization over polynomials since a long time,
in particular [17] has been one of the pioneering works on this
topic. For details, the reader can also refer to the book [18]
and the survey [13].

III. CONDITIONS FOR ROBUST CONSENSUS

In this section we derive the proposed conditions for robust
discrete-time consensus.

A. Robust Consensus of General Network

Lyapunov stability theory is of great significance to study
the property of dynamical system. For the first time, we
associate the robust discrete-time consensus with Lyapunov
stability theory, and we provide a new condition for investigat-
ing robust first-order consensus based on matrix inequalities.
Specifically, define a matrix V ∈ Rn×n−1 such that

img(V ) = ker(1′n), V ′V = In−1. (18)

Then we can transform the uncertain matrix D(θ) as:

D̂(θ) = V ′D(θ)V. (19)

By exploiting the discrete-time Lyapunov inequality, we can
obtain the following condition to check both Problem 1 and
Problem 2.

Theorem 1: Robust discrete-time consensus for uncertain
multi-agent system (with both positive and non-positive
weighted network) can be achieved if and only if there exists
a symmetric function P : Rr → Rn−1×n−1 such that{

P (θ) > 0

P (θ)− D̂(θ)′P (θ)D̂(θ) > 0
∀θ ∈ Ω. (20)

Proof Observe 1n is an eigenvector of D(θ) corresponding to
the eigenvalue 1, and from (18) one can obtain that V ′D(θ)V
has the same eigenvalues of D(θ) except that the algebraic
multiplicity of the eigenvalue 1 has been decreased of one.
Based on the condition that eigenvalue 1 is a simple eigenvalue
of D(θ), one gets that

spc(D̂(θ)) ∪ {1} = spc(D(θ)). (21)

Let us define a dynamical system

x̂(k + 1) = D̂(θ)x̂(k). (22)

Observe that ∀γ ∈ R, x̂0 = γ1n−1 is the equilibrium point of
(22), hence the statement that robust discrete-time consensus

can be achieved is equivalent to the statement that (22) is
asymptotically stable. According to (21) and the Lyapunov
stability theorem, (22) is asymptotically stable ∀θ ∈ Ω if and
only if D(θ) has exactly one simple eigenvalue 1 and all the
spectral norms of the other eigenvalues are smaller than 1.
From Lyapunov stability theorem for linear systems, this is
equivalent to say that there exists P (θ) such that (20) holds
∀θ ∈ Ω. This completes the proof. �

In order to investigate the condition of Theorem 1, we
can exploit SOS matrix polynomials. Observe elements of
D(θ) may be rational functions in θ, hence we firstly make a
transformation on D(θ) as follows

D̃(θ) = ζ(θ)D(θ) (23)

where the ζ(θ) = LCM(
∑n

j=1 Gij(θ)), ∀i = 1, 2, ..., n, and
LCM is short for the Least Common Multiplier. Then we can
get a matrix polynomial D̃(θ) whose elements are polynomial
functions of θ. Accordingly, the conditions of Theorem 1 are
changed to{

P (θ) > 0

ζ(θ)2P (θ)− ̂̃
D(θ)′P (θ)

̂̃
D(θ) > 0

∀θ ∈ Ω. (24)

where ̂̃
D(θ) = V ′D̃(θ)V (25)

Specifically, let P (θ) and Hi(θ), i = 1, . . . , h, be symmetric
matrix polynomials, and si is described in (2). Then define

R(θ) = ζ(θ)2P (θ)− ̂̃
D(θ)′P (θ)

̂̃
D(θ)−

h∑
i=1

Hi(θ)si(θ). (26)

We can verify that (20) holds if there exists c > 0 such that Hi(θ) is SOS
P (θ)− In−1 is SOS
R(θ)− cIn−1 is SOS.

(27)

By exploiting the representation of matrix polynomials in-
troduced in Section II, the condition (27) can be established by
a convex optimization problem with LMI constraints. Specifi-
cally, let 2mi, 2m and 2m0 be the degree of Hi(θ), P (θ)−I ,
and R(θ) − cI respectively. We define the representations as
follows:

Hi(θ) = ∆(H̄i,mi, n− 1)
Hi(θ)si(θ) = ∆(Ūi(H̄i),m0, n− 1)

P (θ) = ∆(P̄ ,m, n− 1)
R(θ) = ∆(M̄ + E(δ),m0, n− 1)

(28)

where H̄i, Ūi(H̄i), P̄ , M̄ and E(δ) are symmetric matrices.
Then we have the following result.

Corollary 1: With both positive and non-positive weighted
network, the robust discrete-time consensus can be achieved
if one gets c∗ > 0 by solving following convex optimization



problem with LMI constraints.

c∗ = sup
c,H̄i,P̄ ,δ

c

s.t.


H̄i ≥ 0
P̄ ≥ Id1

M̄ + E(δ)− cId2
−

h∑
i=1

Ūi(H̄i) ≥ 0

(29)

where d1 and d2 are the sizes of P̄ and M̄ , respectively.
Proof Since H̄i ≥ 0, from (28) one can obtain that Hi(θ) ≥ 0.
Similarly, one gets P (θ) ≥ 0, R(θ) ≥ 0. In addition, it is given
that si(θ) > 0 and

(θ{m0} ⊗ In−1)
′E(δ)(θ{m0} ⊗ In−1) = 0 ∀θ ∈ Rr.

Accordingly, from c∗ > 0 in (29) one can obtain that ∀θ ∈ Ω,
there exists c > 0 with Hi(θ) ≥ 0, P (θ) > 0 and

0 ≤ ζ(θ)2P (θ)− ̂̃
D(θ)′P (θ)

̂̃
D(θ)−

h∑
i=1

Hi(θ)si(θ)

−cIn−1

≤ ζ(θ)2P (θ)− ̂̃
D(θ)′P (θ)

̂̃
D(θ)− cIn−1

< ζ(θ)2P (θ)− ̂̃
D(θ)′P (θ)

̂̃
D(θ).

(30)
Then it directly follows that (24) and (20) hold. The proof is
thus completed. �

Remark 1: Corollary 1 provides a sufficient condition for
robust consensus with both positive and non-positive weighted
network. The conservatism of this approach is determined by
the length of uncertain vector θ and the degree of Hi(θ), P (θ)
and R(θ). To reduce the conservative standard of Corollary 1
is firmly associated with the Hilbert’s 17th problem which
concerns on the gap between SOS polynomials and positive
polynomials [18].

B. Robust Consensus of positive weighted network

In this subsection, we investigate the robust consensus
conditions for uncertain systems with positive weighted net-
work, It has been found that, for graph G = (A ,E , G),
the consensus of the directed network is determined by the
topology of network. First of all, based on the condition
given in [19] for the case of multi-agent systems without
uncertainty, let us introduce the following preliminary result,
which extends to the case of uncertain multi-agent systems.

Lemma 1: For a given uncertain matrix D(θ) in (6) and
an uncertain network with Gij(θ) ≥ 0, the following three
statements are equivalent.

a) Robust discrete-time consensus can be achieved.
b) ∀θ ∈ Ω, D(θ) has exactly one simple eigenvalue 1 and

all the other eigenvalues satisfy |λ| < 1.
c) ∀θ ∈ Ω, the directed graph G has a spanning tree.

Proof Assume the uncertain matrix D(θ) is constructed by (6).
Then, the three statements are equivalent and follow directly
from the analogous ones found for the case of multi-agent

systems without uncertainty, refering to the Corollary 2.18,
Lemma 2.19 and Theorem 2.20 of [19]. �

From Lemma 1 we know that the eigenvalue distribution of
D(θ) determines whether the robust discrete-time consensus
can be achieved. For a positive weighted network, if we can
find a way to establish the condition of statement b) in Lemma
1, the robust consentability of the positive weighted network
can be obtained directly. Based on this lemma we propose
a necessary and sufficient condition for robust discrete-time
consensus with positive weighted network.

Theorem 2: For a given uncertain matrix D(θ) in (6) and
a positive weighted network, i.e. ∃eij ∈ E if and only
if Gij(θ) ≥ 0, the robust discrete-time consensus can be
achieved if and only if

q(θ) ̸= 0, ∀θ ∈ Ω (31)

where

q(θ) =
( d

dλ
l(λ, θ)

)∣∣∣∣
λ=1

(32)

and

l(λ, θ) = det(λI −D(θ)). (33)

Proof Since Gij(θ) > 0, by (6) one obtains Dij(θ) > 0,
∀i, j = 1, 2, ..., n. Observe that D(θ) has the same positive
constant row sums given by 1, then 1 is an eigenvalue of
D(θ) with an associated eigenvector 1n and the spectral radius
of D(θ) is 1, which follows directly from the properties of
nonnegative matrices [20]. Thus, for all non-one eigenvalue,
we have that |λi(D(θ))| < 1, ∀i = 1, 2..., n, ∀θ ∈ Ω.
Moreover, condition (31) implies that D(θ) has exactly one
simple eigenvalue 1, ∀θ ∈ Ω. Therefore, statement b) in
Lemma 1 and condition (31) are equivalent. This completes
the proof. �

Remark 2: As well we can use Theorem 1 to check the
robust consensus of positive weighted network. Nevertheless
Theorem 2 is advanced in terms of numerical complexity,
for the reason that a symmetric parameter-dependent function
P (θ) should be found under condition (20) which is an
convex optimization problem, while for condition (31), it is
numerically simple to calculate the roots of a polynomial
function and check whether these roots are in the constrained
set defined by (2).

In order to check the condition of Theorem 2, we can also
utilize the SOS polynomials which amounts to solving an
LMI problem. Since q(θ) may be a rational function, we first
transform l(λ, θ) and q(θ) as:

l̃(λ, θ) = ζ(θ)ndet(λIn −D(θ))

q̃(θ) =
(

d
dλ l̃(λ, θ)

)∣∣∣
λ=1

.
(34)



Then we can obtain following optimization problem:

c∗ = sup
c,gi(θ)

c

s.t.


gi(θ) is SOS

(−1)kq̃(θ)− c−
h∑

i=1

gi(θ)si(θ) is SOS

(35)

where k ∈ {0, 1} is defined as

k =

{
0 if q̃(θ0) > 0
1 otherwise (36)

where θ0 is any vector θ freely chosen in Ω. Then, condition
of Theorem 2 holds if c∗ > 0.

Actually, we can calculate c∗ in (35) by solving an LMI
problem via using the technique of representation of polyno-
mials. Specifically, let 2mi, 2m0 be the degree of gi(θ) and
(−1)kq̃(θ) − c −

∑h
i=1 gi(θ)si(θ) respectively. Let us define

the representations

gi(θ) = θ{mi}′
Jiθ

{mi}

gi(θ)si(θ) = θ{m0}′
Qi(Ji)θ

{m0}

(−1)kq̃(θ) = θ{m0}′
(F + C(δ))θ{m0}

1 = θ{m0}′
Wθ{m0}

(37)

where Ji, Qi(Ji), F , C(δ) and W are symmetric matrices.
Then we have the following result.

Corollary 2: With a positive weighted network, the robust
discrete-time consensus can be achieved if one gets c∗ > 0 by
solving a convex optimization problem as follows

c∗ = sup
c,Ji,δ

c

s.t.


Ji ≥ 0

F + C(δ)− cW −
h∑

i=1

Qi(Ji) ≥ 0.

(38)

Proof The derivation process is same to the corresponding part
of Corollary 1. ∀θ ∈ Ω, whenever c∗ > 0 and the constraints
in (35) hold, one can get c > 0 with gi(θ) ≥ 0 and

0 ≤ (−1)kq̃(θ)− c−
h∑

i=1

gi(θ)si(θ)

≤ (−1)kq̃(θ)− c,

(39)

i.e. c is a lower bound of (−1)kq̃(θ), ∀θ ∈ Ω. Then it directly
follows that (31) holds. This completes the proof. �

IV. NUMERICAL EXAMPLES

In this section, a couple of examples are provided to
illustrate the proposed approach. These optimization problems
are solved with standard MATLAB toolboxes SeDuMi and
SMRSOFT [21], [22].

Fig. 1. Topology of Five-agent system.

A. Example 1

In this example, a five-agent system is considered as Figure
1. This network is perturbed by an uncertain parameter θ.
Thus, we have n = 5 and r = 1. Specifically the weighted
adjacency matrix is given by

G(θ) =


1 0 0 0 1
2 1 0 0 0
0 2− 2θ 1 0 1
0 0 2 1 0
0 0 0 1− θ 1


where θ is constrained in a selected set Ω as

Ω = [−1, 1]. (40)

Here we describe Ω as a polynomial inequality in (2) with

s1(θ) = 1− θ2.

By using (6), we can obtain the uncertain matrix D(θ) as:

D(θ) =



1
2 0 0 0 1

2
2
3

1
3 0 0 0

0 2−2θ
4−2θ

1
4−2θ 0 1

4−2θ

0 0 2
3

1
3 0

0 0 0 1−θ
2−θ

1
2−θ

 .

Thus, we find ζ(θ) as:

ζ(θ) = 12− 6θ.

First, let us apply Theorem (1) to establish whether robust
consensus can be achieved with Figure 1. According to (20),
we choose a constant matrix function P (θ) to guarantee the
positivity in this case. By solving the optimization problem
(29), we can find c∗ = +∞, i.e. (27) holds with any positive
scalar c. Then the robust discrete-time consensus can be
achieved.

Next, we find that all the entries of the weighted adjacency
matrix G(θ) are non-negative for all θ ∈ Ω, thus the Theorem
2 can either be utilized to investigate the robust discrete-time
consensus. Specifically, the polynomial q̃(θ) in (34) can be
calculated as:

q̃(θ) = −12096θ5 + 102384θ4 − 342576θ3

+565920θ2 − 461376θ + 148608.
(41)



According to Theorem 2 and (34), robust discrete-time con-
sensus is achieved if and only if q̃(θ) ̸= 0 for all θ ∈ Ω.
In addition, we also find that q̃(θ) is an univariate polynomial
whose roots are 2, 2, 2, 1.2321 + 0.1324i and 1.2321 - 0.1324i,
the absolute values of which are all located outside [−1, 1].
Hence we obtain q̃(θ) ̸= 0 for all θ ∈ Ω. Meanwhile, we
calculate the quantity c∗ in (38). By selecting multiplier g1(θ)
of degree 2, we have that k = 0, and finally we find c∗ = 864,
which proves that condition (31) in Theorem 2 is satisfied.

Furthermore, we investigate the eigenvalues of D(θ) and
the topology of network to further validate the proposed
theory. From Figure 1, obviously the network has a directed
spanning tree, i.e. {(A1, A2), (A2, A3), (A3, A4), (A4, A5)}.
In addition, for all θ in (40), D(θ) has exactly one simple
eigenvalue 1, and the spectral radius of D̂ is 0.7586. Hence the
uncertain network can reach robust discrete-time consensus,
whose conclusion definitely coincides with ours.

B. Example 2

With the same topology shown in Figure 1, another uncer-
tain five-agent system is considered in this case. Different from
the first example, it is assumed that the network is affected
by two uncertain parameters, i.e. θ1 and θ2. Meanwhile the
network has both positive and non-positive weighting factors.
Specifically the uncertain weighted adjacency matrix G(θ) is
assumed to be

1 0 0 0 1
2θ1 + 7 1 0 0 0

0 θ2 − θ1 1 0 3 + θ1
0 0 θ1 + 3 1 0
0 0 0 0.5θ2 + 1 1

 .

where θ ∈ R2 is constrained in the set Ω chosen as

Ω = {θ : ∥θ∥ ≤ 1}.

Hence, we have n = 5 and r = 2. Moreover, Ω can be
described as in (2) with

s1(θ) = 1− θ21 − θ22.

And according to the uncertain matrix D(θ) calculated by (6),
we can obtain ζ(θ) as:

ζ(θ) = 32 + 8θ1 + 8θ2 + 2θ1θ2.

In this case, G(θ) may not be positive, hence let us apply
condition (20) to investigate robust discrete-time consensus.
First we find a constant matrix function P (θ) satisfying (20),
and then we get c∗ = +∞ by solving (29). That means the
robust discrete-time consensus is achieved.

V. CONCLUSIONS

In this paper we have addressed the problems of estab-
lishing robust discrete-time consensus for uncertain multi-
agent systems. And for these problems we have provided
necessary and sufficient conditions based on the Lyapunov
stability theory and the eigenvalue analysis of uncertain matrix
D(θ). In addition, we have derived sufficient conditions that

amount to solving LMI problems built by exploiting SOS
matrix polynomials. Now special efforts are made to reduce
the methdological conservatism.
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