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Abstract— This paper investigates robust consensus for a class
of uncertain multi-agent dynamical systems. Specifically,it is
supposed that the system is described by a weighted adjacency
matrix whose entries are polynomial functions of an uncertain
vector constrained in a semialgebraic set. For this uncertain
topology, we provide necessary and sufficient conditions for
ensuring robust first-order consensus and robust second-order
consensus, in both cases of positive and non-positive weighted
adjacency matrices. Moreover, we show how these conditions
can be investigated through convex programming by using stan-
dard software. Some numerical examples illustrate the proposed
results.

Index Terms— Multi-agent system, Uncertain system, Robust
consensus, Convex programming.

I. INTRODUCTION

The model of multi-agent dynamical systems has been
widely applied in the research of sensor networks, neural
networks and biological networks [1]–[5]. Especially, in recent
years, interests are intensively casted on networked control and
coordinated behavior in multi-agent systems [6]–[12]. Achiev-
ing consensus is a key problem in this area and as a growing
number of applications of multi-agent system emerges, the
research on consensus gains an essential importance on various
areas such as complex dynamical network, filter design for
multiple sensors, synchronization, formation and rendezvous.

Traditional research topics focus on the deterministic sys-
tem to establish static model, while a growing number of
researches cast attentions on the uncertainties of multi-agent
system according to the unexpected link failure, communica-
tion delay, interaction limit and noise interference in system
[13]–[15]. A simple but compelling mathematic description
of a group of autonomous agents is the Vicsek model where
possible changing of the nearest neighbor sets over time is an
inherent property. This model is applied to the interactionwith
directional information exchange, hence introducing a more
general model where each edge of a weighting matrix has a
positive weighting factor.

In this paper, we investigate robust consensus for uncertain
multi-agent dynamical systems. In particular, it is supposed
that the weighted adjacency matrix of the closed-loop system
is affected by uncertain parameters, reflecting for instance
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missing information on the control gains. Each entry of
the weighted adjacency matrix is allowed to be a generic
polynomial function of an uncertain vector constrained in a
semialgebraic set. This framework includes typical cases such
as affine linear dependence of the system coefficients on an
uncertain vector constrained in a polytope. For this uncertain
topology, we provide necessary and sufficient conditions for
ensuring robust first-order consensus and robust second-order
consensus, in both cases of positive and non-positive weighted
adjacency matrices. These conditions are obtained in general
by exploiting the uncertain Laplacian matrices of the system
and by introducing parameter-dependent Lyapunov functions
for a suitably transformed system. Moreover, we show how
these conditions can be investigated through convex program-
ming by using standard software. Some numerical examples
illustrate the proposed results.

The paper is organized as follows. Section II provides
the problem formulation and some preliminaries. Section III
describes the proposed conditions for robust first-order consen-
sus and robust second-order consensus. Section IV illustrates
the proposed results with some numerical examples. Lastly,
Section V concludes the paper with some final remarks.

II. PRELIMINARIES

A. Problem Formulation

Notation:

- N,R: natural and real number sets;
- A′: transpose ofA;
- A > 0 (A ≥ 0): symmetric positive definite (semidefi-

nite) matrixA;
- 0n: origin of Rn;
- 1n: n× 1 vector with all the entries equal to1;
- I: identity matrix (of size defined by the context);
- img(A): image of matrixA;
- ker(A): null space of matrixA;
- A⊗B: Kronecker product of matricesA andB;
- spc(A): set of eigenvalues of A∈ Rn×n, i.e.

spc(A) = {λ ∈ C : det(λI −A) = 0}.

Let G = (A , E , G) be a weighted digraph of ordern with
the set of nodesA = {A1, ..., An}, set of directed edgesE
belonging toA × A and a weighted adjacency matrixG =
(Gij)n×n. If an information can be transmitted from thej-th
node to thei-th node, a directed edgeeij ∈ E is denoted, i.e.
a directed edgeeij ∈ E if and only if Gij 6= 0. In particular,



G is called positive ifGij > 0 for all i, j, otherwiseG is
called non-positive.

For distinct nodesAik, k = 1, . . . , l, let a sequence of edges
(Ai, Ai1),(Ai1, Ai2),...,(Ail, Aj) be a directed path fromAi to
Aj . If there is a directed path between any pair of distinct
notesAi andAj for graphG , then it is denoted as a strongly
connected graph. Provided that for some nodei, there is a
directed path fromi to any other node, the nodei is called
a root of the graph. A directed tree is a direct graphG with
the property that there is exactly one root and except the root,
every node inG has exactly one parent. For a directed graph
of ordern, a spanning tree of a directed graph is a directed
tree with n − 1 edges which connect all then nodes of the
graph. If any subset of edges contains or forms a spanning
tree, we say that the graph has a spanning tree.

In this paper we investigate robustness of consensus to
uncertain parameters. In particular, it is supposed that the
weighted adjacency matrix of the closed-loop system is af-
fected by uncertain parameters, reflecting for instance missing
information on the control gains. We denote such a matrix as
G(θ) whereθ ∈ Rr is an uncertain vector constrained as

θ ∈ Ω (1)

where

Ω = {θ ∈ R
r : si(θ) ≥ 0 ∀i = 1, . . . , h} (2)

for some functionss1, . . . , sh : Rr → R. In the sequel we
will assume that the entries ofG(θ) and s1(θ), . . . , sh(θ)
are polynomials. Moreover, we say thatG(θ) is positive if
Gij(θ) > 0 for all i, j and for all θ ∈ Ω, otherwiseG(θ) is
called non-positive.

For robust first-order consensus, we consider the
continuous-time uncertain multi-agent dynamical system
described by

ẋi(t) =

n∑

j=1, j 6=i

Gij(θ)(xj(t)− xi(t)), i = 1, . . . , n (3)

wherexi is the state of thei-th node, andG(θ) is both positive
and non-positive. The robust first-order consensus problemis
as follows.

Problem 1. To establish if, for any initial state, the uncertain
multi-agent dynamical system (3) achieves robust first-order
consensus, i.e.

lim
t→∞

xi(t)− xj(t) = 0 ∀i, j ∀θ ∈ Ω. (4)

In order to address this problem, we rewrite the uncertain
multi-agent dynamical system (3) as

ẋ(t) = −L(θ)x(t) (5)

wherex = (x1, . . . , xn) ∈ Rn is the state vector, andL(θ) =
(Lij(θ))n×n is the uncertain Laplacian matrix given by

Lij(θ) = −Gij(θ) ∀i 6= j

Lii(θ) = −
∑n

j=1, j 6=i Lij(θ).
(6)

It is worth pointing out that the uncertain Laplacian matrix
has the diffusion property that

n∑

j=1

Lij(θ) = 0 ∀i = 1, . . . , n. (7)

For robust second-order consensus problem, we consider
the continuous-time uncertain multi-agent dynamical system
described by

ẋi(t) = ρi(t)

ρ̇i(t) =
n∑

j=1, j 6=i

αGij(θ)(xj(t)− xi(t))

+

n∑

j=1, j 6=i

βGij(θ)(ρj(t)− ρi(t))

(8)

wherexi ∈ R is the position state of thei-th node,ρi ∈ R is
the velocity state of thei-th node, andα, β ∈ R are constants.
Different from first-order consensus, second-order consensus
requires that not merely do the position states of agents tend
to be the same, but also the velocity states of agent converge
to a consistent value. Based on this we propose the problem
of robust second-order consensus as follows.

Problem 2. To establish if, for any initial state, the uncertain
multi-agent dynamical system (8) achieves robust second-
order consensus, i.e.

lim
t→∞

xi(t)− xj(t) = 0

lim
t→∞

ρi(t)− ρj(t) = 0
∀i, j ∀θ ∈ Ω. (9)

In order to address this problem, we rewrite the uncertain
multi-agent dynamical system (8) as

ẋi(t) = ρi(t)

ρ̇i(t) = −

n∑

j=1

αLij(θ)xj(t)−

n∑

j=1

βLij(θ)ρj(t)
(10)

where x ∈ Rn is the position state vector andρ ∈ Rn is
the velocity state vector. We define the global state vector as
y = (x′, ρ′)′ ∈ R2n. Then, system (10) can be rewritten in
compact form as

ẏ(t) = L̃(θ)y(t) (11)

whereL̃(θ) is the uncertain extended Laplacian matrix given
by

L̃(θ) =

[
0 I

−αL(θ) −βL(θ)

]
. (12)

B. SOS Polynomials

Let f(θ) be a polynomial of degree2m in θ ∈ Rr. Then,
f(θ) can be always written as

f(θ) = θ{m}′

(F + C(δ))θ{m} (13)

where θ{m} is a vector containing all monomials of degree
less than or equal tom in θ, F is a symmetric matrix, and
C(δ) is a linear parametrization of the subspace

C =
{
C = C′ : θ{m}′

Cθ{m} = 0
}
.



The representation (13) is known as Gram matrix method
and square matrix representation (SMR). This representation
allows one to establish whether a polynomial is SOS via LMIs.
Indeed,f(θ) is SOS if there exist polynomialsf1(θ), f2(θ), . . .
such that

f(θ) =
∑

i

fi(θ)
2

and this condition holds if and only if there existsδ such that
the following LMI feasibility test holds:

F + C(δ) ≥ 0.

This technique can also be used in the case of matrix
polynomials. Specifically, letM(θ) be a symmetric matrix
polynomial of sizes× s of degree2m in θ ∈ Rr (this means
that all the entries ofM(θ) are polynomials whose highest
degree inθ is 2m). Then,M(θ) can be written as

M(θ) = ∆(M̄ +D(δ),m, s) (14)

where

∆(M̄ +D(δ),m, s) = (θ{m} ⊗ I)′(M̄ +D(δ))(θ{m} ⊗ I),

I is thes× s identity matrix,M̄ is a symmetric matrix, and
D(δ) is a linear parametrization of the subspace

D = {D = D′ : ∆(D,m, s) = 0} .

Similarly to the scalar case,M(θ) is SOS if there exist matrix
polynomialsM1(θ),M2(θ), . . . such that

M(θ) =
∑

i

Mi(θ)
′Mi(θ)

and this condition holds if and only if there existsδ such that
the following LMI feasibility test holds:

M̄ +D(δ) ≥ 0.

See for instance [16]–[18] and references therein for details
and algorithms about SOS polynomials.

III. C ONDITIONS FORROBUST CONSENSUS

In this section, the robust first-order and second-order
consensus conditions are derived respectively.

A. Robust First-Order Consensus

Lyapunov stability theory is widely used to study the
property of dynamical system. For the first time, we associate
the robust consensus with Lyapunov stability theory, and we
provide a new condition for investigating robust first-order
consensus based on matrix inequalities. Specifically, define a
matrix V1 ∈ Rn×n−1 such that

img(V1) = ker(1′n). (15)

Then we get the transformed uncertain Laplacian matrix:

L̂(θ) = V ′
1
L(θ)V1. (16)

Theorem 1: Robust first-order consensus for uncertain
multi-agent system (with both positive and non-positive

weighted digraph) can be achieved if and only if there exists
a symmetric functionP1 : Rr → Rn−1×n−1 such that

{
P1(θ) > 0

P1(θ)L̂(θ) + L̂(θ)′P1(θ) > 0
∀θ ∈ Ω. (17)

In order to investigate the condition of Theorem 1, we can
exploit SOS matrix polynomials introduced in Section II-B.
Indeed, it is easy to verify that (17) holds if there exist matrix
polynomialsP1(θ), G1i(θ) and a scalarc > 0 such that





G1i(θ) is SOS
P1(θ)− I is SOS
R1(θ)− cI is SOS

(18)

where

R1(θ) = P1(θ)L̂(θ) + L̂(θ)′P1(θ)−

h∑

i=1

G1i(θ)s1i(θ). (19)

In fact, whenever the constraints in (18) hold withc > 0, for
any θ ∈ Ω it follows thatG1i(θ) ≥ 0, P1(θ) > 0 and

0 ≤ P1(θ)L̂(θ) + L̂(θ)′P1(θ)−
h∑

i=1

G1i(θ)s1i(θ)

−cI

≤ P1(θ)L̂(θ) + L̂(θ)′P1(θ)

i.e. (17) holds.
The condition (18) can be formulated via a convex optimiza-

tion problem by using the representation of matrix polynomials
reported in Section II. Indeed, it directly follows that (17)
holds if c∗ > 0, where c∗ is the solution of the convex
optimization problem

c∗ = sup
c,Ḡ1i,P̄1,δ

c

s.t.





Ḡi1 ≥ 0

F̄1 +D1(δ)− cI −

h∑

i=1

Ū1i(Ḡ1i) ≥ 0

trace(P̄1) = 1.

(20)

The matrices involved in this problem are defined by

G1i(θ) = ∆(Ḡ1i,mi, n− 1)
G1i(θ)s1i(θ) = ∆(Ū1i(Ḡ1i),m0, n− 1)

P1(θ) = ∆(P̄1,m, n− 1)
R1(θ) = ∆(F̄1 +D1(δ),m0, n− 1).

Here,2mi is the degree ofG1i(θ), 2m is the degree ofP1(θ),
and2m0 is the degree ofR1(θ)− cI.

For an interaction topology with positive weighted interac-
tion topology but without parametric uncertainties, it hasbeen
found that the topological structure determines whether the
consensus can be achieved. The following theorem extends
to the case of uncertain multi-agent dynamical systems three
existing conditions found for the case of multi-agent dynam-
ical systems without uncertainty [19], and provides a further
condition in terms of zeros of a polynomial.

Theorem 2: For a given uncertain Laplacian matrixL(θ) in
(6) and a networkG = (A , E , G(θ)) with a positive weighted



digraph, i.e.∃eij ∈ E if and only if Gij(θ) > 0, the following
statements are equivalent.

a) Robust first-order consensus can be achieved.
b) ∀θ ∈ Ω, L(θ) has exactly one simple eigenvalue0 and

all the other eigenvalues have positive parts.
c) ∀θ ∈ Ω, the directed graphG has a spanning tree.
d) ∀θ ∈ Ω, q(θ) 6= 0, where

q(θ) =
d

dλ
l(λ, θ)

∣∣∣∣
λ=0

(21)

and
l(λ, θ) = det(λI − L(θ)). (22)

One way of checking the condition of Theorem 2 consists
of using SOS polynomials and amounts to solving an LMI
problem. Specifically, statement d) in Theorem 2 holds if there
exist polynomialsgi(θ) and a scalarc > 0 such that





gi(θ) is SOS

(−1)kq(θ)− c−

h∑

i=1

gi(θ)s2i(θ) is SOS
(23)

wherek ∈ {0, 1} is defined by

k =

{
0 if q(θ0) > 0
1 otherwise

andθ0 is any vectorθ in Ω which can be freely chosen.

B. Robust Second-Order Consensus

Let us consider the problem of establishing robust second-
order consensus. For this problem, we exploit the uncertain
expanded Laplacian matrix̃L(θ). Extending the results given
in [12] for the case of multi-agent dynamical systems without
uncertainty, one has that robust second-order consensus for the
uncertain multi-agent dynamical system (11) can be obtained
if and only if −L̃(θ) has only one zero eigenvalue of algebraic
multiplicity two and all the other eigenvalues are in the open
right half plane.

Starting from this result, we provide a new condition for
investigating robust second-order consensus based on matrix
inequalities. Specifically, define vectors as

u1 =

(
1n
0n

)
, u2 =

(
0n−1

1n

)
. (24)

Let V2 ∈ R2n×2n−1 andV3 ∈ R2n−1×2n−2 be matrices such
that

img(V2) = ker(u′
1
)

img(V3) = ker(u′
2).

(25)

Let us define the transformed uncertain expanded Laplacian
matrix:

L̆(θ) = −V ′
3
V ′
2
L̃(θ)V2V3. (26)

Theorem 3: Robust second-order consensus for uncertain
multi-agent system with both positive and non-positive weight-
ed digraph can be achieved if and only if there exists a
symmetric functionP2 : Rr → R2n−2×2n−2 such that

{
P2(θ) > 0

P2(θ)L̆(θ) + L̆(θ)′P2(θ) > 0
∀θ ∈ Ω. (27)

In order to investigate the existence of a functionP2(θ)
satisfying condition (27), we can exploit SOS matrix polyno-
mials. It is easy to verify that (27) holds if there exist matrix
polynomialsP2(θ), G3i(θ) and a scalarc > 0 such that





G3i(θ) is SOS
P2(θ)− I is SOS
R2(θ)− cI is SOS

(28)

where

R2(θ) = P2(θ)L̆(θ) + L̆(θ)′P2(θ)−

h∑

i=1

G3i(θ)s3i(θ).

Before concluding this section, let us remark that the proposed
results for establishing robust consensus in uncertain multi-
agent systems require the solution of optimization problems,
in contrast to existing conditions for establishing consensus
in uncertainty-free multi-agent systems where one just needs
to check the eigenvalues of the Laplacian matrices. Unfortu-
nately, this is unavoidable, as it happens also for the simpler
problem of establishing robust stability of uncertain linear
systems, see for instance [17].

IV. NUMERICAL EXAMPLES

This section presents some illustrative examples where
robust first-order and second-order consensus are investigated
for uncertain multi-agent dynamical systems. The optimization
problems are solved with the standard Matlab toolbox SeDu-
Mi. The SMR matrices are built using the algorithms reported
in [17] and references therein.

A. Example 1

Fig. 1: Digraph of a four-agent system

In this example we consider the uncertain four-agent system
shown in Figure 1. It is assumed that the network is affected
by an uncertain parameter, specifically

G(θ) =




1 2− 2θ 5 + θ 2 + θ

3θ 1 0 0
0 4− 3θ 1 0

2 + 3θ 0 0 1




where θ is constrained in the setΩ chosen asΩ = [0, 1].
Hence, we haven = 4 and r = 1. Moreover,Ω can be
described as in (2) with

s1(θ) = θ(1− θ).



According to (6), the Laplacian matrixL(θ) is given by:

L(θ) =




9 −2 + 2θ −5− θ −2− θ

−3θ 3θ 0 0
0 4− 3θ 4− 3θ 0

−2− 3θ 0 0 2 + 3θ


 .

We observe thatG(θ) is positive since all its entries are non-
negative for allθ ∈ Ω. This implies that we can use either
condition (17) or statement d) of Theorem 2 to investigate
robust first-order consensus.

First, we use condition (17) by looking for a constant matrix
function P1(θ). By solving (20) we can findc∗ = 0.9792.
Therefore, robust first-order consensus is achieved.

Then, let us use statement d) of Theorem 2. In particular,
the polynomialq(θ) is given by

q(θ) = 18θ3 + 6θ2 − 112θ− 56.

According to statement d) of Theorem 2, robust first-order
consensus is achieved if and only ifq(θ) 6= 0 for all θ ∈ [0, 1].
In this case, it is easy to see thatq(θ) satisfies this property
sinceq(θ) is an univariate polynomial with roots 2.79, -1.3316
and -1.7917 which are all lying outside[0, 1]. Nevertheless,
let us use condition (23). In this casek = 1 and by simply
choosing a multiplierg1(θ) of degree2 we find that this
condition holds withc = 56, which proves that statement d) of
Theorem 2 is satisfied. Figure 2 shows the process of robust
first-order consensus with the initial states andθ randomly
chosen in[0, 1] for five times.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

st
at

es

Fig. 2: Trajectories of robust first-order consensus

Next, let us consider the problem of establishing whether
this uncertain network is able to achieve robust second-order
consensus withα = β = 1 in the system (8), and we look for
a constant matrix functionP2(θ) satisfying (27). Nevertheless,
let us use the condition (28), and we can findc∗ = 0.0913.
Therefore, robust second-order consensus is achieved with
chosenα andβ. In this case, the uncertain extended Laplacian

matrix is given by



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
9 l1 l2 l3 −9 l1 l2 l3
l4 −l4 0 0 l4 −l4 0 0
0 l5 −l5 0 0 l5 −l5 0
l6 0 0 −l6 l6 0 0 −l6




wherel1 = 2−2θ, l2 = 5+θ, l3 = 2+θ, l4 = 3θ, l5 = 4−3θ,
l6 = 2 + 3θ.

B. Example 2

In this example we consider the uncertain matrixG(θ) given
by

G(θ) =




1 5 + 2θ1θ2 2− 3θ2
1

−3θ1θ2
2θ22 − 3θ1θ2 1 0 0

0 4 + 2θ2
1

1 0
3θ1θ2 + 6 0 0 1




where θ ∈ R2 is constrained in the setΩ chosen asΩ =
[−1, 1]2. Hence, we haven = 4 andr = 2. Moreover,Ω can
be described as in (2) with

si(θ) = 1− θ2i ∀i = 1, 2.

In this caseG(θ) is not positive, hence let us use condition
(17) to investigate robust first-order consensus. We look for
a constant matrix functionP1(θ) satisfying (17), and by
solving (20) we findc∗ = 0.769. Therefore, robust first-order
consensus is achieved.

Next, let us consider the problem of establishing whether
this uncertain network is able to achieve robust second-order
consensus withα = 1, β = 0.25 in the system (8). We look
for a constant matrix functionP2(θ) satisfying (27). Let us
use the condition (28), and we findc∗ = −0.0024, which
does not prove (28). We repeat the procedure by looking for
a matrix functionP2(θ) of degree2, and we find a positive
c∗. Therefore, robust second-order consensus is achieved.

C. Example 3

Fig. 3: Digraph of a six-agent system

With a topology shown in Figure 3, an uncertain six-agent
system is considered in this example. It is assumed that the



network is affected by two uncertain parameters, i.e.θ1 and
θ2. Specifically the uncertain matrixG(θ) is given by



1 0 0 0 0 0
3 + 2θ1 1 0 0 0 0

0 3− θ2 1 0 2θ1 + θ2 0
0 0 5 + 2θ1 1 0 0
0 0 0 5 1 3− 4θ2
0 5 2− 3θ1 0 2− θ2 1



.

whereθ ∈ R2 is constrained in the setΩ chosen asΩ = {θ :
‖θ‖ ≤ 1}. Hence, we haven = 4 and r = 2. Moreover,Ω
can be described as in (2) with

s1(θ) = 1− θ2
1
− θ2

2
.

Also in this caseG(θ) is not positive, hence let us use
condition (17) to investigate robust first-order consensus. We
look for a constant matrix functionP1(θ) satisfying (17), and
by solving (20) we findc∗ = 0.1135, i.e. robust first-order
consensus is achieved.

Next, let us consider the problem of establishing whether
this uncertain network is able to achieve robust second-order
consensus withα = 1, β = 0.6 in the system (8). We look
for a constant matrix functionP2(θ) satisfying (27). Let us
use the condition (28), and we findc∗ < 0, which does not
prove (28). We repeat the procedure by looking for a matrix
function P2(θ) of degree1, and we findc∗ = 0.0034, i.e.
robust second-order consensus is achieved.

V. CONCLUSIONS

In this paper we have addressed robust first-order consensus
and robust second-order consensus for a class of uncertain
multi-agent dynamical systems. Specifically, we have consid-
ered a generic framework where the system is described by
a weighted adjacency matrix whose entries are polynomial
functions of an uncertain vector constrained in a semialgebraic
set. For this uncertain topology, we have provided necessary
and sufficient conditions for ensuring robust consensus in
both cases of positive and non-positive weighted adjacency
matrices. Moreover, we have shown how these conditions
can be easily investigated through convex programming by
using standard software. Various future directions can be
taken starting from the results proposed in this paper, for
instance one can consider switching topology adopting the
frameworks introduced in [20], [21] and LMI techniques for
switching systems as the one introduced in [22]. Also, multi-
agent dynamical systems with rational dependence on the
uncertainty and/or time-varying uncertainty can be considered
adopting the methodology proposed in [23].

VI. APPENDIX

A. Proof of Theorem 1

We observe that1n is an eigenvector ofL(θ) corresponding
to the eigenvalue zero. Moreover, observe thatV ′

1
L(θ)V1

has the same eigenvalues ofL(θ) except that the algebraic
multiplicity of the eigenvalue zero has been decreased of one.
i.e.

spc(L̂(θ)) ∪ {0} = spc(L(θ)) (29)

Let us define a dynamical system

˙̂x(t) = −L̂(θ)x̂(t). (30)

We observe thatx = γ1n is the equilibrium point of (30),∀γ ∈
R. Hence the robust first-order consensus can be achieved is
equivalent to the statement that (30) is asymptotically stable.
According to (29) and the Lyapunov stability theorem, (30)
is asymptotically stable for allθ ∈ Ω if and only if L(θ) has
exactly one simple eigenvalue0 and all the other eigenvalues
have positive parts. From Lyapunov stability theorem for linear
systems, this is equivalent to say that there existsP1(θ) such
that (17) holds for allθ ∈ Ω. Therefore, the theorem holds.

B. Proof of Theorem 2

Assume the Laplacian matrixL(θ) is constructed by (6).
Then, the first three statements are equivalent and follow
directly from the analogous ones found for the case of multi-
agent dynamical systems without uncertainty [19]. From Lem-
ma 3.3 in [19], one has thatℜ(λi(L(θ))) ≥ 0, ∀i = 1, 2..., n,
∀θ ∈ Ω. Moreover, statement d) implies thatL(θ) has exactly
one zero eigenvalue,∀θ ∈ Ω. Thus, statements b) and d) are
equivalent. Therefore, the theorem holds.

C. Proof of Theorem 3

Observe thatu1 is an eigenvector of̃L(θ) corresponding to
the eigenvalue zero. Moreover, observe thatV ′

2
L̃(θ)V2 has the

same eigenvalues of̃L(θ) except that the algebraic multiplicity
of the eigenvalue zero has been decreased of one. Similarly,
it follows that V ′

3
V ′
2
L̃(θ)V2V3 has the same eigenvalues of

L̃(θ) except that the algebraic multiplicity of the eigenvalue
zero has been decreased of two. Hence, it follows that robust
second-order consensus can be achieved if and only if−L̃(θ)
has all the eigenvalues in the open right half plane for all
θ ∈ Ω. From Lyapunov stability theorem for linear systems,
this is equivalent to say that there existsP2(θ) such that (27)
holds for allθ ∈ Ω. Therefore, the theorem holds.
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