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SUMMARY

This paper investigates robust consensus for multi-agent systems with discrete-time dynamics affected
by uncertainty. In particular, the paper considers multi-agent systems with single and double integrators,
where the weighted adjacency matrix is a polynomial function of uncertain parameters constrained into a
semialgebraic set. Firstly, necessary and sufficient conditions are provided for robust consensus based on the
existence of a Lyapunov function polynomially dependent onthe uncertainty. In particular, an upper bound
on the degree required for achieving necessity is provided.Secondly, a necessary and sufficient condition
is provided for robust consensus with single integrator andnonnegative weighted adjacency matrices based
on the zeros of a polynomial. Lastly, it is shown how these conditions can be investigated through convex
programming by exploiting linear matrix inequalities and sums of squares of polynomials. Some numerical
examples illustrate the proposed results. Copyrightc© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years the consensus problems of multi-agent systems (or networked cooperative systems)

are of great academic vitality, mainly owning to its wide applications in various areas including

biological synchronization, formation control, sensor network and cooperative tracking control

[1–4]. It has been well studied that the interaction structure ofmulti-agent systems is a deciding

factor on whether the consensus can be achieved [5,6]. Specifically, to guarantee the consensability
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requires that the communication graph contains a spanning tree for a fixed topological structure,

while for a switching network, the union of communication graph has to obtain a spanning tree

frequently enough as the system evolves [7–9].

In addition to the switching topology, many efforts have been made to construct a more realistic

model of multi-agent systems. Various assumptions have been brought in such as unmeasurable

inputs, misbehaving agents, unexpected disturbances on states and uncertain perturbations in

communication [6,10]. This has led to the introduction of robust consensus, i.e.consensus achieved

for all admissible uncertainties. In particular, [11] investigates robust consensus of multi-agent

systems with input delays assuming the presence of asymmetric linear perturbations in the coupling

weights of the communication network. [12] supposes that the control input affects the velocity

states and depends linearly on uncertain parameters. [13] proposes a robust consensus controller

and employs the proximity graph to model the communication constraints.

This paper investigates robust consensus for multi-agent systems with discrete-time dynamics

affected by uncertainty. In particular, the paper considers multi-agent systems with single and double

integrators, where the weighted adjacency matrix is a polynomial function of uncertain parameters

constrained into a semialgebraic set. Firstly, necessary and sufficient conditions are provided for

robust consensus based on the existence of a Lyapunov function polynomially dependent on the

uncertainty. In particular, an upper bound on the degree required for achieving necessity is provided.

Secondly, a necessary and sufficient condition is provided for robust consensus with single integrator

and positive weighted adjacency matrices based on the zerosof a polynomial. Lastly, it is shown

how these conditions can be investigated through convex programming by exploiting linear matrix

inequalities (LMIs) and sums of squares of polynomials (SOS) (see e.g. [14] and references therein

about SOS polynomials). Some numerical examples illustrate the proposed results.

It is worth remarking that existing works have not addressedyet the problems considered in

this paper. Indeed, robust consensus for multi-agent systems with discrete-time dynamics has been

considered only in the case of weighted adjacency matrices linearly affected by perturbations with

some specific structures, see e.g. [11, 12]. A preliminary version of this paper appeared in [15],

which is extended in this paper by considering not multi-agent systems with single integrator but

also with double integrator, and by providing an upper boundon the degree of the Lyapunov function

required for achieving necessity in the conditions for robust consensus.

The paper is organized as follows. Section2 introduces the problem formulation and provides

some preliminaries about graph theory and SOS polynomials.Section3 provides the proposed

conditions for robust consensus are provided. Section4 illustrates the proposed conditions with

some numerical examples. Lastly, Section5 concludes the paper with some final remarks.
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2. PRELIMINARIES

2.1. Problem Formulation

Notations:N,R,C: spaces of natural, real, and complex numbers;A′: transpose ofA; A > 0 (A ≥

0): symmetric positive definite (semidefinite) matrixA; 0n: origin of Rn; 1n = (1, . . . , 1)′Rn; In:

n× n identity matrix;img(A): image ofA; ker(A): null space ofA; A⊗B: Kronecker product of

A andB; adj(A): adjoint ofA; LCM{a, b, . . .}: least common multiplier ofa, b, . . ..

In graph theory, a weighted and directed graphG is defined asG = (A , E , G), whereA =

{A1, ..., An} describes the set ofn nodes of a multi-agent system,E is the set of directed edges

belonging toA × A andG is the weighted adjacency matrix. If the(i, j)-th entry ofG satisfies

Gij 6= 0, then there is a directed edge from thej-th node to thei-th node inG . A directed path

from Ai to Aj is defined as a sequence of directed edges (Ai, Ai1), (Ai1, Ai2), ..., (Ail, Aj ) in a

directed network with distinct nodesAik, k = 1, . . . , l. If a nodei has the property that, for any

nodej different fromi, there is a directed path fromi to j, then the nodei is said to be a root. A

directed tree is a directed graph where exactly one root exists and, except the root, every node inG

has exactly one parent. If the edges of a directed tree connect all the nodes of the graph, we call this

kind of directed tree as a spanning tree.

In this paper we investigate robust consensus for multi-agent systems with discrete-time dynamics

affected by uncertainty, which can reflect the presence of partially or totally unknown control gains.

In particular, for multi-agent systems with single integrator we consider the model

xi(k + 1) =
1

n
∑

j=1

Gij(θ)

n
∑

j=1

Gij(θ)xj(k), i = 1, . . . , n (1)

wherexi ∈ R is the state of thei-th node,θ ∈ Rr is the vector of uncertain parameters, andG :

Rr → Rn×n is a polynomial function. The vector of uncertain parameters is constrained according

to

θ ∈ Ω (2)

whereΩ is the semialgebraic set defined by

Ω = {θ ∈ R
r : si(θ) ≥ 0 ∀i = 1, . . . , h} (3)

for some polynomialss1, . . . , sh : Rr → R. The system (1) can be rewritten in compact form as

x(k + 1) = D(θ)x(k) (4)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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whereD : Rr → R
n×n is defined by

Dij(θ) =
Gij(θ)

n
∑

k=1

Gik(θ)

, i, j = 1, . . . , n. (5)

Problem 1. To establish whether (1) achieves robust consensus, i.e.

lim
k→∞

xi(k)− xj(k) = 0 ∀i, j = 1, . . . , n ∀x(0) ∈ R
n ∀θ ∈ Ω. (6)

For multi-agent systems with double integrator, we consider the model

{

xi(k + 1) = xi(k) + ̺i(k)

̺i(k + 1) = ̺i(k) + ui(k)
(7)

with

ui(k) = k1

n
∑

j=1

Gij(θ)(xj(k)− xi(k)) + k2

n
∑

j=1

Gij(θ)(̺j(k)− ̺i(k)) (8)

wherek1, k2 ∈ R are positive scalars representing coupling strengthes, and xi, ̺i ∈ R denote the

position and velocity states of thei-th agent. The system (7) can be rewritten in compact form as

(

x(k + 1)

̺(k + 1)

)

= Γ(θ)

(

x(k)

̺(k)

)

(9)

where

Γ(θ) =

(

In In

−k1L(θ) In − k2L(θ)

)

(10)

andL(θ) ∈ Rn×n is the uncertain Laplacian matrix given by

Lij(θ) = −Gij(θ) ∀i 6= j

Lii(θ) = −

n
∑

j=1, j 6=i

Lij(θ).
(11)

Problem 2. To establish if (7) achieves robust consensus, i.e.







lim
k→∞

xi(k)− xj(k) = 0

lim
k→∞

̺i(k)− ̺j(k) = 0
∀i, j = 1, . . . , n ∀x(0), ̺(0) ∈ R

n ∀θ ∈ Ω. (12)

In the sequel we will assume thatG(θ) is well-posed overΩ, i.e.

n
∑

k=1

Gik(θ) 6= 0 ∀i = 1, . . . , n ∀θ ∈ Ω. (13)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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ROBUST DISCRETE-TIME CONSENSUS 5

Also, we will say thatG(θ) is nonnegative ifGij(θ) ≥ 0 for all i, j = 1, . . . , n and for allθ ∈ Ω.

It is also useful to introduce the definition of (row) stochastic matrix, which is a nonnegative

matrix with the property that all its row sums are1 [16]. Let us observe thatD(θ) is a stochastic

matrix if G(θ) is nonnegative.

2.2. SOS Polynomials

A sufficient condition for establishing whether a polynomial is nonnegative consists of establishing

if the polynomial is SOS, and this latter condition amounts to solving an LMI feasibility test as

explained for instance in [14].

Specifically, letf(θ) be a polynomial of degree not greater than2m in θ ∈ Rr. Then,f(θ) can be

written as

f(θ) = θ{m}′

(F + C(δ))θ{m} (14)

whereθ{m} ∈ Rσ(r,m) is a vector containing all monomials of degree not greater thanm in θ, whose

number is given by

σ(r,m) =
(r +m)!

r!m!
, (15)

F is a symmetric matrix, andC(δ) is a linear parametrization of the linear subspace

C =
{

C = C′ : θ{m}′

Cθ{m} = 0
}

.

The representation (14) is known as Gram matrix method and as square matrix representation

(SMR). In [17] this representation was introduced to establish whether apolynomial is SOS through

an LMI feasibility test. Indeed,f(θ) is SOS if there exist polynomialsf1(θ), f2(θ), . . . such that

f(θ) =
∑

i

fi(θ)
2 (16)

and this condition holds if and only if there existsδ such that the following LMI holds:

F + C(δ) ≥ 0. (17)

This technique can also be used in the case of matrix polynomials as proposed in [18].

Specifically, letM(θ) ∈ Rs×s be a symmetric matrix polynomial of degree not greater than2m

in θ ∈ Rr. Then,M(θ) can be written as

M(θ) = ∆(M̄ +N(δ),m, s) (18)

where

∆(M̄ +N(δ),m, s) = (θ{m} ⊗ Is)
′(M̄ +N(δ))(θ{m} ⊗ Is),

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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M̄ is a symmetric matrix, andN(δ) is a linear parametrization of the linear subspace

N =
{

N = N ′ : (θ{m} ⊗ Is)
′N(θ{m} ⊗ Is) = 0

}

.

The matrix polynomialM(θ) is said SOS if there exist matrix polynomialsM1(θ),M2(θ), . . . such

that

M(θ) =
∑

i

Mi(θ)
′Mi(θ) (19)

and this condition holds if and only if there existsδ satisfying the LMI

M̄ +N(δ) ≥ 0. (20)

3. CONDITIONS FOR ROBUST CONSENSUS

3.1. Single Integrator

Let us introduce the polynomial

ζ(θ) = LCM

{

n
∑

j=1

Gij(θ), i = 1, . . . , n

}

. (21)

and let us define

F (θ) = ζ(θ)D(θ). (22)

Let V1 ∈ Rn×(n−1) be such that

{

img(V1) = ker(1′n)

V ′
1V1 = In−1

(23)

and let us define

D1(θ) = V ′
1D(θ)V1 (24)

and

F1(θ) = V ′
1F (θ)V1. (25)

The following result provides a sufficient and necessary condition for establishing whether (1)

achieves robust consensus.

Theorem 1

Let τ be the degree ofG(θ), and define

µ1 = n(n2 − n− 2)τ. (26)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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ROBUST DISCRETE-TIME CONSENSUS 7

The system (1) achieves robust consensus if and only if there exists a symmetric matrix polynomial

P (θ) ∈ R(n−1)×(n−1) of degreed ≤ µ1 such that

{

P (θ) > 0

ζ(θ)2P (θ)− F1(θ)
′P (θ)F1(θ) > 0

∀θ ∈ Ω. (27)

Proof (Sufficiency) Suppose that (27) holds. From Lyapunov stability theorem for discrete-time

linear systems, this implies that

|λi (F1(θ))| < |ζ(θ)| ∀i = 1, . . . , n− 1 ∀θ ∈ Ω (28)

whereλi (F1(θ)) is thei-th eigenvalue ofF1(θ). Since

F1(θ) = ζ(θ)D1(θ) (29)

it hence follows thatD1(θ) is Schur for allθ ∈ Ω, i.e.

|λi (D1(θ))| < 1 ∀i = 1, . . . , n− 1 ∀θ ∈ Ω. (30)

Since1 is an eigenvalue ofD(θ), we can denote the characteristic polynomial ofD(θ) as

det (λI −D(θ)) = (λ− 1)ξ(λ, θ). (31)

Since 1n is an eigenvector ofD(θ) corresponding to the eigenvalue1, it follows that the

characteristic polynomial ofD1(θ) is given by

det (λI −D1(θ)) = ξ(λ, θ) (32)

i.e.D1(θ) has the same eigenvalues ofD(θ) except that the algebraic multiplicity of the eigenvalue

1 has been decreased of one. Hence, sinceD1(θ) is Schur for allθ ∈ Ω, it follows thatD(θ) has

exactly one simple eigenvalue1 and all the other eigenvalues with magnitude smaller than1 for all

θ ∈ Ω. From [9] this is equivalent to say that consensus is achieved for allθ ∈ Ω.

(Necessity) Suppose that (1) achieves robust consensus. From [9] this implies thatD(θ) has

exactly one simple eigenvalue1 and all the other eigenvalues with magnitude smaller than1 for

all θ ∈ Ω. This means thatD1(θ) is Schur for allθ ∈ Ω, and hence that the Lyapunov equation

P (θ)−D1(θ)
′P (θ)D1(θ) = Q(θ) (33)

has a unique solutionP (θ) satisfyingP (θ) > 0 for all θ ∈ Ω wheneverQ(θ) > 0 for all θ ∈ Ω. Since

ζ(θ) 6= 0 for all θ ∈ Ω, this equation can be rewritten as

ζ(θ)2P (θ)− F1(θ)
′P (θ)F1(θ) = ζ(θ)2Q(θ). (34)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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Let us gather then(n− 1)/2 free entries ofP (θ) andQ(θ) into the vectorsp(θ) andq(θ). We can

rewrite the previous equation as

E(θ)p(θ) = ζ(θ)2q(θ). (35)

Since the solutionP (θ) exists and is unique, it follows thatE(θ) is invertible for allθ ∈ Ω, and

hence

p(θ) =
adj(E(θ))

det(E(θ))
ζ(θ)2q(θ). (36)

Since the degrees ofζ(θ) andF1(θ) are not greater thannτ , it follows that the degree ofE(θ) is not

greater than2nτ , and hence the degree ofadj(E(θ)) is not greater than

(

1

2
(n− 1)n− 1

)

2nτ = µ1. (37)

Let us chooseQ(θ) = ζ(θ)−2I, and let us redefineP (θ) as(−1)a det(E(θ))P (θ) wherea is 0 if

det(E(θ)) > 0 for all θ ∈ Ω or 1 otherwise. It follows thatP (θ) is a matrix polynomial of degree

not greater thanµ1 that satisfies the Lyapunov equation

ζ(θ)2P (θ)− F1(θ)
′P (θ)F1(θ) = det(E(θ))I (38)

and, hence, (27). �

Theorem1 provides a sufficient and necessary condition for robust consensus of (1) based on the

existence of a Lyapunov function polynomially dependent onthe uncertainty. The degree required

for achieving necessity,µ1, depends on the degree of the uncertain weighted adjacency matrixG(θ)

and on the number of agentsn.

The condition of Theorem1 can be investigated through convex optimization. Specifically, let

P (θ) be as in Theorem1, and letHi(θ) andJi(θ), i = 1, . . . , h, be auxiliary symmetric matrix

polynomials of size(n− 1)× (n− 1), and define

R(θ) = P (θ)−

h
∑

i=1

Hi(θ)si(θ)

T (θ) = ζ(θ)2P (θ)− F1(θ)
′P (θ)F1(θ)−

h
∑

i=1

Ji(θ)si(θ).

(39)

The following result provides a sufficient condition for establishing whether (1) achieves robust

consensus based on LMIs.

Corollary 1

The condition (27) holds for some symmetric matrix polynomialP (θ) of degreed if c∗ > 0, where

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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ROBUST DISCRETE-TIME CONSENSUS 9

c∗ is the solution of the following optimization problem:

c∗ = sup
c,Hi,Ji,P

c

s.t.



















Hi(θ) is SOS

Ji(θ) is SOS

R(θ)− In−1 is SOS

T (θ)− cIn−1 is SOS.

(40)

ProofSuppose that the constraints in (40) are satisfied. This implies that



















Hi(θ) ≥ 0

Ji(θ) ≥ 0

R(θ)− In−1 ≥ 0

T (θ)− cIn−1 ≥ 0

(41)

for all θ ∈ Rr. Let us consider anyθ in the setΩ. Sincesi(θ) ≥ 0 andHi(θ) ≥ 0, from the third

inequality we get
0 ≤ R(θ)− In−1

= P (θ)−
∑h

i=1 Hi(θ)si(θ)− In−1

≤ P (θ)− In−1

(42)

which implies that

P (θ) ≥ In−1 ∀θ ∈ Ω. (43)

Similarly, from the inequalityT (θ)− cIn−1 ≥ 0 we get

ζ(θ)2P (θ) − F1(θ)
′P (θ)F1(θ) ≥ cIn−1 ∀θ ∈ Ω. (44)

Therefore, ifc > 0, one has that (27) is satisfied, and hence the theorem holds. �

Corollary 1 shows how the condition of Theorem1 can be investigated through convex

programming by exploiting SOS polynomials. Indeed, since establishing whether a matrix

polynomial is SOS can be done through an LMI as explained in Section 2.2, it follows that

the condition of Corollary1 amounts to solving an LMI feasibility test. Let us observe that the

conservatism of the condition of Corollary1 depends on the degrees ofP (θ) and of the multipliers

Hi(θ) andJi(θ).

3.2. Single Integrator and Nonnegative Weighted Adjacency Matrices

Let us introduce the following preliminary result, which directly extends to the case of uncertain

multi-agent systems the condition given in [19] (Corollary 2.18, Lemma 2.19 and Theorem 2.20)

for the case of multi-agent systems without uncertainty.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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Lemma 1

Suppose thatG(θ) is nonnegative. The following three statements are equivalent.

a) The system (1) achieves robust consensus.

b) for all θ ∈ Ω, D(θ) has exactly one simple eigenvalue1 and all the other eigenvalues satisfy

|λ| < 1.

c) for all θ ∈ Ω, the directed graphG (θ) has a spanning tree.

The following result shows how Lemma1 can be exploited to obtain a necessary and sufficient

condition for robust consensus with single integrator and nonnegative weighted adjacency matrices

based on the zeros of a polynomial.

Theorem 2

Suppose thatG(θ) is nonnegative. The system (1) achieves robust consensus if and only if

qD(θ) 6= 0 ∀θ ∈ Ω (45)

where

qD(θ) =
dlD(λ, θ)

dλ

∣

∣

∣

∣

λ=1

(46)

and

lD(λ, θ) = det(λI −D(θ)). (47)

Proof Suppose thatG(θ) is nonnegative. From Lemma1 one has that (1) achieves robust

consensus if and only if, for allθ ∈ Ω, D(θ) has exactly one simple eigenvalue1 and all the other

eigenvalues with magnitude smaller than1.

Now, sinceD(θ) is a stochastic matrix with positive diagonal elements, it follows that every

eigenvalue ofD(θ) not equal to1 has magnitude smaller than1, see e.g. [16]. Hence, it just remains

to show that the eigenvalue1 is simple.

Let us observe that this is equivalent to say that the characteristic polynomiallD(λ, θ) of D(θ)

can be written as

lD(λ, θ) = (λ− 1)ξ(λ, θ) (48)

where

ξ(1, θ) 6= 0 ∀θ ∈ Ω. (49)

This last condition coincides with (45) since

dlD(λ, θ)

dλ
= ξ(λ, θ) + (λ − 1)

dξ(λ, θ)

dλ
(50)

and, hence, the theorem holds. �

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
Prepared using rncauth.cls DOI: 10.1002/rnc



ROBUST DISCRETE-TIME CONSENSUS 11

Theorem2 provides a necessary and sufficient condition for robust consensus that can be used in

the case of single integrator and nonnegative weighted adjacency matrices. This condition requires

to check whether the polynomialqD(θ) is nonzero overΩ.

The condition of Theorem2 can be investigated through convex optimization. Specifically, let us

define

qF (θ) =
dlF (λ, θ)

dλ

∣

∣

∣

∣

λ=1

(51)

where

lF (λ, θ) = det(λI − F (θ)). (52)

Also, letai(θ), i = 1, . . . , h, be auxiliary polynomials, and define

b(θ) = qF (θ0)qF (θ)−
h
∑

i=1

ai(θ)si(θ) (53)

whereθ0 is arbitrary inΩ.

Corollary 2

Suppose thatG(θ) is nonnegative. The condition (45) holds ifc∗ > 0, wherec∗ is the solution of the

following optimization problem:

c∗ = sup
ai,c

c

s.t.

{

ai(θ) is SOS

b(θ)− c is SOS.

(54)

ProofSuppose that the constraints in (54) are satisfied. This implies that

{

ai(θ) ≥ 0

b(θ)− c ≥ 0
(55)

for all θ ∈ Rr. Let us consider anyθ in the setΩ. Sincesi(θ) ≥ 0 andai(θ) ≥ 0, from the second

inequality we get
0 ≤ b(θ)− c

= qF (θ0)qF (θ)−
∑h

i=1 ai(θ)si(θ)− c

≤ qF (θ0)qF (θ)− c

(56)

which implies that

qF (θ0)qF (θ) ≥ c ∀θ ∈ Ω. (57)

If c > 0, this implies thatqF (θ0)qF (θ) is positive overΩ. From the continuity ofqF (θ) and the fact

thatθ0 ∈ Ω, it follows that

qF (θ) 6= 0 ∀θ ∈ Ω. (58)

By observing that

qF (θ) = ζ(θ)nD(θ) (59)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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andζ(θ) 6= 0 for all θ ∈ Ω, we conclude that (45) holds. �

3.3. Double Integrators

From (8) one has that

u1(k)− ui(k) = k1

(

−Lii(θ)(x1(k)− xi(k)) +

n
∑

j=2

(Gij(θ) −G1j(θ))(x1(k)− xj(k))

)

+k2

(

−Lii(θ)(̺1(k)− ̺i(k)) +

n
∑

j=2

(Gij(θ)−G1j(θ))(̺1(k)− ̺j(k))

)

.

(60)

This implies that







































x1(k + 1)− xi(k + 1) = x1(k)− xi(k) + ̺1(k)− ̺i(k)

̺1(k + 1)− ̺i(k + 1) = ̺1(k)− ̺i(k)− k1

(

n
∑

j=2

(Lij(θ) − L1j(θ))(x1(k)− xj(k))

)

−k2

(

n
∑

j=2

(Lij(θ) − L1j(θ))(̺1(k)− ̺j(k))

)

.

(61)

Hence, (9) can be rewritten as

z(k + 1) = Γ̃(θ)z(k) (62)

where
z(k) = (x1 − x2, ..., x1 − xn, ̺1 − ̺2, ..., ̺1 − ̺n)

′

Γ̃(θ) =

(

In−1 In−1

−k1L̃(θ) In−1 − k2L̃(θ)

)

L̃(θ) =









L22(θ)− L12(θ) . . . L2n(θ) − L1n(θ)
...

. ..
...

Ln2(θ)− L12(θ) . . . Lnn(θ) − L1n(θ)









.

(63)

The following preliminary result directly extends to the case of uncertain multi-agent systems the

condition given in [20] for the case of multi-agent systems without uncertainty.

Lemma 2

The system (7) achieves robust consensus if and only if

∣

∣λi

(

Γ̃(θ)
)∣

∣ < 1 ∀i = 1, . . . , 2n− 2 ∀θ ∈ Ω (64)

whereλi

(

Γ̃(θ)
)

is thei-th eigenvalue of̃Γ(θ).

The following result provides a sufficient and necessary condition for establishing whether (7)

achieves robust consensus.
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Theorem 3

Let τ be the degree ofG(θ), and define

µ2 = 2n(2n− 3)τ. (65)

The system (7) achieves robust consensus if and only if there exists a symmetric matrix polynomial

P (θ) ∈ R(2n−2)×(2n−2) of degreed ≤ µ2 such that

{

P (θ) > 0

P (θ)− Γ̃(θ)′P (θ)Γ̃(θ) > 0
∀θ ∈ Ω. (66)

Proof (Sufficiency) Suppose that (66) holds. From Lyapunov stability theorem for discrete-time

linear systems, this implies that (64) holds. Hence, from Lemma2, we conclude that (7) achieves

robust consensus.

(Necessity) Suppose that (7) achieves robust consensus. From Lemma2 this implies that (64)

holds. This means that the Lyapunov equation

P (θ)− Γ̃(θ)′P (θ)Γ̃(θ) = Q(θ) (67)

has a unique solutionP (θ) satisfyingP (θ) > 0 for all θ ∈ Ω wheneverQ(θ) > 0 for all θ ∈ Ω. This

equation can be rewritten as

E(θ)p(θ) = q(θ) (68)

wherep(θ) and q(θ) contain the(2n− 1)(2n− 2)/2 free entries ofP (θ) and Q(θ). Since the

solutionP (θ) exists and is unique, it follows thatE(θ) is invertible for allθ ∈ Ω, and hence

p(θ) =
adj(E(θ))

det(E(θ))
q(θ). (69)

Since the degree of̃Γ(θ) is not greater thanτ , it follows that the degree ofE(θ) is not greater than

2τ , and hence the degree ofadj(E(θ)) is not greater than

(

1

2
(2n− 1)(2n− 2)− 1

)

2τ = µ2. (70)

Let us chooseQ(θ) = I2n−2, and let us redefineP (θ) as (−1)a det(E(θ))P (θ) wherea is 0 if

det(E(θ)) > 0 for all θ ∈ Ω or 1 otherwise. It follows thatP (θ) is a matrix polynomial of degree

not greater thanµ2 that satisfies (66). �

Theorem1 provides a sufficient and necessary condition for robust consensus of (7) based on the

existence of a Lyapunov function polynomially dependent onthe uncertainty. This condition can be

investigated through convex optimization.
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Specifically, letP (θ) be as in Theorem1, and letHi(θ) andJi(θ), i = 1, . . . , h, be auxiliary

symmetric matrix polynomials of size(2n− 2)× (2n− 2), and define

R(θ) = P (θ)−
h
∑

i=1

Hi(θ)si(θ)

T (θ) = P (θ)− Γ̃(θ)(θ)′P (θ)Γ̃(θ) −
h
∑

i=1

Ji(θ)si(θ).

(71)

The following result provides a sufficient condition for establishing whether (7) achieves robust

consensus based on LMIs. The proof is analogous to that of Corollary 1.

Corollary 3

The condition (66) holds for some symmetric matrix polynomialP (θ) of degreed if c∗ > 0, where

c∗ is the solution of (40) with R(θ) andT (θ) replaced by those in (71).

4. NUMERICAL EXAMPLES

In this section we present two examples to illustrate the proposed conditions. The LMI problems

are solved with MATLAB and the toolbox SeDuMi [21].

4.1. Example 1

Figure 1. Topology of four-agent system.

Let us consider the four-agent system in Figure1 with

G(θ) =











1 0 0 0

1 + θ 1 0 2

0 1 1 0

3 + 2θ 4 0 1











whereθ is constrained in

Ω = [−1, 1].
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This set can be described as in (3) with

s1(θ) = 1− θ2.

By using (5) we get

D(θ) =















1 0 0 0
1 + θ

4 + θ

1

4 + θ
0

2

4 + θ
0 0.5 0.5 0

3 + 2θ

8 + 2θ

2

4 + θ
0

1

8 + 2θ















and, hence,

ζ(θ) = 8 + 2θ.

First, let us use Corollary1 to establish whether robust consensus with single integrator can be

achieved. We solve the LMI problem (40) with a constant symmetric matrix functionP (θ) finding

c∗ = +∞. Hence, from Corollary1 we conclude that robust consensus with single integrator can be

achieved.

The same conclusion can be obtained using Corollary2 sinceG(θ) is nonnegative. Specifically,

the polynomialqF (θ) in (51) is given by

qF (θ) = 8θ4 + 116θ3 + 596θ2 + 1248θ+ 832.

We solve the LMI problem (54) with a multipliera1(θ) of degree2, finding c∗ = 72. Hence, from

Corollary2 we conclude that robust consensus with single integrator can be achieved.

Second, let us use Corollary3 to establish whether robust consensus with double integrators

can be achieved. In particular, we consider (7) with k1 = 0.021 and k2 = 0.197. We solve the

LMI problem (40) with a constant symmetric matrix functionP (θ) findingc∗ = +∞. Hence, from

Corollary3 we conclude that robust consensus with double integrators can be achieved.

4.2. Example 2

Figure 2. Topology of six-agent system.
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Let us consider the six-agent system in Figure2 with

G(θ) =





















1 0 0 0 1 0

3 + θ1 1 0 0 0 0

0 3− θ1 1 0 θ1 + θ2 0

0 0 3 + θ1 1 0 0

0 0 0 1 + 0.5θ2 1 0

0 0 0 0 1 1





















whereθ ∈ R2 is constrained in

Ω =
{

θ ∈ R
2 : ‖θ‖ ≤ 1

}

. (72)

This set can be described as in (3) with

s1(θ) = 1− θ21 − θ22 .

Hence, different from the Example 1, the network is affectedby two uncertain parameters, andG(θ)

is not nonnegative.

First, let us use Corollary1 to establish whether robust consensus with single integrator can be

achieved. We solve the LMI problem (40) with a constant symmetric matrix functionP (θ) finding

c∗ = +∞. Hence, from Corollary1 we conclude that robust consensus with single integrator can be

achieved. This is confirmed by Figure3, which shows in Figure3a a trajectory ofx(k) for randomly

chosenθ ∈ Ω andx(0), and in Figure3b 100 trajectories ofy(k), whereyi(k) = xi(k)− x1(k),

i = 2, . . . , 6, for randomly chosenθ ∈ Ω andx(0).

0 2.5 5 7.5 10
0

2.5

5

7.5

10

k

x
(k
)

(a)

0 2.5 5 7.5 10
−10

−7.5

−5

−2.5

0

2.5

5

7.5

10

k

y
(k
)

(b)

Figure 3. Example 2: some trajectories with single integrator.

Second, let us use Corollary3 to establish whether robust consensus with double integrators can

be achieved. In particular, we consider (7) with k1 = 0.01 andk2 = 0.2. We solve the LMI problem

(40) with a symmetric matrix functionP (θ) of degree1, findingc∗ = +∞. Hence, from Corollary

3 we conclude that robust consensus with double integrators can be achieved. This is confirmed by
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Figure4, which shows in Figures4a–4b a trajectory ofx(k) and̺(k) for randomly chosenθ ∈ Ω

andx(0), ̺(0), and in Figures4c–4d 100 trajectories ofy(k) andz(k), whereyi(k) = xi(k)− x1(k)

andzi(k) = ̺i(k)− ̺1(k), i = 2, . . . , 6, for randomly chosenθ ∈ Ω andx(0), ̺(0).

0 25 50 75
0

50

100

150

200

k

x
(k
)

(a)

0 25 50 75
−5

−1.25

2.5

6.25

10

k

̺
(k
)

(b)

0 25 50 75

−30

−15

0

15

30

k

y
(k
)

(c)

0 25 50 75
−10

−5

0

5

10

k

z
(k
)

(d)

Figure 4. Example 2: some trajectories with double integrators.

5. CONCLUSIONS

We have investigated multi-agent systems with discrete-time dynamics where the weighted

adjacency matrix is a polynomial function of uncertain parameters constrained into a semialgebraic

set. We have provided necessary and sufficient conditions for robust consensus with single and

double integrators based on the existence of a Lyapunov function polynomially dependent on

the uncertainty. Moreover, we have provided a necessary andsufficient condition for robust

consensus with single integrator and positive weighted adjacency matrices in terms of positivity

of a polynomial. Lastly, we have shown how these conditions can be investigated through convex

programming by exploiting LMIs and SOS polynomials. The proposed conditions can be extended
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in a number of directions, for instance to the case that the underlying systems are controlled in

networked environments by adopting the frameworks introduced in [22–24].
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