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Establishing consensus is a key problem in multi-agent systems (MASs). This thesis

proposes a novel methodology based on convex optimization in the form of linear

matrix inequalities (LMIs) for establishing consensus in linear and nonlinear MAS

in the presence of model uncertainties, i.e., robust consensus.

Firstly, this thesis investigates robust consensus for uncertain MAS with linear

dynamics. Specifically, it is supposed that the system is described by a weighted ad-

jacency matrix whose entries are generic polynomial functions of an uncertain vec-

tor constrained in a set described by generic polynomial inequalities. For continuous-

time dynamics, necessary and sufficient conditions are proposed to ensure the robust

first-order consensus and the robust second-order consensus, in both cases of pos-

itive and non-positive weighted adjacency matrices. For discrete-time dynamics,

necessary and sufficient conditions are provided for robustconsensus based on the

existence of a Lyapunov function polynomially dependent onthe uncertainty. In

particular, an upper bound on the degree required for achieving necessity is pro-

vided. Furthermore, a necessary and sufficient condition isprovided for robust con-

sensus with single integrator and nonnegative weighted adjacency matrices based



on the zeros of a polynomial. Lastly, it is shown how these conditions can be inves-

tigated through convex optimization by exploiting LMIs.

Secondly, local and global consensus are considered in MAS with intrinsic non-

linear dynamics with respect to bounded solutions, like equilibrium points, periodic

orbits, and chaotic orbits. For local consensus, a method isproposed based on the

transformation of the original system into an uncertain polytopic system and on

the use of homogeneous polynomial Lyapunov functions (HPLFs). For global con-

sensus, another method is proposed based on the search for a suitable polynomial

Lyapunov function (PLF). In addition, robust local consensus in MAS is considered

with time-varying parametric uncertainties constrained in a polytope. Also, by us-

ing HPLFs, a new criteria is proposed where the original system is suitably approx-

imated by an uncertain polytopic system. Tractable conditions are hence provided

in terms of LMIs. Then, the polytopic consensus margin problem is proposed and

investigated via generalized eigenvalue problems (GEVPs).

Lastly, this thesis investigates robust consensus problemof polynomial nonlin-

ear system affected by time-varying uncertainties on topology, i.e., structured un-

certain parameters constrained in a bounded-rate polytope. Via partial contraction

analysis, novel conditions, both for robust exponential consensus and for robust

asymptotical consensus, are proposed by using parameter-dependent contraction

matrices. In addition, for polynomial nonlinear system, this paper introduces a

new class of contraction matrix, i.e., homogeneous parameter-dependent polyno-

mial contraction matrix (HPD-PCM), by which tractable conditions of LMIs are

provided via affine space parametrizations. Furthermore, the variant rate margin for

robust asymptotical consensus is proposed and investigated via handling general-

ized eigenvalue problems (GEVPs).

For each section, a set of representative numerical examples are presented to

demonstrate the effectiveness of the proposed results.

An abstract of exactly 473 words
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Chapter 1

Introduction

1.1 Background

More than 2000 years is the history of control systems applied in human soci-

ety. One of the earliest proofs is the water clocks describedby Vitruvius (270

B.C.) [1]. Past several decades have witnessed a fast development of this engi-

neering discipline from classical control theory to now sophisticated modern control

theory. Instead of transformation methods in frequency domain dealing with single-

input-single-output systems, modern control theory uses the state-space methods in

time domain for multiple-input-multiple-output systems.With increasingly efficient

methods for matrix computation and growingly powerful microprocessor for data

processing, modern control theory is able to handle more complicated problems

human encountered, like large-scale systems and complex systems.

When the corresponding advances come to the technologies ofinformation trans-

mitting, sensing and processing, they speed up the development of autonomous sys-

tems in uncertain environments, and also give rise to new opportunities and chal-

lenges for studying the cooperative multi-agent systems (MASs). In fact, the def-

inition of MASs is initially investigated by collective behaviors widely occurring

in biology and life science, e.g., bird flocking, fish schooling and bud swarming.

These behaviors gain some properties that single agent can not achieve and provide

extra benefits for individuals such as finding food, increasing the speed of flying and
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escaping from predators. Thus, numerous attentions have been obtained for study-

ing this cooperative behavior. One of the famous pioneeringwork in this field is

the work of Beynold in which a computer model, called “Boids”, is used to animate

the cooperative behavior of fish schools [2]. Also in this work, three basic rules are

given for this model: cohesion for flock centering, separation for collision avoid-

ance and alignment for velocity matching. These propertiesare deemed as basic

characteristics of a biological band. After that, based on adiscrete-time approxima-

tion system, Vicsek proposes another multi-agent model fora group of autonomous

particles traveling at a certain speed. Then this result is explained and expanded

by Jadbabaie et al. in [3]. From then on, a general understanding is established

that coordination of MASs is a result of biological principles with environmental

information and interactions among individuals in this group.

In the field of control systems and computer science, any individual that can au-

tonomously behave in its environment is called an agent. Though extensive debate

is over the meaning of this term, we would like to give following definition similar

with one given in [4].

Definition 1.1 (agent) An agent is a single system in some environment whereit is

capable of autonomous actions in this environment in order to meet its designed

objectives.

Owning to the broad nature of above definition, we would like to further elab-

orate on some of its essential issues. Firstly, agent is considered as a single system

which may refer to artificial entities, like computer, robots and electronic devices,

and may also bear on biological entities, like fishes, birds,insects. Moreover, there

is no specific environment required for MASs, as it can refer to a broad range of set-

tings, where autonomous agents behave and interact with each other. Influence of

human or outside intervention is not considered in order to keep the independence.

Finally, an objective is designed for the group of agents. Nospecific method is given

by this definition that how the cooperative goal can be achieved. Certain objectives

can be very simple and just need reactive agent, such as a group of flights gather
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at a certain airport, while some objectives are complicatedwith sophisticated agent

model, such as a group of flights keep in a certain formation bycommunication

with each other. In other words, agent has to execute individual autonomous actions

in a target-oriented manner and vulnerable to its environment. Different with [2],

Jennings proposes three characteristics for each autonomous agent to achieve the

designed objectives [4]:

• Reactivity: the capacity to comprehend their environment and timely react to

changes of the environment.

• Proactivity: the capacity to take initiative independently and perform goal-

oriented behavior.

• Social ability: the capacity to communicate and influence with other agents.

Based on the definition ofagent, it is easy to understand another related defi-

nition multi-agent systems. A great number of biological and artificial systems are

composed of a group of agents interacting for a common goal. Examples can be eas-

ily found in World Wide Web, formation control of UAV (Unmanned Air Vehicles),

remote control of AUVs (autonomous underwater vehicles), networked control of

robotic teams, to name just a few. Multi-agent systems (MASs) are common in

nature and can be explained in a way widely adopted in engineerings as follows [4]:

Definition 1.2 (Multi-agent System) A MAS is a group of networked agents that

behave together to achieve common goals.

Currently, various topic of MASs are hot focus for sorts of academic soci-

eties, such as cooperative learning, coordination, dependability and fault-tolerance,

whereas the most interesting issue for us is the consensus problem of MASs.

Consensus problem has been extensively studied in control theory and computer

science in past decades . Meanwhile, kinds of powerful tools, like algebraic graph

theory and contraction theory, have been developed to investigate consensus prob-

lem of MASs, as a beneficial circle, generating growing application and attracting

3



increasing academic interests and resources in this field. Here we give the definition

of consensus which is widely adopted in control systems. Consensus means that all

the states of a MAS are able to reach a certain agreement progressively. The states

of MASs for this agreement could be artificial variables likecomputer virtual state,

logical state, or kinds of physical terms such as energy, temperature, altitude, posi-

tion, velocity, angle, etc. The mathematical description of consensus phenomenon

with various dynamics will be introduced in the following chapters. It is worth not-

ing that the consensus problem can be converted to a stability problem of the error

dynamics (or called disagreement system) which is constructed based on original

dynamics (a typical example of this transformation is givenby Lemma 3.4). With

a wide applications, consensus has already been employed tocope with many prac-

tical problems, such as formation control, flocking, rendezvous problems, attitude

alignment [5–11]. Fig. 1.1 gives one application in formation control.

1.2 Literature Review

In this subsection, past researches on consensus problem will be reviewed in dif-

ferent models of MASs. Firstly, consensus problem of MASs with linear dynamics

will be reviewed in fixed topology and varying topology. Then, the past works in

consensus problem with nonlinear dynamics of complex network will also be stud-

ied.

1.2.1 Consensus in Networks with Fixed Topology

For the pioneering works on this topic, consensus problem ofMASs arises and is

investigated in computer science, where academic priorityis given to computational

algorithm [12, 13]. After that, a typical consensus protocol is studied on the head-

ings and directions of moving particles with same speed [14]. In [3], the average

consensus problem for MASs is investigated in the undirected communication net-

work where a sufficient condition is proposed that consensuscan be achieved as

4



(a)

(b)

Fig. 1.1: One application of consensus: formation control.
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long as each agent is jointly connected to all the others during the contiguous time

intervals. In [9], a method of eigenvalue analysis of Laplacian matrix is proposed

and the connectivity between topological connectivity andweighted adjacency ma-

trix are established. It also proposes consensus conditionof MASs with network

communication constraints and information disturbs. Based on the work [3], Ren

and Beard investigate the consensus problem in a more general case with directed

information exchange. Also by combining graph theory and matrix theory, they

provide a consensus condition that a spanning tree in communication network is

a necessary and sufficient condition for consensus. Then, this method is extended

to switching topology and asymptotical consensus condition is provided that con-

sensus of MASs with switching topology can be achieved if it has a spanning tree

frequently enough for communication network [15]. Thus, consensus of MASs with

fixed topology has already been extensively investigated and non-conservative con-

sensus conditions has been provided by checking the topology of network based on

employing graph theory.

Linear dynamics of agent is widely adopted in that it can simply describe a real

world phenomenon and give a solution for these mathematicalproblems based on

linear algebra. Lots of existing results use this model and apply it in numerous real-

world implementations like unmanned flying vehicles, kinetic gears and moving

particles [3,14]. Starting with initial works on linear dynamics, the consensus prob-

lems begin to attract attentions from a number of researchers. [9, 15]. Especially,

the consensus problem of MASs with first-order dynamics is studied extensively

where the agent is driven by the influence of its neighbours [16–18]. For first-order

consensus, it is shown that the general communication structure plays a significant

role for MASs to reach the asymptotical consensus.

Besides the first-order consensus, in order to meet the demand of practical im-

plementations, a more complicated model of MASs with second-order dynamics is

proposed and investigated [19–21]. In this model, not only position state is con-

sidered, but also the velocity state. The second order consensus requires that both

6



the position state and the velocity state of each agent tend to be same. This kind of

dynamics gives a better approximation of motion in physics,thus triggering a great

academic passion in this field. In [20], consensus conditionfor second-order dy-

namics is proposed by investigating the topological structure and the second largest

eigenvalue of Laplacian matrix is deemed as a key role in second-order consen-

sus. In [21], necessary and sufficient conditions for second-order consensus are

proposed by eigenvalue analysis and matrix theory.

Furthermore, a more general model, including higher order consensus proto-

cols, is proposed and considered in [22–24]. In [25], a general protocol for higher

order consensus is considered according to the transverse stability to the manifold

of consensus. This work is originated from the work of synchronization in complex

networks [26]. In [22], a distributed containment problem is considered for net-

worked Lagrangian systems with multiple leaders under a directed graph. In [24],

the definition of subsystem is introduced and a necessary andsufficient condition

is provided for asymptotical consensus with general higher-order dynamics if all

subsystems are proven to be asymptotically stable. Moreover, this work also shows

that for higher-order consensus, the largest number of disconnected stable and un-

stable consensus regions are provided and consensus of MASscan be achieved if the

nonzero eigenvalues of the Laplacian matrix locate in the stable consensus regions.

Not merely consensus problems with continuous-time dynamics are investi-

gated, but also the problems with discrete-time dynamics, where difference equation

is used to describe the dynamics of MASs [27,28]. In [27], discrete-time dynamics

is considered for MASs with time-varying delays and a class of effective consensus

protocols are provided to solve consensus problems with theassumption that the

agent can merely use delayed information of themselves. In [28], both the cases

of leaderless consensus and leader-follower consensus areconsidered for linear

discrete-time MASs. By using state feedback protocols, these two consensus prob-

lems can be tackled, provided that the dynamic graph remainsjointly connected.

In [29], a distributed algorithm for average-consensus with discrete-time dynamics
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is proposed based on a formal matrix limit notation of average-consensus, which

can be achieved if at every instant the network topology is balanced and the union

of graphs over every time interval is connected.

1.2.2 Consensus in Networks with Changing Topology

For consensus problem of MASs with fixed topology, non-conservative results can

be given based on graph theory and matrix theory. But for the case of network with

varying topology, the situation is the same. As we all know, perturbations and dis-

turbances are brimming over this world. For a straightforward instance in electrical

power grid, the parameters of power transmission lines, such as the values of resis-

tance and capacitance, are fairly vulnerable to alter underinconsistent temperature

and air pressure. Thus, numerous attentions have recently been casted on robust

consensus problem of MASs with unfixed communication topology.

Firstly, the interaction topology between agents is assumed to be dynamically

changing and can be described by a set of directed graphs [3,14,15,30]. Vicseck et

al. propose a discrete-time model for MASs with all agents moving in the plane. In

this model, each agent’s heading is driven by a local informations from each agent’s

information and its own [14]. This nearest neighbour rule isstudied and extended

to a more general case in which possible changes in nearest neighbours are taken

into account over time [3]. A collection of simple graphs onn vertices is used

to describe all possible neighbour relationships. Thus, a switched linear system

is established to present the Vicseck model. Consensus condition is provided that

a common steady state of each agent can be obtained if all agents are linked with

their neighbours with sufficiently large frequency. In [30], same model of switching

topology is studied and a common Lyapunov function of disagreement dynamics

is established for this hybrid system. Based on same switching strategy, in [27],

time-varying delays and switching communication topologyare considered, where

network topology switches amongst a group of graphs alreadyknown. A class of

effective consensus protocols are provided by using the same state information at
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double time-steps. In [28], via state feedback control protocols, consensus problems

of both the leaderless and leader-following cases are investigated.

Secondly, networks with time-varying topology can be foundand used in a great

number of academic fields, like engineering, biological andsocial systems. This

kind of network topology has successfully described the on-off state of communica-

tion links, the loss in data transmitting, the variations oftopological parameters and

the reconfiguration of formations in flocking problem. Thus,time-varying topology

of MASs is investigated in recent years [31–34]. Consensus conditions are provided

for MASs with time-varying topology without any time-delayor stochastic distur-

bances [32,33]. In [31], a time-varying topology with distributed stochastic approx-

imation is used for describing the communication noises. Sufficient conditions are

provided for mean square average consensus and sufficient condition is also given

for almost sure consensus. In [34], asynchronous consensusproblem of MASs with

second-order dynamics is considered. Each agent can gain position and velocity

information from others at each sampling-time. Sufficient condition is proposed for

consensus of MASs with intermittent information transmission and asynchronous

data update. In [35], the consensus problem of MASs with second-order dynam-

ics in discrete-time is considered where the interaction topology is time-varying.

By applying Lyapunov direct method, a consensus controlleris designed for any

bounded time-delays.

Furthermore, another effective way to model the time-varying networks is by us-

ing stochastic switching networks [36–40]. In [41], a blinking model of small-world

network is proposed for nonlinear consensus and for this model, a connection graph

stability method is used for synchronization problems. By using the same method,

in [36], a new changing topology is considered where both fixed 2K-nearest neigh-

bor coupling and time-dependent on-off coupling are studied in this work. In [37],

each agent is deemed as a random walker and location changes of agents in the

lattices is used to model the random changes of network whereagent can obtain

information only from other agents in the same lattice. In [38], by employing
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stochastic Lyapunov stability theory, sufficient conditions are provided for global

synchronization with a high frequency and random switchingnetwork. In [39, 40],

another stochastically blinking topology is considered inwhich coupling parameters

of network randomly switch within a collection of values at acertain interval.

Lastly, topological uncertainties are also used to model the time-varying topol-

ogy of MASs. By introducing this kind of uncertainty, networks with parametric

uncertainty on topology can be effectively approximated inmany real-life appli-

cations [42]. Especially for consensus problem, successful implementations are

existing in a wide range of academic societies and industries [43–45]. In [43],

consensus problem with linear dynamics is considered with additive uncertainty.

In [44], robust synchronization problem is investigated where the network is dis-

turbed by relative-attitude error. In [45], 2-D synchronization problem is analyzed

where the control gains are under the disturbs of square integrable bounded and

time-varying uncertainty. In [46], robust synchronization problem is considered by

using contraction theory. The time-invariant parametric uncertainty is used to model

the structural disturbances. For this kind of uncertainty,a constant contraction ma-

trix is introduced to solve the robust synchronization problem.

1.2.3 Consensus in Networks with Nonlinear Dynamics

In various phenomenons, autonomous agents are ususally governed by intrinsic

nonlinear dynamics where a comparatively rich complex behaviour can be exhib-

ited, like periodic circles, bifurcation and chaotic manifold. Another definition: syn-

chronization is defined to investigate these phenomenons. Synchronization problem

is a key issue in engineering, biology, physics and social science. It usually con-

siders the agent with nonlinear dynamics in complex networks. Actually, the syn-

chronization and consensus with nonlinear dynamics are thesame thing but with

different names in corresponding societies [26, 47]. Jointexamples can be eas-

ily found in World Wide Web, social science, biological Metabolism and power

grids [26, 47–51]. A great number of methods have been invited and developed
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both for nonlinear consensus of MASs and for chaotic synchronization [11,52]. We

will use consensus with nonlinear dynamics instead of synchronization in the rest

of this thesis.

Firstly, local consensus with nonlinear dynamics is extensively investigated in

past decade from the pioneering work of Pecora and Carroll [53]. Specifically, for

uncertain coupling matrix, master stability function method (MSF) is applied for

local consensus with nonlinear dynamics in which a maximum Lyapunov exponent

of differential equation for nonlinear network is calculated [49]. This method has

been proven to solve the local consensus with nonlinear dynamics successfully by

linearizing the nonlinear intrinsic function. Particularinterest in local synchroniza-

tion is triggered by this method and lots of works extend thismethod to various

specific implementations such as kinds of clustering coefficients, sorts of coupling

strength and different consensus protocols [54]. Besides the methods of eigenvalue

analysis on the coupling matrix, another interesting and stimulating thought, named

as Connection Graph Stability, is proposed by combing Lyapunov directed method

with graph theory and applying this method to stochastic switching network [55].

Local consensus problems are also considered in time-varying topology. In [56],

a consensus criteria is given for fast switching network with a sufficiently large

switching rate. [57], by using a time-average topology to approximate the time-

varying topology, consensus conditions are provided that the time-varying topology

and the time-average topology are actually the same for commuting Laplacians.

In addition, a growing number of researches have been studying the global con-

sensus problem of MASs with intrinsic nonlinear dynamics [25,47,58–63]. In [47],

global consensus in complex networks is considered. By defining a generalized al-

gebraic connectivity, the global convergence properties of obtaining consensus are

analyzed in strongly connected networks. In [58], many conclusions have been

obtained under the assumption that the network is weighted balanced, and a dis-

tributed algorithms is proposed by non-smooth analysis. In[60], A necessary and

sufficient condition on convergence of a multiplicative sequence of reducible row-
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stochastic matrices is proposed and an overall closed loop system is constructed to

exhibit cooperative behaviors. For MAS with intrinsic nonlinear dynamics, Lya-

punov methods are successfully applied to derive consensusconditions [47,59,62].

Particularly, quadratic Lyapunov function is a main approach widely employed to

guarantee the consensability of MASs.

For a more sophisticated case of global consensus with nonlinear dynamics and

time-varying network, Lyapunov stability method, especially the quadratic stabil-

ity, is used to generate consensus conditions [43–45, 64]. According to uncertain

adjacency matrix, MSF and eigenvalue analysis, or relevantderivative tools, can

hardly be used, making Lyapunov stability theory as a mainstream method for ro-

bust consensus with nonlinear dynamics. In [65], impulsiveconsensus criteria is

proposed for uncertain dynamical network with nonlinear intrinsic dynamics where

the network coupling functions is assumed to be unknown yet bounded, provided

that Lipschitz-like conditions are satisfied both for the intrinsic nonlinearity and for

the coupling nonlinearity.

Consensus problem with nonlinear dynamics is also widely considered under

the influence of topological uncertainties [43–46, 64]. In [43], robust consensus of

MASs is investigated with additive uncertainty and consensus condition in terms of

Linear Matrix Inequalities (LMIs) is provided by using matrix theory. Furthermore,

a feedback controller is designed for robust consensus under bounded perturba-

tions based on Riccati equations. In [44], provided that system dynamics is under

the disturb of a relative-attitude error, a robust global consensus problem is ana-

lyzed with a decentralized hybrid feedback control scheme.In [45], by searching

a Quadratic Lyapunov Functions (QLF), the robust 2-D consensus with nonlinear

dynamics is guaranteed with time-invariant parametric uncertainties restricted in a

polytope. In [64], also by using the method of QLF, robust consensus conditions are

proposed for uncertain system where system control gains are perturbed by time-

varying uncertainties with square integrable bound . In [46], contraction theory is

introduced and applied to complex network with polynomial nonlinearity and time-
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invariant uncertainty. Robust stability condition for this kind of system is proposed

by searching a parameter-independent polynomial contraction matrix.

1.3 Mathematical Preliminaries

1.3.1 Algebraic Graph Theory

In graph theory, a weighted directed graphG = (A , E , G) of orderN can be

described by a set of nodesA = {A1, ..., AN}, a set of directed edgesE belonging

to A × A and a weighted adjacency matrixG = (Gij)N×N . Provided that an

information can be transmitted from thej-th node to thei-th node, a directed edge

eij ∈ E is denoted, i.e. a directed edgeeij ∈ E if and only ifGij 6= 0. Meanwhile,

Aj is called parent node andAi is called child node.G is denoted to be positive

if Gij > 0 for all i, j, otherwiseG is said to be non-positive. It is useful to give

following definitions.

Definition 1.3 (Directed path and simple path) A directed path from nodeAi toAj

is a sequence of directed edges (Ai, Ai1),(Ai1, Ai2),...,(Ail, Aj). A path is called a

simple path if it has no repeated vertices.

Definition 1.4 (Strongly connected graph) A directed networkG is strongly con-

nected if there is a directed path between any pair of distinct notesAi andAj ,

i, j = 1, ..., n, thenG is denoted as a strongly connected graph.

Definition 1.5 (Reducible matrix) In a directed networkG , a matrixG is reducible

if there exists a permutation matrixP ∈ RN and an integerm with 1 ≤ m ≤ N −1

satisfying

P TGP =




Ĝ11 0

Ĝ21 Ĝ22


 .

whereĜ11 ∈ Rm×m, Ĝ21 ∈ R(n−m)×m andĜ22 ∈ R(n−m)×(n−m). Otherwise,G is

an irreducible matrix.
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Definition 1.6 An undirected graph is defined to be a tree if for any two vertices in

this graph are connected by exactly one simple path. A directed tree is a directed

graph if the underlying graph is a tree provided that the direction of network is

ignored. A directed graph is defined to be a directed rooted tree if at least one root

r has the property that, for any nodev different fromr, there is a unique directed

path fromr to v. A spanning tree is a directed rooted tree containing all thenodes

of G .

We say that a graph contains a spanning tree if a subset of the graph forms

a spanning tree. From the coupling matrix(Gij)N×N , we can obtain a Laplacian

matrix defined by

Lij = −Gij , ∀i 6= j

Lii = −
∑n

j=1, j 6=i Lij .
(1.1)

It is worthy to note that the the Laplacian matrix satisfies the diffusion property that

n∑

j=1

Lij = 0 ∀i = 1, . . . , n. (1.2)

Thus,1N is a right vector of Laplacian matrix corresponding to eigenvalue 0.

Lemma 1.1 A matrixG is an irreducible matrix if and only if its corresponding

directed graphG is strongly connected.

Lemma 1.2 The directed graphG has a spanning tree if and only if the Laplacian

matrixL has a simple eigenvalue 0 and all the other eigenvalues are inthe open

right plane (have positive real parts).

More details and applications of algebraic graph theory canbe found in [66–68].

1.3.2 Lyapunov Stability Theory

In this subsection, the tools of Lyapunov stability theory will be reviewed. Firstly,

basic definitions will be introduced and stability theoremswill be provided later.
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Consider a dynamical system satisfying

ẋ = f(x, t), x(t0) = 0, , x ∈ R
n (1.3)

where standard conditions are satisfied forf(x, t) with the existence and unique-

ness of solutions. Then, the definition of stability in the sense of Lyapunov and

asymptotic stability is given as follows

Definition 1.7 The equilibrium pointx∗ = 0 of (1.3) is said to be stable (in the

sense of Lypunov) att = t0 if for any ǫ > 0 there is aδ(t0, ǫ) > 0 such that

‖x(t0)‖ < δ =⇒ lim
t→∞

x(t) < ǫ. (1.4)

Stability in the sense of Lyapunov is a very mild requirementin that it just requires

the trajectories starting close to the origin and remainingclose to the origin. The

equilibrium point is calleduniformly stableif δ(t0, ǫ) > 0 in above definition is

independent oft0. In other words, condition (1.4) holds for allt0

Definition 1.8 An equilibrium pointx∗ = 0 of (1.3) is asymptotically stable at

t = t0 if following two conditions are satisfied:

• x∗ = 0 is stable.

• x∗ = 0 is locally attarctive, i.e., there is aδ(t0) such that

‖x(t0)‖ < δ =⇒ lim
t→∞

x(t) = 0

Based on Definition 1.8, uniformly asymptotic stability canbe given whereδ

is not a function oft0 with asymptotical stability satisfied. We say that an equilib-

rium point isglobally stableif it is stable for all initial conditionsx0 ∈ Rn. An

equilibrium point is defined to beunstableif it is not stable.
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Definition 1.9 An equilibrium point is said to be an exponentially stable ifthere

are constantsκ, α > 0 andǫ > 0 such that

‖x(t)‖ ≤ κe−α(t−t0)‖x(t0)‖, ∀‖x(t0)‖ ≤ ǫ, t ≥ t0.

whereα is defined to be the rate of convergence.

Exponential stability is a strong form of stability, implying uniform and asymptoti-

cal stability.

Lyapunov direct method is proven to be an effective method which allows us to

establish the stability of a system. DefineBǫ a ball of sizeǫ around the origin:

Bǫ = {x ∈ R
n : ‖x‖ ≤ ǫ}

Definition 1.10 A continuous functionV : Rn × R+ → R is a locally positive def-

inite function (LPDF) if there exist someǫ and a continuous and strictly increasing

functionα : R+ → R such that

V (0, t) = 0, V (x, t) ≥ α(‖x‖), ∀x ∈ Bǫ, ∀t ≥ 0.

Definition 1.11 A continuous functionV : Rn × R+ → R is a positive definite

function (PDF) if it is a LPDF and satisfies

lim
s→∞

α(s) → ∞.

Definition 1.12 A continuous functionV : Rn × R+ → R is called a decrescent

function (DSF) if there exist someǫ and a continuous and strictly increasing func-
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tion β : R+ → R such that

V (x, t) ≤ β(‖x‖), ∀x ∈ Bǫ, ∀t ≥ 0.

The time derivative of functionV is obtained along the trajectories of the system:

V̇ |ẋ=f(x,t) =
∂V

∂t
+
∂V

∂x
f.

In what follows, we usėV instead ofV̇ |ẋ=f(x,t). Basic Lyapunov theorems can be

displayed as follows.

Lemma 1.3 Let V̇ be the derivative ofV (x, t) along the trajectories of the system,

then

• The origin of the system is locally stable ifV is a LPDF andV̇ ≤ 0 locally in

x for all t.

• The origin of the system is uniformly locally stable ifV is a LPDF and is also

a DSF, andV̇ ≤ 0 locally in x for all t.

• The origin of the system is uniformly locally asymptotically stable ifV is a

LPDF and is also a DSF, and−V̇ is a LPDF for all t.

• The origin of the system is uniformly globally asymptotically stable ifV is a

LPDF and is also a DSF, and−V̇ is a PDF for all t.

This result does not give an explicit rate of convergence according to the solutions

of equilibrium. Thus, it is useful to be modified in the case ofexponential stability

as follows.

Lemma 1.4 The origin is an exponentially stable equilibrium point if and only if
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there are some positive constantsα1, α2, α3, α4 and aǫ > 0 such that

α1‖x‖ ≤ V (x, t) ≤ α2‖x‖,

V̇ ≤ −α3‖x‖,

‖
∂V

∂x
(x, t)‖ ≤ α4‖x‖

where‖x‖ ≤ ǫ.

More details can be found in standard texts as [69–72].

1.3.3 Square Matrix Representation

Whether a polynomial is semi-positive can be established effectively by determining

whether it is a SOS polynomial via an LMI feasibility test. Indeed, letf(θ) be a

polynomial of degree2dθ in θ ∈ Ra. Then,f(θ) can be expressed as

f(θ) = (∗)T (F + L(δ))φpol(θ, dθ) (1.5)

whereφpol(θ, dθ) ∈ R
lpol(a,dθ) is called power vector containing all monomials of

degree less or equal todθ,

lpol(a, dθ) =
(a + dθ)!

a!dθ!
. (1.6)

L(δ) is a linear parameterization of the affine space

Lpol = {L = LT : (∗)TL(δ)φpol(θ, dθ) = 0, ∀θ ∈ R
a} (1.7)

in which δ ∈ Rµpol(a,dθ) is a vector of free parameters whose length is given by

µpol(a, dθ) =
1

2
lpol(a, dθ)(lpol(a, dθ) + 1)− lpol(a, 2dθ). (1.8)

The representation (1.5) is known as Gram matrix method and Square Matrix

Representation (SMR) [73]. This technique allows one to determine whether poly-
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nomialf(θ) is a SOS. In particular,f(θ) is SOS if and only if there exists aδ such

that

F + L(δ) ≥ 0 (1.9)

which is a LMI feasibility test, and hence it is a convex optimization problem.

Next we will discuss the case of homogeneous polynomial. Particularly, f(θ) is

a homogeneous polynomial of degree2dθ in θ ∈ R
a. Then,f(θ) can be expressed

as

f(θ) = (∗)T (F + L(δ))φhom(θ, dθ) (1.10)

whereφhom(θ, dθ) ∈ Rlhom(a,dθ) is a power vector containing all homogeneous

monomials of degreedθ,

lhom(a, dθ) =
(a+ dθ − 1)!

(a− 1)!dθ!
. (1.11)

L(δ) is a linear parameterization of the affine space

Lhom = {L = LT : (∗)TL(δ)φhom(θ, dθ) = 0, ∀θ ∈ R
a} (1.12)

in which δ ∈ Rµhom(a,dθ) is a vector of free parameters whose length is given by

µhom(a, dθ) =
1

2
lhom(a, dθ)(lhom(a, dθ) + 1)− lhom(a, 2dθ). (1.13)

A simple example is given here to illustrate the SMR technique. Consider polyno-

mial f(x) = 2x4 +3x2 +4x+5, one hasdx = 2, a = 1. Then,f(x) can be written

as follows

φpol(θ, dx) =




x2

x

1



, F =




2 0 0

0 3 2

0 2 5



, C(δ) =




0 0 −δ

0 2δ 0

−δ 0 0



.

This method can also extended to matrix polynomials. LetM(θ) ∈ Rn×n be
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a matrix polynomial of degree2dθ in θ ∈ Ra. Then, one can expressM(θ) in the

following form

M(θ) = Φ(M̄ +N(δ), φpol(θ, dθ), n) (1.14)

andΦ(M̄ +N(δ), φpol(θ, dθ), n) denotes the expression

Φ(M̄ +N(δ), φpol(θ, dθ), n) = (∗)T (M +N(δ))(φpol(θ, dθ)⊗ In) (1.15)

whereM̄ ∈ Rnlpol(a,dθ)×nlpol(a,dθ) is a suitable matrix andN(δ) is the linear param-

eterization of the affine space

N = {N = NT ∈ R
nlpol(a,dθ)×nlpol(a,dθ) : Φ

(
N(δ), φpol(θ, dθ), n

)
= 0} (1.16)

whose dimension is

µPOL(a, dθ, n) =
1

2
n(lpol(a, dθ)((nlpol(a, dθ) + 1)− (n+ 1)lpol(a, 2dθ))). (1.17)

The expression in the form (1.14) is used to establish whether a matrix polynomial

is SOS via an LMI feasibility test. Indeed,M(θ) is a SOS if there are matrix

polynomialsM1(θ),M2(θ), . . . such that

M(θ) =
∑

i

Mi(θ)
TMi(θ) (1.18)

and this condition holds if and only if there is aδ such that the following condition

holds:

M̄ +N(δ) ≥ 0. (1.19)

Similar results can be obtained for homogeneous polynomialmatrix by using (1.10).

We omit it here.

It is useful to note that SOS polynomials have been investigated in optimization

over polynomials for a long time. The survey [74] and references therein provide

more details and algorithms about SOS polynomials.
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1.4 Problem Statements

This thesis is concerned with the consensus problem of MASs with topological un-

certainty. Since autonomous agent can be simply described in linear dynamics and

the communication between agent is affected by noise perturbations, environmen-

tal fluctuations and parametric variations, it is natural togive a model of uncertain

MASs considering these uncertainties. Furthermore, basedon the matrix theory and

graph theory, the consensus problem of MASs with linear dynamics has already

been solved. A topological condition is proposed that consensus with fixed topol-

ogy can be achieved if and only if the directed graph associated with MAS has a

spanning tree. Nevertheless, it is still an open question that under what kind of con-

dition robust consensus can be achieved with the topological uncertainties. In addi-

tion, Lyapunov stability theory, especially quadratic Lyapunov function, is widely

used to construct robust consensus conditions and a number of results have been

proposed. However, quadratic Lyapunov function generatesconservatisms in many

ways. In order to decrease the conservatism, one useful way is to construct more

complex Lyapunov function with higher degrees. Thus, another question arises nat-

urally what is the maximum degree of Lyapunov function for solving robust consen-

sus problem. Besides that, Lyapunov direct method also requires an error dynamics

which can not easily be obtained for MASs with nonlinear dynamics, additionally

increasing the conservatism by using this widely-adopted method. This stimulates

the researchers to implement other advanced methods for less-conservative results.

Finally, polytopic parametric uncertainty is a typical model for topological disturbs.

A key problem for this kind of uncertainty is to calculate thelargest bound where

the robust consensability remains, giving special academic interests to the robust

consensus margin for topological uncertainty.

Indeed, following research problems are of great interests.

• For MASs with linear dynamics and topological uncertainties, construct ro-

bust consensus conditions both for first-order consensus and for second-order

consensus.
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• For robust consensus problem with nonlinear dynamics, establish both local

and global consensus conditions under which the local and global robust con-

sensus can be achieved respectively.

• For robust consensus with nonlinear dynamics, provide a more advanced

method relaxed from global Lipchitz condition and without using the error-

dynamics, and reduce the conservatism comparing with quadratic Lyapunov

method.

• Given an uncertain MAS with polytopic uncertainties, compute the upper

bound of uncertainty where the robust consensability remains, and give a

solvable condition for calculating this problem.

• For nonlinear inequality conditions for robust consensus,take advantages of

SMR technique, parameterise corresponding affine space andconvert these

problems to convex optimization problems.

1.5 Contributions

This section briefly summarizes the main contributions of this thesis as follows:

• Robust Consensus

Robust consensus conditions are provided for the uncertainMASs with var-

ious consensus protocols. Specifically, the topological uncertainties are as-

sumed to exist in the communication network, which make it difficult to check

the consensability. By using parameter-dependent Lyapunov functions, both

for first-order and second-order consensus, robust condition is provided re-

spectively. Moreover, consensus problems with continuous-time and discrete-

time dynamics are investigated and corresponding robust consensus condi-

tion is given respectively. With regards to these consensusconditions with

topological uncertainties, solvable conditions built by employing the SMR

technique are constructed and original problems can be transformed to some
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optimization problems in terms of LMIs, which can be verifiedby standard

softwares.

• Degree Bound of Lyapunov Function

For robust consensus problem of MASs with linear dynamics and topolog-

ical uncertainties, consensability can be guaranteed by exploiting a polyno-

mial parameter-dependent Lyapunov function. Necessary and sufficient con-

ditions can be provided to ensure the consensability, and the upper bound

degree of Lyapunov function can be given both for first-orderconsensus and

for second-order consensus. It shows that this upper bound is not only related

to the degree of coupling matrix, but also related to the number of agents,

which means for a large-scale system, a comparatively higher-degree Lya-

punov function can be constructed to ensure the consensability of MAS and

decrease the conservatism with respect to the results generated by quadratic

Lyapunov functions. Similarly, upper bound degree of Lyapunov function

could also be found for consensus problem of MASs with nonlinear dynam-

ics, but only sufficient condition can be provided currently.

• Robust Uncertainty Margin Robust consensus problems can be solved by

using Lyapunov stability theory, and robust consensability can be guaran-

teed with regards to topological uncertainties constrained in a certain semi-

algebraic set or a polytope. Firstly, by exploiting a HPLF the robust local

consensus problem of MASs with nonlinear dynamics can be transformed

to a robust stability problem. Using SMR technique, the robust consensus

margin can be calculated by solving a GEVP. On the other hand,by us-

ing contraction theory, the robust global consensus can also be ensured via

constructing a parameter-dependent contraction matrix. Based on this robust

consensus condition, the maximum polytopic uncertainty can be checked for

globally asymptotically consensus, which is a convex optimization problem

consisting of GEVPs. By using this margin, a comparison between proposed
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method with quadratic Lyapunov function and a parameter-independent con-

traction matrix can be launched.

• Contraction Analysis

Contraction theory is introduced in robust analysis of consensus control, and

a new type of contraction matrix, the homogeneous parameter-dependent

polynomial contraction matrix, is built in order to handle robust consensus

problem of MASs with nonlinear dynamics. Indeed, a parameter-dependent

contraction matrix is introduced and robust consensus condition is proposed

for MASs with topological uncertainties via using the partial contraction and

constructing an auxiliary system. Furthermore, with regards to the polyno-

mial nonlinearity, HPD-PCM is established to ensure the robust consensus

with topological uncertainties. It shows that this new typeof contraction

matrix displays obvious advantages comparing to affine parameter-dependent

quadratic Lyapunov function and parameter-independent polynomial contrac-

tion matrix.

1.6 Thesis Outline

This thesis is organised as follows:

• Chapter 2 investigates robust consensus for uncertain MASs with linear dy-

namics. Specifically, it is assumed that the communicationsof network is

described by a weighted adjacency matrix whose entries are generic polyno-

mial functions of a vector constrained in a set depicted by generic polynomial

inequalities. For this uncertain structure, necessary andsufficient conditions

are given to guarantee the robust first-order and robust second-order consen-

sus, also in both cases of positive and non-positive couplings. On the other

hand, robust consensus is also investigated for MASs with discrete-time dy-

namics. Both considering systems with single and double integrators, nec-

essary and sufficient conditions are proposed for robust consensus based on
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the existence of a polynomial parameter-dependent Lyapunov function. In

particular, for achieving necessity, an upper bound on the required degree of

Lyapunov function is given. Based on the zeros of a polynomial, a necessary

and sufficient condition is given for ensuring the robust consensus with single

integrator and nonnegative coupling matrices .

• Chapter 3 considers local and global consensus of MASs with nonlinear

dynamics, regarding to limited solution manifold. For local consensus, the

original system is firstly transformed to a polytopic system. Then, a suffi-

cient condition is provided based on the use of HPLF. For global consensus,

another method is provided via searching for a proper PLF. Also, the pro-

posed methods use more complex Lyapunov functions than QLFswhich can

be deemed as a special case of proposed method. In addition, this chapter

also investigates robust local consensus in MASs with time-varying topologi-

cal uncertainties constrained in a polytope. In contrast totraditional methods

with non-convex conditions via using QLF, a novel criteria is given based

on using HPLFs where the original system is properly approximated by an

uncertain polytopic system. Moreover, corresponding solvable conditions in

terms of LMIs have been given by using SMR technique. Then, polytopic

consensus margin problem is introduced and investigated via tackling with

GEVPs.

• Chapter 4 concerns robust global consensus problem of polynomial system

disturbed by time-varying uncertainties on topology. In particular, structured

parameters is assumed to be in a bounded-rate polytope. Novel consen-

sus conditions are proposed by using parameter-dependent contraction ma-

trices for robust exponential consensus and for robust asymptotical consen-

sus. Moreover, for polynomial intrinsic function, by introducing a new class

of contraction matrix, i.e., HPD-PCM, tractable conditions in terms of LMIs

are provided via some suitable affine space parameterizations. In addition,

the variant rate margin for robust asymptotical consensus is given by han-
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dling GEVPs. Moore-Greitzer jet engines and a six agent system are used to

demonstrate the effectiveness of proposed methods.

• Chapter 5 concludes this thesis by showing final remarks and pointing out

our future works.
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Chapter 2

Robust Consensus for Uncertain and

Linear Dynamics

2.1 Introduction

This chapter considers MASs with linear dynamics and topological uncertainties,

both for continuous-time consensus protocol and for discrete-time consensus pro-

tocol. Specifically, it is under the assumption that the entries of weighted adja-

cency matrix are generic polynomial functions of a vector ofuncertain parameter

constrained in a semi-algebraic set. Firstly, necessary and sufficient conditions

are provided to ensure the robust first-order and robust second-order consensus

for continuous-time consensus protocols, and for both cases of positive and non-

positive weighted adjacency matrices. Moreover, it shows how these conditions can

be transformed and checked by convex optimization programming. On the other

hand, robust consensus problem with discrete-time dynamics is also investigated.

Necessary and sufficient conditions are given for robust consensus based on finding

a polynomial parameter-dependent Lyapunov function. In order to achieve neces-

sity, it is proposed an upper bound on the degree that candidate Lyapunov function

requires. Through checking the zeros of a constructed polynomial, a necessary and

sufficient condition is provided for robust first-order consensus with nonnegative
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network weights. Lastly, it is also shown how these conditions can be transformed

to convex optimization problems by SOS technique. Numerical examples illustrate

the usefulness of proposed methods.

This chapter is organized as follows. Section 2.2 formulates the problems. Sec-

tion 2.3 proposes conditions both for robust first-order androbust second-order con-

sensus of MASs with continuous-time protocols. With regards to discrete-time pro-

tocols, Section 2.4 proposes consensus conditions both forrobust first-order and

robust second-order consensus. Section 2.5 illustrates the proposed methods with

numeral examples. Section 2.6 concludes this chapter with some final remarks.

2.2 Problem Formulation

In this chapter, uncertain MASs are considered where the weighted adjacency ma-

trix is disturbed by an uncertain vector. Let such a matrix beG(θ) ∈ RN×N where

N is the number of agents of MAS andθ ∈ Ra is an uncertain vector satisfying

θ ∈ Ω (2.1)

where

Ω = {θ ∈ R
a : si(θ) ≥ 0 ∀i = 1, . . . , h} (2.2)

for some functionss1, . . . , sh : Ra → R. Therein after we will assume that the en-

tries ofG(θ) ands1(θ), . . . , sh(θ) are polynomial functions. In addition, we denote

thatG(θ) is positive ifGij(θ) > 0 for all i, j and for allθ ∈ Ω, otherwiseG(θ) is

said to be non-positive.

For robust first-order consensus, we concern with the continuous-time uncertain

MASs described by

ẋi(t) =

N∑

j=1, j 6=i

Gij(θ)(xj(t)− xi(t)), i = 1, . . . , N (2.3)

wherexi is the state of thei-th node, andG(θ) could be either positive or non-
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positive. Thus, here we can propose the robust first-order consensus problem as

follows.

Problem 2.1 To establish if the uncertain MASs(2.3) achieves robust first-order

consensus for all uncertain parameters and for any initial states, i.e.

lim
t→∞

xi(t)− xj(t) = 0 ∀i, j ∀θ ∈ Ω. (2.4)

Aims to address above problem, we would like to rewrite the uncertain MASs

(2.3) as

ẋ(t) = −L(θ)x(t) (2.5)

wherex = (x1, . . . , xn) ∈ Rn is called the state vector, andL(θ) = (Lij(θ))n×n is

said the uncertain Laplacian matrix satisfying

Lij(θ) = −Gij(θ) ∀i 6= j

Lii(θ) = −
∑n

j=1, j 6=i Lij(θ).
(2.6)

It is worthy to point out that the uncertain Laplacian matrixdefined above has the

diffusion property that

n∑

j=1

Lij(θ) = 0 ∀i = 1, . . . , n. (2.7)

For robust second-order consensus problem, the following continuous-time un-

certain MASs is considered

ẋi(t) = ρi(t)

ρ̇i(t) =

n∑

j=1, j 6=i

αGij(θ)(xj(t)− xi(t))

+

n∑

j=1, j 6=i

βGij(θ)(ρj(t)− ρi(t))

(2.8)

in whichxi ∈ R is the position state of thei-th node,ρi ∈ R is the velocity state of

thei-th node, andα, β ∈ R are constants. We also denote thatG(θ) in this case can
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be either positive or non-positive matrix. Thus, the robustsecond-order consensus

problem can be proposed as follows.

Problem 2.2 To establish if the uncertain MASs(2.8)achieves robust second-order

consensus for any initial state, i.e.

lim
t→∞

xi(t)− xj(t) = 0

lim
t→∞

ρi(t)− ρj(t) = 0

∀i, j ∀θ ∈ Ω. (2.9)

For the sake of addressing this problem, we would like to rewrite the uncertain

MASs (2.8) as

ẋi(t) = ρi(t)

ρ̇i(t) = −
n∑

j=1

αLij(θ)xj(t)−
n∑

j=1

βLij(θ)ρj(t)
(2.10)

wherex ∈ Rn is the position state vector andρ ∈ Rn is the velocity state vector.

We define the global state vector asy = (xT , ρT )T ∈ R2n. Then, a compact form of

system (2.10) can be intrduced as

ẏ(t) = L̃(θ)y(t) (2.11)

whereL̃(θ) is called the uncertain extended Laplacian matrix providedby

L̃(θ) =




0 I

−αL(θ) −βL(θ)


 . (2.12)

2.3 Continuous-time Dynamics

This section provides both the robust first-order and second-order consensus condi-

tions.
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2.3.1 First-order Consensus

Lyapunov stability theory is broadly adopted to investigate the properties of dynam-

ical system. By associating the robust consensus with Lyapunov stability theory,

we propose a new condition for establishing robust first-order consensus based on

LMIs. Specifically, first we define a matrixV1 ∈ Rn×n−1 satisfying

img(V1) = ker(1Tn ) (2.13)

where1n is a column vector of dimensionn with every entry being1.

Then the transformed uncertain Laplacian matrix is introduced as:

L̂(θ) = V T
1 L(θ)V1. (2.14)

Theorem 2.1 With either positive or non-positive weights, robust first-order con-

sensus for uncertain MAS can be obtained if and only if there exists a polynomial

matrixP1 : R
a → R

n−1×n−1 such that





P1(θ) > 0

P1(θ)L̂(θ) + L̂(θ)TP1(θ) > 0
∀θ ∈ Ω. (2.15)

ProofLet us observe that1n is an eigenvector ofL(θ) corresponding to the eigen-

value zero. In addition, one can also observe thatV T
1 L(θ)V1 has the same eigenval-

ues ofL(θ) while the algebraic multiplicity of the eigenvalue zero hasbeen reduced

by one. i.e.

spc(L̂(θ)) ∪ {0} = spc(L(θ)) (2.16)

Define a dynamical system as follows.

˙̂x(t) = −L̂(θ)x̂(t). (2.17)
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One can observe thatx = γ1n is the equilibrium point of (2.17),∀γ ∈ R. Thus

(2.17) is asymptotically stable is equivalent to the statement that the robust first-

order consensus can be obtained. With respect to (2.16) and the Lyapunov stability

theorem, one necessary and sufficient condition that (2.17)is asymptotically stable

for all θ ∈ Ω is thatL(θ) has exactly one simple eigenvalue0 and all the other

eigenvalues locate in the open right plane. Based on Lyapunov stability theorem

for linear systems, this is equivalent to saying that there is aP1(θ) such that (2.15)

holds for allθ ∈ Ω. Thus, this theorem holds �

In order to check the condition of Theorem 2.1, one useful wayis to exploit

SOS matrix polynomials. Indeed, letP1(θ) andG1i(θ), i = 1, . . . , h, be symmetric

matrix polynomials to be determined, and let

R1(θ) = P1(θ)L̂(θ) + L̂(θ)TP1(θ)−

h∑

i=1

G1i(θ)s1i(θ). (2.18)

It is obvious to obtain that (2.15) holds if there existsc > 0 such that





G1i(θ) is SOS

P1(θ)− In−1 is SOS

R1(θ)− cIn−1 is SOS.

(2.19)

Actually, as long as the constraints in (2.19) hold withc > 0, for anyθ ∈ Ω, it

directly follows thatG1i(θ) ≥ 0, P1(θ) > 0 and

0 ≤ P1(θ)L̂(θ) + L̂(θ)TP1(θ)−

h∑

i=1

G1i(θ)s1i(θ)− cIn−1

≤ P1(θ)L̂(θ) + L̂(θ)TP1(θ)− cIn−1

≤ P1(θ)L̂(θ) + L̂(θ)TP1(θ)

(2.20)

i.e. (2.15) holds.

The condition (2.19) can be established via a convex optimization problem with

LMI constraints by exploiting the representation of matrixpolynomials reported in

Section 1.3.3. Specifically, let2mi be the degree ofG1i(θ), 2m be the degree of
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P1(θ), and2m0 be the degree ofR1(θ)− cI. Here we introduce the representations

G1i(θ) = Φ(Ḡ1i, φpol(θ,mi), n− 1)

G1i(θ)s1i(θ) = Φ(Ū1i(Ḡ1i), φpol(θ,m0), n− 1)

P1(θ) = Φ(P̄1, φpol(θ,m), n− 1)

R1(θ) = Φ(F̄1 +D1(δ), φpol(θ,m0), n− 1)

(2.21)

whereḠ1i, Ū1i(Ḡ1i), P̄1, F̄1 andD1(δ) are symmetric matrices. Moreover, let us

define

c∗ = sup
c,Ḡ1i,P̄1,δ

c

s.t.





Ḡi1 ≥ 0

P̄1 ≥ Is1

F̄1 +D1(δ)− cIs2 −

h∑

i=1

Ū1i(Ḡ1i) ≥ 0

(2.22)

in which s1 ands2 give the sizes of̄P1 andF̄1, respectively. Then, it follows that

(2.15) holds ifc∗ > 0.

Remark 2.1 It is worth noting the relationship between conditions(2.15), (2.19)

and (2.22). One can use condition(2.19) to check the feasibility of(2.15), while

(2.19) is only a sufficient condition for robust first-order consensus. In addition,

condition(2.19)in terms of SOS is equivalent to the LMI condition(2.22).

For a network topology with positive coupling weights but without parametric

uncertainties, it has been proved that the structure of network plays a key role to de-

termines whether the consensus can be obtained. The following result extends to the

case of uncertain MASs existing conditions obtained for thecase of MASs without

uncertainty [15], and gives a further condition based on zeros of a polynomial.

Theorem 2.2 For a givenL(θ) in (2.6)and a directed networkG = (A , E , G(θ))

with a positive weights, i.e.∃eij ∈ E if and only ifGij(θ) > 0, the statements as

follows are equivalent.

a) Robust first-order consensus can be achieved.
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b) ∀θ ∈ Ω, L(θ) has exactly one simple eigenvalue0 and all the other eigenval-

ues locate in the open right half plane.

c) ∀θ ∈ Ω, the directed networkG has a spanning tree.

d) ∀θ ∈ Ω, q(θ) 6= 0, where

q(θ) =
d

dλ
l(λ, θ)

∣∣∣∣
λ=0

(2.23)

and

l(λ, θ) = det(λI − L(θ)). (2.24)

Proof Assume the Laplacian matrixL(θ) is given by (2.6). Then, the first three

statements can be proved to be equivalent which follows directly from the analogous

ones obtained for the case of MASs without uncertainty [15].From Lemma 3.3

in [15], one can obtain thatℜ(λi(L(θ))) ≥ 0, ∀i = 1, 2..., n, ∀θ ∈ Ω. In addition,

statement d) implies thatL(θ) has exactly one zero eigenvalue,∀θ ∈ Ω. Therefore,

statements b) and d) are also equivalent, which completes this proof. �

One effective way to check the condition of Theorem 2.2 consists of exploiting

SOS polynomials which amounts to solving an LMI problem. Indeed, let us first

define

c∗ = sup
c,gi(θ)

c

s.t.





gi(θ) is SOS

(−1)kq(θ)− c−
h∑

i=1

gi(θ)s2i(θ) is SOS

(2.25)

wherek ∈ {0, 1} is defined as

k =





0 if q(θ0) > 0

1 otherwise
(2.26)

andθ0 is any vectorθ in Ω which can be arbitrarily chosen. Then, condition of

Theorem 2.2 holds ifc∗ > 0.

34



Indeed, it turns out thatc∗ is a lower bound ofq(θ) for θ ∈ Ω if q(θ0) >

0, otherwisec∗ is a lower bound of−q(θ) for θ ∈ Ω. Actually, as long as the

constraints in (2.25) hold, for anyθ ∈ Ω it follows that

0 ≤ (−1)kq(θ)− c−

h∑

i=1

gi(θ)s2i(θ)

≤ (−1)kq(θ)− c

(2.27)

i.e. c is a lower bound of(−1)kq(θ) for θ ∈ Ω.

c∗ in (2.25) can be obtained by solving an LMI problem by using the represen-

tation of polynomials given in Subsection 1.3.3. Indeed, let 2mi and2m0 be the

degree ofgi(θ) and(−1)kq(θ)− c−
∑h

i=1 gi(θ)s2i(θ) respectively. Let us introduce

the following representations

gi(θ) = (∗)TG2iφpol(θ,mi),

gi(θ)s2i(θ) = (∗)TU2i(G2i)φpol(θ,m0),

(−1)kq(θ) = (∗)T (F + C(δ))φpol(θ,m0),

1 = (∗)TWφpol(θ,m0),

(2.28)

whereG2i, U2i(G2i), F , C(δ) andW are symmetric matrices. Then,

c∗ = sup
c,G2i,δ

c

s.t.





Gi ≥ 0

F + C(δ)− cW −
h∑

i=1

U2i(G2i) ≥ 0.

(2.29)

Let us remark that problem (2.29) is a convex optimization problem with LMI con-

straints and linear cost function, which can be considered as eigenvalue problem

and semidefinite program [75].
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2.3.2 Second-order Consensus

Let us investigate the uncertain expanded Laplacian matrixL̃(θ). Firstly, we will

provide the following result, which extends to the case of uncertain MASs the con-

dition in [21] for the case where topological uncertainty are not considered.

Lemma 2.1 For all θ ∈ Ω, robust second-order consensus for the uncertain MASs(2.11)

can be achieved if and only if the uncertain expanded Laplacian matrix−L̃(θ) has

exactly one zero eigenvalue with algebraic multiplicity two and all the other eigen-

values are in the open right half plane.

Based on this result, we propose a new condition for checkingrobust second-

order consensus based on matrix inequalities. Specifically, let us introduce vectors

as

u1 =

(
1n
0n

)
, u2 =

(
0n−1

1n

)
. (2.30)

Let V2 ∈ R2n×2n−1 andV3 ∈ R2n−1×2n−2 be matrices satisfying

img(V2) = ker(uT1 )

img(V3) = ker(uT2 ).
(2.31)

Then, let us introduce the transformed uncertain expanded Laplacian matrix:

L̆(θ) = −V T
3 V

T
2 L̃(θ)V2V3. (2.32)

Theorem 2.3 Robust second-order consensus for uncertain MASs with either pos-

itive or non-positive weights can be obtained if and only if there is a symmetric

functionP2 : R
a → R2n−2×2n−2 such that





P2(θ) > 0

P2(θ)L̆(θ) + L̆(θ)TP2(θ) > 0
∀θ ∈ Ω. (2.33)
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ProofOne can observe thatu1 is an eigenvector of̃L(θ) corresponding to the eigen-

value zero. In addition, one can also observe thatV T
2 L̃(θ)V2 has the same eigenval-

ues ofL̃(θ) while the algebraic multiplicity of the eigenvalue zero hasbeen reduced

by one. By a similar way, it follows thatV T
3 V

T
2 L̃(θ)V2V3 has the same eigenvalues

of L̃(θ) while the algebraic multiplicity of the eigenvalue zero hasbeen reduced by

two. Hence, from Lemma 2.1, it directly follows that robust second-order consen-

sus can be obtained if and only if−L̃(θ) has all the eigenvalues locating in the open

right half plane for allθ ∈ Ω. From Lyapunov stability theorem for linear systems,

this is equivalent to the statement that there is aP2(θ) such that (2.33) holds for all

θ ∈ Ω. Therefore, this proof completes. �

With the purpose of investigating the condition of Theorem 2.3, one can employ

SOS matrix polynomials. Indeed, letP2(θ) andG3i(θ), i = 1, . . . , h, be symmetric

matrix polynomials to be determined, and let us define

R2(θ) = P2(θ)L̆(θ) + L̆(θ)TP2(θ)−
h∑

i=1

G3i(θ)s3i(θ). (2.34)

It is easy to verify that (2.33) holds if there existsc > 0 such that





G3i(θ) is SOS

P2(θ)− I2n−2 is SOS

R2(θ)− cI2n−2 is SOS.

(2.35)

Actually, as long as the constraints in (2.35) hold withc > 0, for any θ ∈ Ω it

directly follows thatG3i(θ) ≥ 0, P2(θ) > 0 and

0 ≤ P2(θ)L̆(θ) + L̆(θ)TP2(θ)−
h∑

i=1

G3i(θ)s3i(θ)

−cI2n−2

≤ P2(θ)L̆(θ) + L̆(θ)TP2(θ)− cI2n−2

≤ P2(θ)L̆(θ) + L̆(θ)TP2(θ)

(2.36)
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i.e. (2.33) holds.

By using the Gram Matrix Methods reported in Subsection 1.3.3, the condition

(2.35) can also be formulated as a convex optimization problem in terms of LMIs.

Specifically, let2mi, 2m and2m0 be the degree ofG3i(θ), P2(θ) andR2(θ) − cI

respectively. Let us introduce the representations

G3i(θ) = Φ(Ḡ3i, φpol(θ,mi), 2n− 2)

G3i(θ)s3i(θ) = Φ(Ū3i(Ḡ3i), φpol(θ,m0), 2n− 2)

P2(θ) = Φ(P̄2, φpol(θ,m), 2n− 2)

R2(θ) = Φ(F̄2 +D2(δ), φpol(θ,m0), 2n− 2)

(2.37)

whereḠ3i, Ū3i(Ḡ3i), P̄2, F̄2 andD2(δ) are symmetric matrices. Then, define

c∗ = sup
c,Ḡ3i,P̄2,δ

c

s.t.





Ḡ3i ≥ 0

P̄2 ≥ Is3

F̄2 +D2(δ)− cIs4 −

h∑

i=1

Ū3i(Ḡ3i) ≥ 0

(2.38)

wheres3 ands4 are the sizes of̄P2 andF̄2, respectively. Then, one can obtain that

(2.33) holds ifc∗ > 0.

2.4 Discrete-time Dynamics

In this section we consider robust consensus for MASs with discrete-time dynamics

affected by uncertainty, which describes the presence of unknown control gains.

Specifically, for MASs with first-order dynamics we considerthe following update

scheme

xi(k + 1) =
1

n∑

j=1

Gij(θ)

n∑

j=1

Gij(θ)xj(k), i = 1, . . . , n (2.39)
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wherexi ∈ R is the state of thei-th node,θ ∈ Ra is a vector of uncertain parameters,

andG : Ra → Rn×n is a generic polynomial function. The set (2.2) constrainsθ.

One can rewrite the system (2.39) in compact form as

x(k + 1) = D(θ)x(k) (2.40)

whereD : Ra → Rn×n is given by

Dij(θ) =
Gij(θ)
n∑

k=1

Gik(θ)

, i, j = 1, . . . , n. (2.41)

Problem 2.3 To establish whether(2.39)obtains robust consensus, i.e.

lim
k→∞

xi(k)− xj(k) = 0 ∀i, j = 1, . . . , n ∀x(0) ∈ R
n ∀θ ∈ Ω. (2.42)

For MASs with double integrator, let us consider the model





xi(k + 1) = xi(k) + ̺i(k)

̺i(k + 1) = ̺i(k) + ui(k)
(2.43)

with

ui(k) = k1

n∑

j=1

Gij(θ)(xj(k)− xi(k)) + k2

n∑

j=1

Gij(θ)(̺j(k)− ̺i(k)) (2.44)

wherek1, k2 ∈ R are positive scalars depicting coupling strengths, andxi, ̺i ∈ R

stand for the position and velocity states of thei-th agent respectively. Let us use a

compact form to represent the system (2.43) as




x(k + 1)

̺(k + 1)


 = Γ(θ)




x(k)

̺(k)


 (2.45)

39



where

Γ(θ) =




In In

−k1L(θ) In − k2L(θ)


 (2.46)

andL(θ) ∈ Rn×n is the uncertain Laplacian matrix given by

Lij(θ) = −Gij(θ) ∀i 6= j

Lii(θ) = −
n∑

j=1, j 6=i

Lij(θ).
(2.47)

Problem 2.4 To establish if(2.43)obtains robust consensus, i.e.





lim
k→∞

xi(k)− xj(k) = 0

lim
k→∞

̺i(k)− ̺j(k) = 0

∀i, j = 1, . . . , n, ∀x(0), ̺(0) ∈ R
n , ∀θ ∈ Ω.

(2.48)

In the follow-up, it is assumed thatG(θ) is well-posed overΩ, i.e.

n∑

k=1

Gik(θ) 6= 0 ∀i = 1, . . . , n ∀θ ∈ Ω. (2.49)

Same with last section, we also denote thatG(θ) is nonnegative ifGij(θ) ≥ 0

for all i, j = 1, . . . , n and for allθ ∈ Ω.

It is useful to borrow the definition of (row) stochastic matrix, i.e., a nonnegative

matrix with the property that all row sums are1 [76]. One can observe thatD(θ) is

a stochastic matrix ifG(θ) is nonnegative.

2.4.1 First-order Consensus

Let us first introduce the following polynomial

ζ(θ) = LCM

{
n∑

j=1

Gij(θ), i = 1, . . . , n

}
. (2.50)

and define

K(θ) = ζ(θ)D(θ). (2.51)
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Let V1 ∈ Rn×(n−1) satisfy





img(V1) = ker(1Tn)

V T
1 V1 = In−1

(2.52)

and define

D1(θ) = V T
1 D(θ)V1 (2.53)

and

K1(θ) = V T
1 K(θ)V1. (2.54)

The following result gives a necessary and sufficient condition to determine whether

(2.39) obtains robust consensus.

Theorem 2.4 Let τ be the degree ofG(θ), and define

µ1 = n(n2 − n− 2)τ. (2.55)

The system(2.39)obtains robust consensus if and only if there is a symmetric matrix

polynomialP (θ) ∈ R(n−1)×(n−1) of degreed ≤ µ1 such that





P (θ) > 0

ζ(θ)2P (θ)−K1(θ)
TP (θ)K1(θ) > 0

∀θ ∈ Ω. (2.56)

Proof(Sufficiency) Provided that (2.56) holds, based on Lyapunovstability theorem

for discrete-time linear systems, it provides that

|λi (K1(θ))| < |ζ(θ)| ∀i = 1, . . . , n− 1 ∀θ ∈ Ω (2.57)

whereλi (K1(θ)) is thei-th eigenvalue ofK1(θ). Since

K1(θ) = ζ(θ)D1(θ) (2.58)
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it hence has thatD1(θ) is Schur for allθ ∈ Ω, i.e.

|λi (D1(θ))| < 1 ∀i = 1, . . . , n− 1 ∀θ ∈ Ω. (2.59)

As 1 is an eigenvalue ofD(θ), one can rewrite the characteristic polynomial ofD(θ)

as

det (λIn −D(θ)) = (λ− 1)ξ(λ, θ). (2.60)

Since1n is an eigenvector ofD(θ)with regard to the eigenvalue1, it directly follows

that the characteristic polynomial ofD1(θ) is provided by

det (λIn−1 −D1(θ)) = ξ(λ, θ) (2.61)

i.e. D1(θ) has the same eigenvalues ofD(θ) while the algebraic multiplicity of the

eigenvalue1 has been reduced by one. Hence, asD1(θ) is Schur for allθ ∈ Ω,

one can obtain thatD(θ) has exactly one simple eigenvalue1 and all the other

eigenvalues with magnitude less than1 for all θ ∈ Ω. From [15] it is equivalent to

saying that consensus is obtained for allθ ∈ Ω.

(Necessity) Let us assume that (2.39) achieves robust consensus. From [15] this

directly implies thatD(θ) has exactly one simple eigenvalue1 and all the others are

with a magnitude smaller than1 for all θ ∈ Ω. It is equivalent to saying thatD1(θ)

is Schur for allθ ∈ Ω, and hence that the Lyapunov equation

P (θ)−D1(θ)
TP (θ)D1(θ) = Q(θ) (2.62)

has a unique solutionP (θ) which satisfiesP (θ) > 0 for all θ ∈ Ω wheneverQ(θ) >

0 for all θ ∈ Ω. Sinceζ(θ) 6= 0 for all θ ∈ Ω, this equation can be represented as

ζ(θ)2P (θ)−K1(θ)
TP (θ)K1(θ) = ζ(θ)2Q(θ). (2.63)
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Let us gather then(n−1)/2 free entries ofP (θ) andQ(θ) into the vectorsp(θ) and

q(θ). One can rewrite the equation above as

E(θ)p(θ) = ζ(θ)2q(θ). (2.64)

Since the solutionP (θ) exists and it is also unique, it means thatE(θ) is invertible

for all θ ∈ Ω, and hence

p(θ) =
adj(E(θ))
det(E(θ))

ζ(θ)2q(θ). (2.65)

As the degrees ofζ(θ) andK1(θ) are not greater thannτ , it directly follows that

the degree ofE(θ) is not larger than2nτ , and hence the degree of adj(E(θ)) is not

larger than (
1

2
(n− 1)n− 1

)
2nτ = µ1. (2.66)

Let us chooseQ(θ) = ζ(θ)−2In−1 and defineP (θ) as(−1)a det(E(θ))P (θ) where

a is 0 if det(E(θ)) > 0 for all θ ∈ Ω or 1 otherwise. One can obtain thatP (θ) is a

matrix polynomial of degree not greater thanµ1 satisfying the Lyapunov equation

ζ(θ)2P (θ)−K1(θ)
TP (θ)K1(θ) = det(E(θ))In−1 (2.67)

and, hence, (2.56). �

Remark 2.2 Theorem 2.4 supplies a necessary and sufficient condition for robust

consensus of(2.39)via finding a Lyapunov function polynomially dependent on the

uncertainty. As a requirement for achieving necessity, thedegreeµ1 hinges both on

the degree ofG(θ) and on the number of agentsn.

The condition of Theorem 2.4 can be established via a convex optimization.

Specifically, letHi(θ) andJi(θ), i = 1, . . . , h, be some auxiliary symmetric matrix
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polynomials with size(n− 1)× (n− 1), and

R(θ) = P (θ)−

h∑

i=1

Hi(θ)si(θ)

T (θ) = ζ(θ)2P (θ)−K1(θ)
TP (θ)K1(θ)−

h∑

i=1

Ji(θ)si(θ).

(2.68)

The following result provides a sufficient condition for investigating whether (2.39)

obtains robust consensus based on conditions of LMIs.

Corollary 2.1 The condition(2.56)satisfies for some symmetric matrix polynomial

P (θ) of degreed if c∗ > 0 and c∗ is the solution of the optimization problem as

follows.

c∗ = sup
c,Hi,Ji,P

c

s.t.





Hi(θ) is SOS

Ji(θ) is SOS

R(θ)− In−1 is SOS

T (θ)− cIn−1 is SOS.

(2.69)

ProofAssume that the constraints in (2.69) hold. It follows that





Hi(θ) ≥ 0

Ji(θ) ≥ 0

R(θ)− In−1 ≥ 0

T (θ)− cIn−1 ≥ 0

(2.70)

for all θ ∈ R
a. Sincesi(θ) ≥ 0 andHi(θ) ≥ 0, from the third inequality one can

obtain

0 ≤ R(θ)− In−1

= P (θ)−
∑h

i=1Hi(θ)si(θ)− In−1

≤ P (θ)− In−1

(2.71)
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in which one has that

P (θ) ≥ In−1 ∀θ ∈ Ω. (2.72)

Similarly, from the inequalityT (θ)− cIn−1 ≥ 0 one gets

ζ(θ)2P (θ)−K1(θ)
TP (θ)K1(θ) ≥ cIn−1 ∀θ ∈ Ω. (2.73)

Therefore, ifc > 0, it implies that (2.56) is satisfied, and hence this theorem holds.

�

Corollary 2.1 provides how the condition of Theorem 2.4 can be established via

convex programming by using SOS technique. Specifically, since checking whether

a matrix polynomial is SOS can be done through solving problem of LMIs as re-

ported in Subsection 1.3.3, it directly follows that the condition of Corollary 2.1

amounts to solving an LMI feasibility test. We can also remark that the conser-

vatism of the condition of Corollary 2.1 hinges on the degrees ofP (θ) and of the

multipliersHi(θ) andJi(θ).

For network with nonnegative weights, let us represent the following prelimi-

nary result, which can directly extend to the case of uncertain MASs the condition

given in [77] for the case of MASs without considering uncertainty.

Lemma 2.2 Assume thatG(θ) is nonnegative. The following three statements are

equivalent.

a) The system(2.39)obtains robust consensus.

b) for all θ ∈ Ω, D(θ) has exactly one simple eigenvalue1 while all the others

satisfy|λ| < 1.

c) for all θ ∈ Ω, the directed graphG (θ) contains a spanning tree.

The following result displays how Lemma 2.2 can be used to geta necessary

and sufficient condition for robust first-order consensus with nonnegative network

weights via investigating the zeros of a polynomial.
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Theorem 2.5 Suppose thatG(θ) is nonnegative. The system(2.39)obtains robust

consensus if and only if

qD(θ) 6= 0 ∀θ ∈ Ω (2.74)

where

qD(θ) =
dlD(λ, θ)

dλ

∣∣∣∣
λ=1

(2.75)

and

lD(λ, θ) = det(λIn −D(θ)). (2.76)

ProofAssume thatG(θ) is nonnegative. Based on Lemma 2.2 one gets that (2.39)

obtains robust consensus if and only if, for allθ ∈ Ω, D(θ) has exactly one simple

eigenvalue1 while all the other eigenvalues with a magnitude smaller than 1.

SinceD(θ) is a stochastic matrix with positive diagonal entries, it implies that

every eigenvalue ofD(θ) not equal to1 has a magnitude smaller than1, see e.g. [76].

Thus, it just requires to show that the eigenvalue1 is simple.

This is equivalent to getting that the characteristic polynomial lD(λ, θ) of D(θ)

can be displayed as

lD(λ, θ) = (λ− 1)ξ(λ, θ) (2.77)

where

ξ(1, θ) 6= 0 ∀θ ∈ Ω. (2.78)

This last condition coincides with (2.74) due to

dlD(λ, θ)

dλ
= ξ(λ, θ) + (λ− 1)

dξ(λ, θ)

dλ
. (2.79)

Thus, the proof completes. �

Theorem 2.5 gives a necessary and sufficient condition for robust first-order

consensus which can be used in the case of nonnegative network weights. This

condition needs to investigate whether the polynomialqD(θ) is nonzero overΩ.
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The condition of Theorem 2.5 can be checked through convex optimization.

Indeed, let us introduce

qK(θ) =
dlK(λ, θ)

dλ

∣∣∣∣
λ=1

(2.80)

where

lK(λ, θ) = det(λIn −K(θ)). (2.81)

Let ai(θ), i = 1, . . . , h, be auxiliary polynomials, and let us define

b(θ) = qK(θ0)qK(θ)−

h∑

i=1

ai(θ)si(θ) (2.82)

whereθ0 can be chosen arbitrarily inΩ.

Corollary 2.2 Provided thatG(θ) is nonnegative, the condition(2.74) is satisfied

if c∗ > 0, wherec∗ is the solution of the optimization problem as follows.

c∗ = sup
ai,c

c

s.t.





ai(θ) is SOS

b(θ)− c is SOS.

(2.83)

ProofProvided that the constraints in (2.83) are satisfied, it implies that





ai(θ) ≥ 0

b(θ)− c ≥ 0
(2.84)

for all θ ∈ Ra. Due tosi(θ) ≥ 0 andai(θ) ≥ 0, from the second inequality we can

obtain

0 ≤ b(θ)− c

= qK(θ0)qK(θ)−
∑h

i=1 ai(θ)si(θ)− c

≤ qK(θ0)qF (θ)− c

(2.85)
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which directly implies that

qK(θ0)qK(θ) ≥ c ∀θ ∈ Ω. (2.86)

If c > 0, it follows that qK(θ0)qK(θ) is positive overΩ. From the continuity of

qK(θ) andθ0 ∈ Ω, we have that

qK(θ) 6= 0 ∀θ ∈ Ω. (2.87)

Observe that

qK(θ) = ζ(θ)nD(θ) (2.88)

andζ(θ) 6= 0 for all θ ∈ Ω, we conclude that (2.74) holds. �

2.4.2 Second-order Consensus

From (2.44) we have that

u1(k)− ui(k) = k1

(
−Lii(θ)(x1(k)− xi(k)) +

n∑

j=2

(Gij(θ)−G1j(θ))(x1(k)− xj(k))

)

+k2

(
−Lii(θ)(̺1(k)− ̺i(k)) +

n∑

j=2

(Gij(θ)−G1j(θ))(̺1(k)− ̺j(k))

)
.

(2.89)

It follows that





x1(k + 1)− xi(k + 1) = x1(k)− xi(k) + ̺1(k)− ̺i(k)

̺1(k + 1)− ̺i(k + 1) = ̺1(k)− ̺i(k)− k1

(
n∑

j=2

(Lij(θ)− L1j(θ))(x1(k)− xj(k))

)

−k2

(
n∑

j=2

(Lij(θ)− L1j(θ))(̺1(k)− ̺j(k))

)
.

(2.90)

Thus, (2.45) can be represented as

w(k + 1) = Γ̃(θ)w(k) (2.91)
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where

w(k) = (x1 − x2, ..., x1 − xn, ̺1 − ̺2, ..., ̺1 − ̺n)
T

Γ̃(θ) =




In−1 In−1

−k1L̃(θ) In−1 − k2L̃(θ)




L̃(θ) =




L22(θ)− L12(θ) . . . L2n(θ)− L1n(θ)

...
. . .

...

Ln2(θ)− L12(θ) . . . Lnn(θ)− L1n(θ)



.

(2.92)

The following result directly extends to the case of uncertain MASs the condi-

tion given in [78] for the case of MASs without uncertainty.

Lemma 2.3 The system(2.43)achieves robust consensus if and only if

∣∣∣λi
(
Γ̃(θ)

)∣∣∣ < 1 ∀i = 1, . . . , 2n− 2 ∀θ ∈ Ω (2.93)

whereλi
(
Γ̃(θ)

)
is thei-th eigenvalue of̃Γ(θ).

The following result provides a necessary and sufficient condition for checking

whether (2.43) achieves robust consensus.

Theorem 2.6 Let τ be the degree ofG(θ), and define

µ2 = 2n(2n− 3)τ. (2.94)

The system(2.43)obtains robust consensus if and only if there is a symmetric matrix

polynomialP (θ) ∈ R(2n−2)×(2n−2) of degreed ≤ µ2 such that





P (θ) > 0

P (θ)− Γ̃(θ)TP (θ)Γ̃(θ) > 0
∀θ ∈ Ω. (2.95)

Proof (Sufficiency) Suppose that (2.95) holds. Due to Lyapunov stability theorem
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for discrete-time linear systems, one has that (2.93) holds. Thus, from Lemma 2.3,

we can conclude that (2.43) obtains robust consensus.

(Necessity) Suppose that (2.43) obtains robust consensus.From Lemma 2.3 it

implies that (2.93) holds, which means that the Lyapunov equation

P (θ)− Γ̃(θ)TP (θ)Γ̃(θ) = Q(θ) (2.96)

has a unique solutionP (θ) whereP (θ) > 0 for all θ ∈ Ω as long asQ(θ) > 0 for

all θ ∈ Ω. One can rewrite this equation as

E(θ)p(θ) = q(θ) (2.97)

wherep(θ) andq(θ) have the(2n−1)(2n−2)/2 free entries ofP (θ) andQ(θ). As

the solutionP (θ) exists and is unique, it directly follows thatE(θ) is invertible for

all θ ∈ Ω, and hence

p(θ) =
adj(E(θ))
det(E(θ))

q(θ). (2.98)

Observe the degree ofΓ̃(θ) is not greater thanτ , one has that the degree ofE(θ) is

not greater than2τ , and hence the degree of adj(E(θ)) is not greater than

(
1

2
(2n− 1)(2n− 2)− 1

)
2τ = µ2. (2.99)

Let Q(θ) = I2n−2 and redefineP (θ) as (−1)a det(E(θ))P (θ) wherea is 0 if

det(E(θ)) > 0 for all θ ∈ Ω or 1 otherwise. One has thatP (θ) is a matrix polyno-

mial of degree not greater thanµ2 that satisfies (2.95). �

Theorem 2.4 gives a necessary and sufficient condition for robust consensus of

(2.43) via finding a Lyapunov function polynomially dependent on the uncertainty.

This condition can be checked by convex optimization.

Indeed, letP (θ) be as in Theorem 2.4, and let auxiliary symmetric matrix poly-

nomialsHi(θ) andJi(θ), i = 1, . . . , h, in the size of(2n−2)× (2n−2), and hence
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we can define

R(θ) = P (θ)−
h∑

i=1

Hi(θ)si(θ)

T (θ) = P (θ)− Γ̃(θ)(θ)TP (θ)Γ̃(θ)−

h∑

i=1

Ji(θ)si(θ).

(2.100)

The following result supplies a sufficient condition for checking whether (2.43) ob-

tains robust consensus based on LMIs and the proof is analogous to that of Corollary

2.1.

Corollary 2.3 The condition(2.95) holds for someP (θ) of degreed if c∗ > 0,

wherec∗ is the solution of(2.69)withR(θ) andT (θ) which are replaced by those

in (2.100).

2.5 Numerical Examples

2.5.1 Example 1

Fig. 2.1: Digraph of a four-agent system

In this example, a four-agent system is considered which is shown in Figure 2.1.
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Suppose that the network is affected by an uncertain parameter, specifically,

G(θ) =




1 2− 2θ 5 + θ 2 + θ

3θ 1 0 0

0 4− 3θ 1 0

2 + 3θ 0 0 1




andΩ is chosen as

Ω = [0, 1].

Hence, one hasn = 4 anda = 1. Moreover,Ω can be represented as in (2.2) with

s1(θ) = θ(1− θ).

Based on (2.6), the Laplacian matrixL(θ) is provided by:

L(θ) =




9 −2 + 2θ −5− θ −2− θ

−3θ 3θ 0 0

0 4− 3θ 4− 3θ 0

−2 − 3θ 0 0 2 + 3θ



.

Observe that all elements of weighted adjacency matrixG(θ) are positive. Hence,

for robust first-order consensus, both Theorem 2.1 and Theorem 2.2 can be ex-

ploited in this example. Firstly, let us use Theorem 2.1 by finding a constant matrix

functionP1(θ) satisfying (2.15). By solving (2.22) we can getc∗ = +∞, i.e. (2.19)

holds with any positive scalarc. Therefore, robust first-order consensus can be

obtained.

In order to investigate whether robust first-order consensus can be obtained by

this uncertain network with positive weights, we can also use Theorem 2.2. In

particular, the polynomialq(θ) in (2.23) is given by:

q(θ) = 18θ3 + 6θ2 − 112θ − 56.
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Based on condition of Theorem 2.2, robust first-order consensus can be achieved if

and only ifq(θ) 6= 0 for all θ ∈ [0, 1]. In this case, it is easy to get thatq(θ) has this

property in thatq(θ) is an univariate polynomial whose roots 3.0993, 3.1344 and

-6.5670 lie outside[0, 1]. Also, let us compute the quantityc∗ in (2.29). Setk = 1

and let multiplierg1(θ) be degree2, we findc∗ = 56, hence implying that condition

of Theorem 2.2 is satisfied.

Next, let us check whether this uncertain network is able to get robust second-

order consensus. We choose

α = β = 1

in the system (2.8), and Theorem 2.3 is used by searching a constant matrix function

P2(θ) such that (2.33) holds. By computing (2.38) we getc∗ = +∞, i.e. (2.35) is

satisfied with any positive scalarc. Therefore, robust second-order consensus can

be obtained with chosenα andβ. In this case, the uncertain extended Laplacian

matrix is provided by




0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

9 l1 l2 l3 −9 l1 l2 l3

l4 −l4 0 0 l4 −l4 0 0

0 l5 −l5 0 0 l5 −l5 0

l6 0 0 −l6 l6 0 0 −l6




in which l1 = 2− 2θ, l2 = 5 + θ, l3 = 2 + θ, l4 = 3θ, l5 = 4− 3θ, l6 = 2 + 3θ.

2.5.2 Example 2

Considering a network shown in Figure 2.2, an uncertain six-agent system is in-

vestigated. In this case, it is assumed that the network is affected by two uncertain
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Fig. 2.2: Digraph of a six-agent system

parameters, i.e.θ1 andθ2. Indeed,G(θ) is given by




1 0 0 0 0 0

3 + 2θ1 1 0 0 0 0

0 3− θ2 1 0 2θ1 + θ2 0

0 0 5 + 2θ1 1 0 0

0 0 0 5 1 3− 4θ2

0 5 2− 3θ1 0 2− θ2 1




.

We choose the setΩ as

Ω = {θ : ‖θ‖ ≤ 1}.

Hence, one hasn = 6 anda = 2. Moreover,Ω can be expressed in (2.2) with

s1(θ) = 1− θ21 − θ22.

To investigate whether this uncertain network is able to achieve robust first-order

consensus, observe that it has an either positive or non-positive weighted adjacency

matrix, let us employ Theorem 2.1 by searching for a constantmatrix functionP1(θ)

under condition (2.15). Via computing (2.22) we can getc∗ = +∞, i.e. (2.19)

satisfies with any positive scalarc. Therefore, robust first-order consensus can be

obtained.
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Next, let us establish whether robust second-order consensus can be achieved

by this uncertain network. First, we select

α = 1, β = 0.6

in the system (2.8), and we exploit Theorem 2.3 by finding a constant matrix func-

tionP2(θ) satisfying (2.33). By computing (2.38) we getc∗ = −0.1344, which can

not prove (2.35). We repeat this procedure by finding a matrixfunctionP2(θ) of

degree2, and for this time we getc∗ = +∞, i.e. (2.35) satisfies with any positive

scalarc. Therefore, robust second-order consensus can be obtained.

2.5.3 Example 3

Fig. 2.3: Topology of a four-agent system.

For discrete-time dynamics, let us consider a four-agent system shown in Figure

2.3 with chosen weighted adjacency matrix

G(θ) =




1 0 0 0

1 + θ 1 0 2

0 1 1 0

3 + 2θ 4 0 1




whereθ is constrained in

Ω = [−1, 1].
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This set can be expressed in (2.2) with

s1(θ) = 1− θ2.

By employing (2.41) we have

D(θ) =




1 0 0 0

1 + θ

4 + θ

1

4 + θ
0

2

4 + θ

0 0.5 0.5 0

3 + 2θ

8 + 2θ

2

4 + θ
0

1

8 + 2θ




and, hence,

ζ(θ) = 8 + 2θ.

First, let us use Corollary 2.1 to investigate whether robust first-order consensus

can be obtained. By solving the LMI problem (2.69) with a constant symmetric

matrix functionP (θ), one can getc∗ = +∞. Hence, from Corollary 2.1 we can

conclude that robust first-order consensus can be obtained.

The same conclusion can be achieved using Corollary 2.2 in thatG(θ) is non-

negative. Particularly, the polynomialqK(θ) in (2.80) is provided by

qK(θ) = 8θ4 + 116θ3 + 596θ2 + 1248θ + 832.

One can solve the LMI problem (2.83) with a multipliera1(θ) of degree2, and

finds c∗ = 72. Hence, from Corollary 2.2 one can draw a conclusion that robust

first-order consensus can be obtained.

Next, let us exploit Corollary 2.3 to investigate whether robust second-order

consensus can be obtained. Specifically, we consider (2.43)with k1 = 0.021 and

k2 = 0.197. By computing the LMI problem (2.69) with a symmetric matrixfunc-

tion P (θ) of degree 1, one can getc∗ = +∞. Hence, based on Corollary 2.3, here

we conclude that robust second-order consensus can be obtained.
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2.5.4 Example 4

Fig. 2.4: Topology of a six-agent system.

For this example, a six-agent system is considered as shown in Figure 2.4 with

G(θ) =




1 0 0 0 1 0

3 + θ1 1 0 0 0 0

0 3− θ1 1 0 θ1 + θ2 0

0 0 3 + θ1 1 0 0

0 0 0 1 + 0.5θ2 1 0

0 0 0 0 1 1




whereθ ∈ R2 is constrained in

Ω =
{
θ ∈ R

2 : ‖θ‖ ≤ 1
}
. (2.101)

This set can be expressed as in (2.2) with

s1(θ) = 1− θ21 − θ22.

Hence, contrasting with Example 3, this network is affectedby two uncertain pa-

rameters, andG(θ) is not nonnegative.

Firstly, Corollary 2.1 is used to establish whether robust first-order consensus
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can be obtained. By solving the LMI problem (2.69) with a constant symmetric

matrix functionP (θ), one getsc∗ = +∞. Hence, based on Corollary 2.1 we can

conclude that robust first-order consensus can be obtained.This is also proved by

Figure 2.5, which has shown in Figure 2.5(a) a trajectory ofx(k) for randomly

chosenθ ∈ Ω andx(0), and in Figure 2.5(b)100 trajectories ofy(k), whereyi(k) =

xi(k)− x1(k), i = 2, . . . , 6, for randomly chosenθ ∈ Ω andx(0).
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Fig. 2.5: Example 4: some trajectories for robust first-order consensus.

Next, let us employ Corollary 2.3 to establish whether robust second-order con-

sensus can be obtained. Particularly, we consider (2.43) bychoosingk1 = 0.01

andk2 = 0.2. Then, we solve the LMI problem (2.69) with a symmetric matrix

functionP (θ) of degree1, and getc∗ = +∞. Hence, based on Corollary 2.3 we

can conclude that robust second-order consensus can be obtained. This is proved

by Figure 2.6, which has shown in Figures 2.6a–2.6b a trajectory of x(k) and̺(k)

for randomly selectedθ ∈ Ω andx(0), ̺(0), and in Figures 2.6(c)–2.6(d)100 tra-

jectories ofy(k) andz(k), whereyi(k) = xi(k)−x1(k) andzi(k) = ̺i(k)− ̺1(k),

i = 2, . . . , 6, for randomly selectedθ ∈ Ω andx(0), ̺(0).

2.6 Summary

In this chapter, robust consensus of MASs with linear dynamics and topological

uncertainties is considered, both for continuous-time systems and for discrete-time
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Fig. 2.6: Example 4: some trajectories for robust second-order consensus.
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systems. Firstly, necessary and sufficient conditions are provided for robust first-

order consensus and for robust second-order consensus in cases of positive and

non-positive network weights. In addition, this chapter also considers robust con-

sensus problem with discrete-time dynamics. Necessary andsufficient conditions

are also given for robust consensus via searching a polynomial parameter-dependent

Lyapunov function. It shows that the necessity can be achieved by computing an

upper bound on the degree of candidate Lyapunov function required. Then, a neces-

sary and sufficient condition is given for robust first-orderconsensus with nonneg-

ative weighted adjacency matrices by checking the zeros of apolynomial. Lastly,

by employing SOS technique, these robust consensus conditions can be tested by

solving convex optimization problems in terms of LMIs. Fourexamples are given

to demonstrate the usefulness of proposed results.
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Chapter 3

Consensus for Nonlinear Dynamics

3.1 Introduction

Firstly, this chapter studies local and global consensus inMASs with nonlinear

dynamics. For local consensus, by using HPLFs, a method is provided based on the

transformation from the original system into an polytopic system. In addition, for

global consensus, another method is given by finding for a suitable PLF. It is shown

that this chapter uses more complex Lyapunov function in contrast with the QLFs

widely exploited in existing literatures and QLF is demonstrated as a special case

of the proposed method.

Furthermore, in this chapter we also consider robust local consensus in MASs

with time-varying parametric uncertainties constrained in a polytope. In contrast to

existing results with non-convex conditions via exploiting QLF, a novel robust con-

sensus condition is constructed via employing HPLFs, wherean uncertain polytopic

system is also used to approximate the original system. Furthermore, correspond-

ing solvable conditions in terms of LMIs have been proposed via SMR technique.

Finally, polytopic consensus margin problem is introducedand investigated via han-

dling GEVPs. Numerical examples illustrate the effectiveness of the proposed re-

sults.

This chapter is organized as follows. Section 3.2 formulates the problems. Sec-

tion 3.3 gives local and global consensus conditions with nonlinear dynamics. Re-
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garding to MASs with time-varying topological uncertainties, Section 3.4 provides

robust local consensus conditions for MASs with nonlinear dynamics. It also shows

how the polytopic consensus margin can be obtained via handling GEVPs. Section

3.5 demonstrates the proposed results with numeral examples. Section 2.6 sum-

marises this chapter.

3.2 Problem Formulation

In this section, we consider MASs as follows

ẋi(t) = f(xi(t))− c

N∑

j=1

LijΓxj(t), i, j = 1, . . . , N (3.1)

wherexi ∈ Rn denotes the state of thei-th agent,N is the number of agents,c de-

notes the coupling weight,f(xi) ∈ Rn is a nonlinear function,Γ = diag(γ1, . . . , γn) ∈

Rn×n is a diagonal matrix whereγi > 0 means an agent is able to communicate

through thei-th state, andLij stands for theij-th entry of the Laplacian matrix

L ∈ RN×N .

The uncertain MASs (3.1) can be rewritten in compact form as

ẋ(t) = g(x(t))− c(L⊗ Γ)x(t) (3.2)

wherex(t) = (x1(t)
T , . . . , xN(t)

T )T andg(x(t)) = (f(x1(t))
T , . . . , f(xN(t))

T )T .

Let s(t) ∈ Rn be a solution manifold of an isolated node, i.e.

ṡ(t) = f(s(t)). (3.3)

Let us remark thats(t) can exist in various forms like an equilibrium point, a peri-

odic orbit, or a chaotic orbit. Then, two consensus problemsare given as follows.

Problem 3.1 To establish if the MAS(3.2) achieves local consensus, i.e. for any

ǫ there existκ(ǫ) andT > 0 such that‖xi(0) − xj(0)‖ ≤ κ(ǫ) implies‖xi(t) −
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xj(t)‖ ≤ ǫ for all t > T andi, j = 1, . . . , N .

Problem 3.2 To establish if the MAS(3.2) achieves global consensus, i.e. for any

ǫ there existT > 0 such that‖xi(t)− xj(t)‖ ≤ ǫ for all t > T andi, j = 1, . . . , N

(regardless of‖xi(0)− xj(0)‖).

3.3 Consensus Conditions with Nonlinear Dynamics

3.3.1 Local Consensus Conditions

For local consensus we introduce the following assumption on f(xi).

Assumption 3.1 The functionf(xi) is continuously differentiable in the neighbour-

hood ofs(t).

Remark 3.1 This assumption is fairly mild since it only requires that the first deriva-

tive of the vector field is continuous in a neighbourhood of interested solution man-

ifold.

By subtracting (3.3) from (3.1), one has the system

ẏi(t) = f(xi(t))− f(s(t))− c

N∑

j=1

LijΓyj(t) (3.4)

whereyi = xi− s, i = 1, . . . , N . Then, let us linearize the system (3.4) arounds(t)

as follows.

ẏ(t) = (IN ⊗Df(s(t)))y(t)− c(L⊗ Γ)y(t) (3.5)

in whichy(t) = (y1(t)
T , . . . , yN(t)

T )T andDf(s(t)) ∈ Rn×n is the Jacobian matrix

of f(xi) evaluated forxi = s(t). Let zi = y1 − yi, i = 2, . . . , N , andz(t) =

(z2(t)
T , . . . , zN (t)

T )T . We get a reduced system as

ż(t) = A(t)z(t)

= (IN−1 ⊗Df(s(t))− c(L̃⊗ Γ))z(t)
(3.6)
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where

L̃ =




L22 − L12 . . . L2N − L1N

...
. . .

...

LN2 − L12 . . . LNN − L1N



.

The definition of local consensus directly derives the following result.

Lemma 3.1 Suppose that Assumption 3.1 holds. The local consensus of system

(3.2)can be achieved if the system(3.6) is asymptotically stable.

ProofBased on the definition ofyi one obtains that the local consensus of system

(3.2) can be achieved if|yi − yj| → 0 whenever the initial condition ofy locates

near the equilibrium characterized byy∗i = y∗j for all i, j. Sincezi = y1 − yi, the

previous condition becomes|zi| → 0 whenever the initial condition forz locates

in a neighbourhood of the origin. This condition can obviously be ensured if the

system (3.6) is asymptotically stable in that it is a linear system. �

Next, it will be shown that (3.6) can be transformed into an uncertain polytopic

system of following form





ż(t) = Â(p(t))z(t)

p(t) ∈ P

(3.7)

wherep(t) ∈ Rq is an uncertain parameter vector,P is the simplex expressed by

P = co{p(1), . . . , p(w)}

andÂ(p(t)) is described by

Â(p(t)) = Â0 +

q∑

i=1

pi(t)Âi
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for someÂ0, Â1, . . . , Âq ∈ Rk×k. This can be done by selecting any bounds

bij , cij ∈ R satisfying

bij ≤ Aij(t) ≤ cij ∀t ≥ 0

for all i, j = 1, . . . , k. Let us observe that such bounds exist in thatDf(s(t)) is

continuous. Then, a parameterpl(t) can be assigned to each entry ofAij(t) by

choosing 



Â0,ij = bij

Âl,ij = cij − bij

for the sake of ensuring that the uncertain polytopic systemincludes (3.6). Obvi-

ously, for entries ofAij(t) that are linearly dependent, one can merely introduce

one parameterpl(t).

Robust stability of (3.7) can be checked by HPLFs which is a non-conservative

class of Lyapunov functions whose construction can be handled through LMIs, see

e.g. [79]. In order to provide a LMI condition based on HPLFs for local consensus

of (3.1), the following result is introduced.

Theorem 3.1 Suppose that Assumption 3.1 holds. The local consensus of(3.1)can

be achieved if there is a homogeneous functionv(z) such that

∀z 6= 0





0 < v(z)

0 < −̺i(z) ∀i = 1, . . . , w
(3.8)

where

̺i(z) = v̇(z, p)|p=p(i)

and

v̇(z, p) =

(
dv(z)

dz

)T (
Â(p)z

)
.

Such av(z) is a HPLF for(3.7).
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ProofSuppose that (3.8) holds. One can observe that

v̇(z, p) =
w∑

i=1

di(p)̺i(z)

whered1(p), . . . , dw(p) ∈ R satisfy





w∑

i=1

di(p)p
(i) = p

w∑

i=1

di(p) = 1

di(p) ≥ 0 ∀i = 1, . . . , w.

Hence, from (3.8), it implies that

v̇(z, p) < 0 ∀z 6= 0

i.e. v(z) is a Lyapunov function for (3.7) for allp ∈ P, in particular a HPLF.

Therefore, (3.7) is robustly asymptotically stable, and local consensus of (3.1) can

be achieved. �

Let v(z) be a homogeneous polynomial of degree2m. One can representv(z)

via the SMR in (1.10) as

v(z) = (∗)TV φhom(z,m)

whereV ∈ Rlhom((N−1)n,m)×lhom((N−1)n,m) is a symmetric matrix. For the purpose of

deriving the LMI condition for local consensus, let us first introduce the following

definition.

Definition 3.1 Let Â# be a matrix such that

dφhom(z,m)

dt
=
∂φhom(z,m)

∂z
Âz = Â#φhom(z,m). (3.9)
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Then,Â# is defined to be anextended matrixof Â.

Lemma 3.2 Letz[m] be them-th Kronecker power ofz, andKm be the matrix with

z[m] = Kmφhom(z,m). Then,

Â# = (KT
mKm)

−1KT
m

(
m−1∑

i=0

Im−1−i ⊗ Â⊗ Ii

)
Km.

Let

Ãi = Â(p(i))

andÃ#
i be the extended matrix of̃Ai. The LMI condition for local consensus is

given as follows.

Theorem 3.2 Suppose that Assumption 3.1 holds. For anym ≥ 1, let L(δ) be

a linear parametrization of the linear subspace(1.12) (see Subsection 1.3.3 for

details). The local consensus of(3.1)can be achieved if there is a symmetric matrix

V andδ(1), . . . , δ(w) such that





0 < V

0 < −he
(
V Ã#

i

)
− L(δ(i)) ∀i = 1, . . . , w.

(3.10)

ProofSuppose that (3.10) holds. Via pre- and post-multiplying the first condition in

(3.10) byφhom(z,m)T andφhom(z,m), respectively, one gets that

0 < (∗)TV φhom(z,m)

= v(z)

Hence, it implies thatv(z) is positive definite sinceφhom(z,m)Tφhom(z,m) > 0 for

all z 6= 0. From (3.9), it directly follows that

̺i(z) = (∗)The(V Ã#
i )φhom(z,m)
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and from the second LMI condition, one has that̺i(z) is negative definite. Thus,

from Theorem 3.1 it follows thatv(z) is a HPLF for (3.7), and hence the local con-

sensus of (3.1) can be achieved. �

Let us remark that one can systematically investigate whether there is a symmet-

ric matrix V andδ(1), . . . , δ(w) such that (3.10) holds. Actually, this is a LMI con-

dition, which amounts to handling with a convex optimization problem (for more

details please see [74] and references therein).

3.3.2 Global Consensus Conditions

In order to establish the global consensus of (3.1), (3.4) can be rewritten as

ẏ(t) = ψ(y(t), s(t))− c(L⊗ Γ)y(t) (3.11)

where





y(t) = (y1(t)
T , . . . , yN(t)

T )T ,

ψ(y(t), s(t)) = (ψ(y1(t), s(t))
T , . . . , ψ(yN(t), s(t))

T )T
(3.12)

and

ψ(yi(t), s(t)) = f(yi(t) + s(t))− f(s(t)), i = 1, . . . , N. (3.13)

In this section, we are interested in consideringf(x) with following assumption.

Assumption 3.2 The functionf(xi) is polynomial.

Remark 3.2 Sorts of existing results for global consensus like [47,50,80] are under

the assumption of QUAD condition (or one-side Lipschits condition). Nevertheless,

the QUAD condition is not satisfied for simple nonlinearities like quadratic and cu-

bic polynomial functions. By contrast, Assumption 3.2 includes such nonlinearities,

and also includes famous systems such as Lorenz system and Hamiltonian systems.
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In addition, continuous functions can be approximated arbitrarily well by using

their polynomial components, which shows that Assumption 3.2 is indeed mild.

The following result is directly from [63].

Lemma 3.3 Let σ = (σ1, . . . , σN)
T with σi > 0, i = 1, . . . , N , and

∑N
i=1 σi = 1.

The global consensus of(3.1)can be achieved if there is a matrix

M = (IN − 1Nσ
T )⊗ In (3.14)

such that

lim
t→∞

‖My(t)‖ = 0. (3.15)

For ease of description, here we consider first the case wheres(t) is constant.

Following result can be obtained.

Theorem 3.3 Suppose that Assumption 3.2 holds. The global consensus of(3.1)

can be achieved if there areε ∈ R, a continuously differentiable functionv(y), and

two functionsu1(y) andu2(y) such that





0 ≤ ϕi(y) ∀y ∀i = 1, . . . , 4

0 < ε
(3.16)

where

ϕ1(y) = u1(y)− ε

ϕ2(y) = u2(y)− ε

ϕ3(y) = v(y)− u1(y)‖My‖2

ϕ4(y) = −v̇(y)− u2(y)‖My‖2

(3.17)

and

v̇(y) =

(
dv(y)

dy

)T
(ψ(y, s)− c(L⊗ Γ)y) . (3.18)
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ProofSuppose that (3.16) holds. From the first condition fori = 3 one can get

v(y) ≥ u1(y)‖My‖2

and, sinceu1(y) is positive from the first condition fori = 1,

v(y) > 0 ∀y : My 6= 0.

In a similar way, fori = 4 one can obtain that

v̇(y) < 0 ∀y : My 6= 0.

Thus,v(y) is positive and its time derivative is negative wheneverMy 6= 0, which

implies that (3.15) holds, and therefore global consensus of (3.1) can be achieved.�

Theorem 3.3 gives a condition for global consensus of (3.1) based on finding a

Lyapunov functionv(y) with (3.15). One can observe that the role of the termMy

in the definition ofϕ3(y) andϕ4(y) is to require thatv(y) and−v̇(y) are positive

as long as consensus is not achieved, which implies thatv(y) will decrease tillMy

vanishes.

In order to establish the condition of Theorem 3.3 via LMIs, we are also inter-

ested in the case wherev(y), u1(y) andu2(y) are polynomials. Obviously,v(y) has

no constant and linear monomials if it has to satisfy (3.16).Thus, let us parametrize

v(y), u1(y) andu2(y) as follows.

v(y) = wT0 φpol(y, 2m0)

ui(y) = wTi φpol(y, 2mi), i = 1, 2
(3.19)
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where, for alli = 0, 1, 2, mi is an integer andwi is a vector of proper size. Let us

representϕi(y), i = 1, . . . , 4 by the SMR as

ϕi(y) = (∗)T (Ci(ε, w) + Li(δi))φpol(y,mi) (3.20)

wherew = (wT0 , w
T
1 , w

T
2 )

T .

Theorem 3.4 Suppose that Assumption 3.2 holds. The global consensus of(3.1)

can be achieved if there areε, w andδi, i = 1, . . . , 4, such that





0 ≤ Ci(ε, w) + Li(δi) ∀i = 1, . . . , 4

0 < ε.
(3.21)

ProofSuppose that (3.21) holds. Through pre- and post-multiplying the first condi-

tion in (3.21) byφpol(z,mi)
T andφpol(z,mi), respectively, one can obtain

0 ≤ (∗)T (Ci(ε, w) + Li(δi))φpol(z,mi)

= ϕi(y) ∀y ∀i = 1, . . . , 4.

As a result, (3.16) holds, and from Theorem 3.3 one can conclude that the global

consensus of (3.1) can be achieved. �

Remark 3.3 Theorem 3.4 supplies a LMI condition for global consensus of(3.1).

This condition can be directly extended to the cases wheres(t) is a periodic orbit,

a chaotic orbit or other bounded solutions by constructing an uncertain polytopic

system and by using the LMI condition in Theorem 3.4 at the vertices of the polytope.

Hence, the details are omitted here for conciseness.
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3.4 Robust Local Consensus with Time-varying Un-

certainties

In this section, robustness of local consensus is investigated for time-varying topo-

logical uncertainties. In particular, it is supposed that the weighted adjacency matrix

G is affected by topological uncertaintyθ(t) ∈ Ra, indicating the time-varying dis-

turbs from environment to the system dynamics [45,81,82]. And θ(t) satisfies

θ(t) ∈ Ω. (3.22)

In this section, we are interested in following class ofΩ.

Ω = co{θ(1), ..., θ(v)} (3.23)

for some given vectorsθ(1), ..., θ(v) ∈ Ra. Then, let us introduce the uncertain

MASs with time-varying uncertainties by

ẋi(t) = f(xi(t))− c

N∑

j=1

Lij(θ(t))Γxj(t), i, j = 1, . . . , N (3.24)

wherexi ∈ Rn denotes the state ofi-th agent,N denotes the number of agents,c de-

notes the coupling weight,f(xi) ∈ Rn is a nonlinear function,Γ = diag(γ1, . . . , γn) ∈

Rn×n denotes a diagonal matrix whereγi > 0 stands for the agents communicat-

ing through theiri-th states.Lij(θ(t)) is theij-th entry of the uncertain Laplacian

matrix L(θ(t)) ∈ RN×N given byLij(θ(t)) = −Gij(θ(t)) for all i 6= j and by

Lii(θ(t)) = −
∑N

j=1, j 6=i Lij(θ(t)).

Linear perturbation in network of MASs is widely employed inliteratures where

Gij(θ(t)) is a linear function [45,64,83]. Thus, the uncertain Laplacian matrix can

be represented as

L(θ(t)) = L0 +

a∑

i=1

θi(t)Li.
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The uncertain MAS (3.24) can be rewritten in a compact form

ẋ(t) = g(x(t))− c(L(θ(t))⊗ Γ)x(t) (3.25)

wherex(t) = (x1(t)
T , . . . , xN(t)

T )T andg(x(t)) = (f(x1(t))
T , . . . , f(xN(t))

T )T .

Let s(t) ∈ R
n be a solution of an isolated node, i.e.

ṡ(t) = f(s(t)). (3.26)

Let us observe thats(t) could be an equilibrium point, a periodic orbit, or a chaotic

oscillator, etc. Now, we can propose the robust local consensus problem as follows.

Problem 3.3 To establish whether the uncertain MAS(3.25)achieves robust local

consensus, i.e. for anyǫ there existκ(ǫ) andT > 0 such that‖xi(0)−xj(0)‖ ≤ κ(ǫ)

implies‖xi(t)− xj(t)‖ ≤ ǫ for all θ(t) ∈ Ω, t > T andi, j = 1, . . . , N .

Another related problem of great academic interests is the consensus margin

problem, which will be investigated in Subsection 3.4.3.

3.4.1 System Approximation

First, we note thatf(xi) satisfies the Assumption 3.1. Letθ(t) ∈ Ω be defined by

(3.23).

Remark 3.4 The uncertain parameterθ(t) denotes a polytopic uncertainty which

is a representative form both for time-varying system and for time-invariant system

in the area of robust control [83–85].

Let us observe that
∑N

j=1 Lij(θ(t))Γs(t) = 0. By subtracting (3.26) from (3.24),

one can get

ẏi(t) = f(xi(t))− f(s(t))− c
N∑

j=1

Lij(θ(t))Γyj(t) (3.27)
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whereyi = xi − s, i = 1, . . . , N . For local consensus, the dynamics of the system

can be used locally abouts(t) in the case without uncertainty [47, 86, 87]. For the

uncertain system (3.27), it can also be displayed as

ẏ(t) = (IN ⊗Df(s(t)))y(t)− c(L(θ(t))⊗ Γ)y(t) (3.28)

wherey(t) = (y1(t)
T , . . . , yN(t)

T )T andDf(s(t)) ∈ Rn×n is the Jacobian matrix

of f(xi) evaluated forxi = s(t). Observe1N is the right eigenvector ofL(θ(t)) with

respect to eigenvalue zero, letηT = (η1, ..., ηN) ∈ R1×N be the left eigenvector

of L(θ(t)) corresponding to eigenvalue zero, and
∑N

i=1 ηi = 1. A disagreement

variable can be defined as follows:

z(t) = y(t)− ((1NηT )⊗ In)y(t) (3.29)

wherez(t) ∈ RnN has a property that(ηT ⊗ In)z(t) = 0n. Define

M = (IN − 1NηT )⊗ In. (3.30)

One can observe that matrixM commutes with matricesIN⊗Df(s(t)) andc(L(θ(t))⊗

Γ), then an uncertain disagreement system can be constructed as follows:

ż(t) = (IN ⊗Df(s(t))− cL(θ(t))⊗ Γ)z(t). (3.31)

Lemma 3.4 Suppose that Assumption 3.1 holds. The robust local consensus of

system(3.28)can be achieved if and only if system(3.31)is asymptotically stable.

Proof(Necessity) It is obvious that the robust local consensus ofsystem (3.28) can

be achieved if|yi−yj | → 0n whenever the initial condition fory locates in a neigh-

bourhood of the equilibrium wherey∗i = y∗j for all i, j. Assumelimt→∞ y(t) →
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(τ(t)T , ..., τ(t)T )T = 1N ⊗ τ(t). One has

lim
t→∞

z(t) = ((IN − 1NηT )⊗ In)× (1N ⊗ τ(t))

= ((IN − 1NηT )1N)⊗ τ(t) = 0nN .

(Sufficiency) One can observe that there exist matricesΥ ∈ RN×(N−1) andΨ ∈

R(N−1)×N such that




ηT

Ψ


L(θ(t))(1N Υ) =




0 0TN−1

0N−1 Ξ(θ(t))




whereΞ ∈ R(N−1)×(N−1) is a matrix function inθ(t). For system (3.28), pre-

multiplying by




ηT

Ψ


⊗ In, the firstn rows generate that

ξ̇ = Df(s(t))ξ(t) (3.32)

whereξ(t) ∈ Rn. Suppose system (3.31) is asymptotically stable, it is obvious that

y(t) → (ξ(t)T , ξ(t)T , ..., ξ(t)T )T = 1N ⊗ ξ(t).

This completes this proof. �

Lemma 3.5 Suppose that Assumption 3.1 holds. The robust local consensus of sys-

tem(3.25)can be achieved if asymptotic stability is ensured for following polytopic

system. 



ż(t) = Â(p(t))z(t)

p(t) ∈ P

(3.33)

wherep(t) ∈ Rq stands for an uncertain parameter vector,P is the polytope de-

fined by

P = co{p(1), . . . , p(υ)}

75



andÂ(p(t)) satisfies

Â(p(t)) = Â0 +

q∑

i=1

pi(t)Âi

andÂ0, Â1, . . . , Âq ∈ Rq×q.

ProofLet us define

D(t) = IN ⊗Df(s(t)).

Any suitable boundsbij , cij ∈ R can be properly chosen such that

bij ≤ Dij(t) ≤ cij ∀t ≥ 0

for all i, j = 1, . . . , k andk = nN . Obviously, such bounds always exist in that

Df(s(t)) is continuous. Then, let us defineι(t) ∈ R
b such that

ι ∈ I = co{ι(1), ..., ι(c)}

and for each entry ofDij(t), a parameterιl(t) is defined by selecting





D̂0,ij = bij

D̂l,ij = cij − bij

such thatD(t) is entirely contained in the uncertain polytopic system. Itis clear

that for entries ofDij(t) that are linearly dependent, merely one parameterιl(t) is

required. Then, system (3.31) can be represented as

ż(t) = A

(
b∑

1=1

Diιi(t),
a∑

i=1

Liθi(t)

)
z(t) (3.34)

where functionA is linear onιi(t), for all i = 1, ..., b and also linear onθi(t), for

all i = 1, ..., a. One can get a new time-varying variablep̂(t) ∈ R
a+b constrained

in P̂ = co{p̂(1), . . . , p̂(υ̂)} such that system (3.34) can be further equivalently dis-

played as

ż(t) = Â(p̂(t))z(t).
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which completes the proof. �

Remark 3.5 In an overwhelming number of existing literatures, local consensus

conditions are provided based on the solution manifolds(t), thus leaving it a non-

convex consensus condition which is rarely tractable. Thislemma provides an es-

sential transformation which points out a useful way to makeconditions of robust

local consensus solvable by convex approaches given by Section 1.3.3. Neverthe-

less, we have to admit that conservatism arises from the gap between the polytope

I and the manifolds(t). Approaches without utilizing this approximation will also

be discussed in Subsection 3.4.2.

Based on Lemma 3.5, robust local consensus problem changes to a robust sta-

bility problem of (3.33), which can be properly establishedby a non-conservative

Lyapunov stability approach, i.e., using HPLFs. Moreover,robust local consensus

conditions can be examined by handling a LMI feasibility test.

3.4.2 Conditions via Using HPLF

Let us review the definition of HPLF provided in Theorem 3.1, and let v(z) be a

HPLF of degree2m for the system (3.33). Then, following theorem supplies a

robust local consensus condition for system (3.33).

Theorem 3.5 Under Assumption 1, if there is a continuously differentiable homo-

geneous functionv(z) fulfilling





0 < v(z)

0 < −µi(z) ∀i = 1, . . . , υ,
∀z 6= 0 (3.35)

where

µi(z) = v̇(z, p)|p=p(i)

and

v̇(z, p) =

(
dv(z)

dz

)T (
Â(p)z

)
.
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Then, functionv(z) is a HPLF for (3.33)and the robust local consensus of(3.24)

can be achieved.

ProofSincep(t) ∈ R
q andP is a polytope described byP = co{p(1), . . . , p(υ)},

one can getd1(p), . . . , dw(p) ∈ R such that

Â(p(t)) =

w∑

i=1

di(p)Â(p
(i))

whered1(p), . . . , dw(p) ∈ R satisfy





w∑

i=1

di(p)p
(i) = p

di(p) ≥ 0 ∀i = 1, . . . , υ
w∑

i=1

di(p) = 1.

Suppose that (3.35) holds. One has that

v̇(z, p) =

(
dv(z)

dz

)T ( w∑

i=1

di(p)Â(p
(i))z

)

=
w∑

i=1

di(p)

(
dv(z)

dz

)T (
Â(p(i))z

)

=

w∑

i=1

di(p)µi(z)

which yields that

v̇(z, p) < 0 ∀z 6= 0

Hence, for allp ∈ P, v(z) is a HPLF for (3.33). Therefore, (3.33) is asymptotically

robustly stable, and robust local consensus of (3.24) can beachieved. �

Remark 3.6 For Theorem 3.5, it is worth noting that

• Theorem 3.5 gives conditions for robust local consensus, and it avoids calcu-

lating the eigenvalues of Laplacian matrix which is needed in the literatures.
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In addition, HPLF is used and provides a less conservative condition than

QLFs widely adopted by literatures, thus proposing a possible way to inves-

tigate topological conditions by graph theory.

• For nonlinear time-varying uncertainties, the approach ofHPLF can hardly

be used. Nevertheless, provided thatG(θ) is polynomial function ofθ, suffi-

cient conditions can be given by exploiting polynomial parameter-dependent

Homogeneous Lyapunov function (PPD-HLF), i.e., constructing a Lyapunov

function which has a polynomial dependence on uncertain parameterθ.

• Sufficient conditions can also be provided by PPD-HLF in the case where

the transformation is not used in Lemma 3.5. But this approach can hardly

provide solvable conditions such as LMI conditions sinces(t) is involved.

Moreover, for the sake of proposing some solvable conditions, various as-

sumptions are required while the conservatism could be elevated, such as

assuming|s(t)|∞ < c, wherec is a positive constant.

One intuitive yet effective way for checking whether a homogeneous polynomial

is nonnegative consists of examining whether it is a SOS polynomial, which can be

equivalently represented as a LMI feasibility test (Refer to Subsection 1.3.3).

According to Theorem 3.1, we can display the HPLFv(z) via SMR in (1.10) as

follows

v(z) = (∗)TV φhom(z,m) (3.36)

whereV ∈ Rlhom((N−1)n,m)×lhom((N−1)n,m) is a symmetric matrix. Based on Definition

3.1 and Lemma 3.2, for matrix for̂A, one can get the corresponding extended matrix

Â# which is given by

Â# = (KT
mKm)

−1KT
m

(
m−1∑

i=0

Im−1−i ⊗ Â⊗ Ii

)
Km. (3.37)

Let us denote that

Ãi = Â
(
p(i)
)
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and letÃ#
i be the extended matrix of̃Ai. LMI conditions for robust local consensus

can be proposed as follows.

Theorem 3.6 Under Assumption 3.1, the robust local consensus of(3.24)can be

achieved if there exist a symmetric matrixV andδ(1), . . . , δ(υ) such that





0 < V

0 > F (V, δ(i)) ∀i = 1, . . . , υ.
(3.38)

where

F (V, δ(i)) = he
(
V Ã#

i

)
+ L

(
δ(i)
)
.

ProofProvided that (3.38) holds, via pre- and post-multiplying the first condition in

(3.38) byφhom(z,m)T andφhom(z,m), respectively, one can get that

0 < (∗)TV φhom(z,m)

= v(z)

which directly yields thatv(z) is positive definite since the square of power vector

φhom(z,m)Tφhom(z,m) > 0 for all z 6= 0. Moreover, from (3.9) one has that

µi(z) = (∗)T
(
V Ã#

i +
(
V Ã#

i

)T)
φhom(z,m)

and based on the second LMI condition, one can obtain that

µi(z) < 0.

Thus, by condition (3.38),v(z) is verified to be a HPLF for (3.33). Therefore, from

Theorem 3.5, the robust local consensus of (3.24) can be achieved which ends the

proof. �
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Remark 3.7 One can systematically check whether there exist a symmetric matrix

V andδ(1), . . . , δ(υ) such that(3.38)holds. Actually, this is a LMI condition, which

amounts to tackling with a convex optimization problem.

3.4.3 Polytopic Consensus Margin

Subsection 3.4.2 has given the answer how the robust local consensus with poly-

topic uncertainties can be achieved. Another question arises reasonably that what

is the largest level of polytopic uncertainties such that the robustness of local con-

sensus maintains. In order to cope with this problem, let us first bring in following

definitions.

Definition 3.2 ζP
2m is called2m-HPLF polytopic consensus marginfor system(3.24)

if there is a HPLFv with degree2m for system(3.24)such that

ζP
2m = sup

{
ζ ∈ R : θ(t) ∈ co

{
ζθ(1), ..., ζθ(v)

}}
.

Of special worth is another denotation which comes from a special instance of

above definition, considering the polytopeΩ as the unitℓ∞ box.

Definition 3.3 ζ∞2m is called2m-HPLF ℓ∞ consensus marginfor system(3.24) if

there exists a HPLFv with degree2m for (3.24)such that

ζ∞2m = sup
{
ζ ∈ R : ‖θ(t)‖∞ ≤ ζ

}
.

Let us propose the problem of estimatingζ∞2m as follows.

Problem 3.4 (2m-HPLF ℓ∞ consensus margin problem) To search for the lower

bound ofζ∞2m if there exists a HPLFv with degree2m for (3.24).

System (3.33) can be rewritten withθ(t) = p(t) ∈ Ra andΩ = P as follows.





ż(t) = Â(θ(t))z(t)

θ(t) ∈ Ω.
(3.39)
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Denote the vertices of the unitℓ∞ ball byν(1), ..., ν(2
a), and let

Āi = Â(θ(i))− Â0, i = 1, ..., 2a,

andĀ#
i , i = 1, ..., 2a, be the corresponding extended matrix ofĀi (see Definition

3.1). Following result gives a desirable way which consistsof a quasi-convex opti-

mization to compute the2m-HPLF ℓ∞ consensus margin.

Theorem 3.7 Define

ζ̂∞2m =
1

ϑ∗
(3.40)

where integerm ≥ 1, ϑ∗ can be gained from

ϑ∗ = inf
ϑ, V, δ(0),...,δ(2

a)
ϑ

s.t.





0 < ϑ

0 < V

0 < −he
(
V Â#

0

)
− L

(
δ(0)
)

0 < ϑ
(
− he

(
V Â#

0

)
− L

(
δ(0)
))

−he
(
V Ā#

i

)
− L

(
δ(i)
)
∀i = 1, . . . , 2a

(3.41)

andL(·) is a linear parametrization ofL in (1.12). Thenζ̂∞2m is the lower bound of

ζ∞2m, i.e. ζ̂∞2m ≤ ζ∞2m.

Proof Suppose that (3.41) holds. By pre- and post-multiplying thesecond LMI

condition in (3.41) byφhom(z,m)T andφhom(z,m), respectively, one gets that

0 < (∗)TV φhom(z,m)T
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which impliesv(z) is positive definite sinceφhom(z,m)Tφhom(z,m) > 0 for all

z 6= 0. In addition, the derivative ofv(z) for θ = ϑ−1ν(i) can be obtained by

v̇(z)|θ=ϑ−1ν(i) = (∗)The
(
V
(
Â#

0 + ϑ−1Ā#
i

))
φhom(z,m)

= ϑ−1(∗)T
(
ϑhe
(
V Â#

0

)
+ he

(
V Ā#

i

))
φhom(z,m)

= ϑ−1(∗)T
(
ϑ
(
he
(
V Â#

0

)
+ L

(
δ(0)
))

+he
(
V Ā#

i

)
+ L

(
δ(i)
))
φhom(z,m).

(3.42)

Thus, from the last constraint in (3.41) one can obtain

v̇(z)|θ=ϑ−1ν(i) < 0 ∀i = 1, ..., 2a.

Based on this, one can also obtain thatv̇(z) is negative definite for allθ(t) in set

{
θ(t) ∈ R

a : ‖θ(t)‖∞ ≤ ϑ−1
}
.

Therefore, one haŝζ∞2m ≤ ζ∞2m. This proof is thus completed. �

Remark 3.8 Theorem 3.7 gives a lower bound for2m-HPLF ℓ∞ consensus mar-

gin ζ∞2m. In specific, one getŝζ∞2m = ζ∞2m when(nN, 2m) is in certain sets, e.g.

{(nN, 2) : nN ∈ N}, {(2, 2m) : m ∈ N} and{(3, 4)} [88]. These sets are asso-

ciated with the Hilberts 17th problem concerning on the gap between SOS polyno-

mials and positive polynomials.

A simple result can be given directly from Theorem 3.7 when weconsidera = 1

andθ ∈ [0, ψ]. Analogous withζ∞2m, we defineψ∞
2m for the case of system (3.33)

with scalar uncertainty broadly adopted in literatures.

Corollary 3.1 Let us define

ψ̂∞
2m =

1

ϑ∗
(3.43)
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where integerm ≥ 1, ϑ∗ is the solution of

ϑ∗ = inf
ϑ, V, δ(1) ,δ(2)

ϑ

s.t.





0 < V

0 < −he
(
V Â#

0

)
− L

(
δ(1)
)

0 < ϑ
(
− he

(
V Â#

0

)
− L

(
δ(1)
))

−he
(
V Ā#

1

)
− L

(
δ(2)
)

(3.44)

andL(·) is a linear parametrization ofL in (1.12). Thenψ̂∞
2m is the lower bound of

ψ∞
2m, i.e. ψ̂∞

2m ≤ ψ∞
2m.

3.5 Numerical Examples

In this section, some examples are provided to illustrate the proposed methods.

3.5.1 Example 1

Let us consider a coupled system as an example for local consensus where each

agent evolves in a second order dynamics. The nonlinear function f(x) in model

(3.1) is given by

f(xi) =




xi1 − xi2 − xi1(x
2
i1 + x2i2)

xi1 + xi2 − xi2(x
2
i1 + x2i2)




wherexi = (xi1, xi2)
T , i = 1, 2. The linear part of (3.1) is described by the con-

stants

c = 1, Γ = I2, G =




1 1

2 1


 .

One has that (3.3) holds with

s(t) =




0

0


 or s(t) =




cos t

sin t


 .
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Let us consider the problem of establishing local consensusfor the second solution

of s(t), i.e. for the periodic orbit. The matrixA(t) in (3.6) is given by

A(t) =




−2− 3 cos2 t− sin2 t −1− 2 cos t sin t

1− 2 cos t sin t −2− cos2 t− 3 sin2 t


 .

As described in Subsection 3.3.1, one can build (3.6) in an uncertain polytopic

system. Indeed, by selectingp1 = cos2 t andp2 = cos t sin t, it yields thatÂ(p) in

(3.7) is given by

Â(p) =




−3 − 2p1 −1− 2p2

1− 2p2 −5 + 2p1


 .

Observe thatp1 ∈ [0, 1], p2 ∈ [−0.5, 0.5]. Thus, the polytopeP can be expressed

by

P = co








1

0.5


 ,




1

−0.5


 ,




0

0.5


 ,




0

−0.5







.

One can get that the LMI condition (3.10) holds and hence local consensus can be

achieved according to Theorem 3.2. In particular, a HPLF in this case can be found

easily byv(z) = z421 + z221z
2
22 + z422.

Figure 3.1 shows some simulations for this case. In particular, the first subfigure

displays the trajectory ofx(t) initializing from x(0) = (1, 2,−1,−2)T , while the

second subfigure exhibits100 trajectories forz(t) with initial conditions randomly

chosen in[−10, 10]4.

3.5.2 Example 2

Let us consider (3.1) as an example for global consensus with

f(xi) =




−xi2

−xi1 − x3i1 − xi2
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Fig. 3.1: Example for local consensus.
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wherexi = (xi1, xi2)
T , i = 1, 2, and

c = 1, Γ = I2, G =




1 2

1 1


 , M =




0.5 −0.5

−0.5 0.5


 .

One has that (3.3) holds withs(t) = (0, 0)T . Consider the problem of checking

global consensus for this solution. To this end, the LMI condition (3.21) is checked

with auxiliary polynomialsui(y) of degree2. The result shows that this condition

cannot be satisfied by employing quadratic Lyapunov functions. Nevertheless, this

condition is feasible with Lyapunov functions of degree4, in specific the condition

holds with ε = 0.5, ui(y) = 1 + yTi yi and v(y) = yT1 y1 + yT2 y2 + (yT1 y1)
2 +

(yT2 y2)
2 − y211y

2
21 − y212y

2
22. Therefore, based on Theorem 3.4, global consensus can

be achieved.

3.5.3 Example 3

In this case, a coupled jet engines of Moore-Greitzer model is considered for robust

local consensus [89].f(x) in (3.27) shows the intrinsic dynamics of each jet engine

as

f(xi) =




−0.5x3i1 − 1.5x2i1 − xi2

3xi1 − xi2




wherexi = (xi1, xi2)
T , i = 1, 2. For this case, a no-stall equilibrium is driven to the

origin by following transformation.





xi1 = x̃i1 − 1

xi2 = x̃i2 − xco − 2.

Here, we briefly show the practical meanings of parameters:x̃i1 denotes the mass

flow, x̃i2 denotes the pressure rise andxco is a constant. The information exchange

between these two jet engines is disturbed by a time-varyinguncertaintyθ(t) where
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the uncertain weighted adjacency matrixG(θ(t)) is chosen as

G(θ(t)) =




1 2− θ(t)

1 1


 .
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Fig. 3.2: Hopf bifurcation of coupled M-G jet engines.

Aroundθ = 3.392, a Hopf bifurcation occurs as shown in Fig. 3.2 and robust

local consensus can not be achieved whenθ > 3.392. Thus let us supposeθ ∈ Ω =

co{0, 3.0}. Next we will establish whether there is a HPLF such that robust local

consensus can be achieved for this chosen range.
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Fig. 3.3: Trajectories of robust local consensus.
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Computation results show that we can not find a QLF such that robust local

consensus can be achieved wherem = 1. However, by using a HPLF wherem = 2,

one has that the LMIs (3.38) hold and hence robust local consensus can be achieved

from Theorem 3.6. In specific, a HPLF for this case can be constructed thatv(z) =

φhom(z, 2)
T Iφhom(z, 2) with m = 2. Figure 3.3 exhibits 100 trajectories ofz(t)

with the initial conditionsx(0) randomly chosen in[−5, 5]4, andθ(t) randomly

chosen inΩ.

3.5.4 Example 4

In this case, we consider (3.24) as an example for robust local consensus withN =

3, n = 1, c = 1, Γ = 1 and nonlinear functionf(x) is given by

f(x) = −x− x3 − x5.

The uncertain weighted adjacency matrixG(θ) is chosen by

G(θ) =




1 2 + θ θ

−2 − θ 1 5

θ −3 1




whereθ(t) ∈ co{0, 1}. One can obtain that (3.26) holds withs(t) = (0, 0)T . By

choosingp1 = θ(t), it yields thatÂ(p) in (3.33) can be built as

Â(p) =




−3− 2p1 2 + p1 p1

−2− p1 −4 + p1 5

p1 −3 2− p1



.

Results show that the LMIs (3.38) hold and hence robust localconsensus can be

achieved according to Theorem 3.6. In this case, the lower bound obtained by (3.41)

is tight, i.e.,ψ̂∞
2m = ψ∞

2m. By applying QLFs, i.e.,m = 1, one getsψ∞
2 = 8.9458.

In comparison, via solving the GEVP (3.44) and exploiting a HPLF, one can find
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that robust consensus margin has been significantly expanded, as shown in Table

3.1. By employing bisection method, we obtain that the maximal consensus margin

is 13.000 which means by using a HPLF merely withm = 2 one can get a very

desirable result for this case.

Table 3.1: Consensus margin comparison
m=1 m=2 m=3 m=4

ψ∞
2m 8.9458 12.9397 12.9532 12.9698

3.6 Summary

In this chapter, firstly, we have investigated local and global consensus in MASs

with nonlinear dynamics. For local consensus, a method has been provided based

on the approximation of the original system into an uncertain polytopic system and

on the use of HPLFs, while, for global consensus, another method has been provided

based on the pursuit of an appropriate PLF.

In addition, we have considered robust local consensus in MASs with time-

varying parametric uncertainties. A novel convex approachhas been provided based

on the transformation from the original system to an uncertain polytopic system.

By using HPLFs, robust local consensus condition can be gained. Moreover, cor-

responding LMI-based conditions are given by using SMR technique. Polytopic

consensus margin has also been estimated by a convex optimization consisting of

GEVPs.

90



Chapter 4

Robust Consensus for Uncertain and

Nonlinear Dynamics

4.1 Introduction

Robust consensus with time-varying uncertainty desirablymeets the demand of

practical implementations and has already been successfully applied in wireless

sensor networks and neural networks [90]. In addition, existing uncertain mod-

els for consensus protocols usually assume that there exists time-invariant uncer-

tainty or slowly time-varying uncertainty, thus making special academic interests

in time-varying uncertainty with bounded variation rate (See Subsection 4.1.2).

Furthermore, for adjacency matrix perturbed by uncertain parameters, traditional

approaches like eigenvalue analysis are extremely difficult to apply, while it can be

suitably tackled with parameter-dependent contraction theory. Last but not the least,

even comparing with the prevailing approaches, the QLFs method or parameter-

dependent Lyapunov method, the parameter-dependent contraction analysis main-

tains its advantages in that it does not require an error dynamics (whose construction

needs additional assumptions or approximations), and in some circumstances makes

the Lyapunov methods as special cases (See Section 4.2).

This chapter considers robust exponential consensus and robust asymptotical
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consensus problems affected by time-varying topological uncertainty with bounded

variation rate via parameter-dependent contraction analysis. For the first time, to

the best of our knowledge, the time-varying topological uncertainty with bounded

variation rate is considered in robust consensus problem, making the case with time-

invariant uncertainty and the case with time-varying polytopic uncertainty as special

ones. An approach of parameter-dependent contraction matrix is proposed by us-

ing a general infinitesimal length, which is less conservative than the cases using

constant contraction matrix or Lyapunov-like approach. Distinct with nonlinear

inequalities provided by traditional methods, this chapter provides tractable condi-

tions of LMIs for robust consensus problem by employing SMR and by parameter-

izing suitable affine spaces. For robust asymptotical consensus, the lower bound of

variation rate margin is estimated via handling GEVPs.

This chapter is organized as follows. Section 4.1 introduces some basic ideas

of contraction theory, and robust consensus problems of MASs with rate-bounded

polytopic uncertainty are proposed. In Section 4.2, robustconsensus conditions are

given both for robust exponential consensus and for robust asymptotical consen-

sus. In Section 4.3, HPD-PCM is introduced and robust consensus conditions are

proposed in terms of LMIs. Section 4.4 investigates the robust consensus margin.

In Section 4.5, some typical examples are given to illustrate our proposed method.

Lastly, Section 4.6 summarizes this chapter.

4.1.1 Basics of Contraction Theory

To introduce contraction theory, let us consider a deterministic dynamical system of

time-dependent ordinary differential equation as follows

ẋ = f(x, t), x(t0) = x0, t0 ≥ 0 (4.1)
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wheref is a nonlinear vector field andx is a state vector in a subset ofRn. Suppose

thatf is continuously differentiable, one can get an exact differential relation

δẋ = J(x, t)δx (4.2)

whereJ(x, t) = ∂f
∂x

stands for the Jacobian of the vector fieldf , and δx is an

infinitesimal change evaluated along a trajectory.δx is also said to be ”virtual dis-

placement” which is widely used in classical mechanics and formally deemed as a

linear tangent differential form with respect to time [91,92].

Definition 4.1 (Contraction) System(4.1) is called contracting if there is somec >

0 such that for every two solutionsx(t) = ν(t, 0, ξ) andy(t) = ν(t, 0, ζ) of System

(4.1), initializing from different points, converge exponentially to each other, i.e.

|x(t)− y(t)| ≤ e−ct|ξ − ζ | wheref(x, t) is said to be a contracting function.

Similar with above definition, another one is given here for global asymptotical

contraction behavior.

Definition 4.2 (Asymptotical Contraction) System(4.1)is called asymptotically con-

tracting if for every two solutionsx(t) = ν(t, 0, ξ) andy(t) = ν(t, 0, ζ) of System

(4.1), initializing from different points, converge asymptotically to each other, i.e.

limt→∞ |x(t)− y(t)| = 0 wheref(x, t) is said to be an asymptotically contracting

function.

System (4.2) can be considered as a linear time-varying differential equation

δẋ = J(t)δx whereJ(t) is a fixed function of time. By the Coppel Inequality, one

can get an upper bound for the magnitude of its solutions as follows [93],

|δx|i ≤ |δx0|ie
∫ t

0
µi(J(τ))dτ (4.3)

whereµ(J) is the matrix measure of the Jacobian matrix off . Following result

gives an essential condition about contracting systems which can be tracked down

from numerous technical assumptions [91,94].
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Lemma 4.1 The system(4.1)is contracting if there are some matrix measureµi(J(x, t))

and a positive constantc such that

µi(J(x, t)) ≤ −ci (4.4)

where the scalarci is called the contraction rate of the system corresponding to

vector norm| · |i.

The matrix measureµi corresponding to the induced matrix norms‖ · ‖1, ‖ · ‖2

and‖ · ‖∞ can be obtained in real domain [71, 91] and in complex domain [95].

However, for a particular vector norm and its associated induced matrix norm, it is

in general a hard task to get an explicit expression [71]. From next proposition, a

clue will be provided on the relationship amongst differentmatrix measures about

contraction. Firstly, let us introduce following Lemma from [96].

Lemma 4.2 For any two positive real numbersp > q > 0 and a vector spaceV

with finite dimensionn with regards to vector norms| · |q and | · |p, a relationship

can be given by

|x|p ≤ |x|q ≤ n(1/q−1/p)|x|p. (4.5)

Proposition 4.1 (Equivalence on contraction) For any two positive real numbers

p, q with p > q > 0, | · |q and | · |p are two vector norms onV , System 4.1 is

contracting for vector norm| · |q with contraction ratecq, which implies that it is

also contracting for vector norm| · |p at the same contraction rate with a time-shift

ψ = (p−q) logn
(pqcq)

, i.e.,

|δx|p ≤ |δx0|pe
−cq(t−ψ).

Proof From (4.3), one can obtain that

|δx|q ≤ |δx0|qe
∫ t

0 µq(J(τ))dτ .
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From Definition 4.1, the contraction of System 4.1 for| · |q yields to

|δx|q ≤ |δx0|qe
−cq .

Obviously, one can have the contraction ratecq from the upper bound of matrix

measure of system Jacobian as

cq = −max{µq(J)}.

According to the equivalence between| · |q and | · |p from Lemma 4.2, one has

|δx|p ≤ n(1/q−1/p)|δx0|pe
−cqt

which can be expressed as

|δx|p ≤ |δx0|pe
−cq(t−ψ)

whereψ = (p−q) logn
(pqcq)

denotes a time-shift. �

Considering the equivalence of contraction, we choose Euclidean norm as [91]

for ease of description.

4.1.2 Robust Consensus Problems

In this subsection, robust consensus problem with bounded-rate polytopic uncer-

tainties will be introduced. A weighted and directed graphG = (A , E , G) consists

of a finite nonempty node setA = {A1, ..., AN}, a directed edge setE ⊆ A ×A ,

and a weighted adjacency matrixG ∈ RN×N . A directed edge fromAj to Ai is

denoted asGij which stands for information can be transmitted from thej-th node

to thei-th node but not conversely.

Time-varying parametric uncertainties are considered in this chapter. In spe-
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cific, it is supposed that the weighted adjacency matrixG is affected by uncertain

parametersθ(t) ∈ Ra, denoting the time-varying perturbations from environment

to the system dynamics [42,45]. It satisfies that

(θ(t), θ̇(t)) ∈ Ω = {(θ(t), θ̇(t)) : θ(t) ∈ Λa, θ̇(t) ∈ Ξ} (4.6)

in whichΛa is a simplex andΞ is a polytope given by





Λa = {θ(t) ∈ Ra :
∑a

i=1 θi(t) = 1, θi(t) ≥ 0}

Ξ = co{d(1), ..., d(v)}
(4.7)

for some given vectorsd(1), ..., d(v) ∈ Ra such that
∑a

i=1 d
(j)
i = 0, ∀j = 1, ..., v and

0a ∈ Ξ where0a is a column vector with alla entries being zero.

Remark 4.1 Sinceθ̇(t) belongs toΞ, one haṡθ(t) =
∑v

j=1 cj(t)d
(j) wherec1(t), ..., cv(t) ∈

R satisfy 



v∑

j=1

cj(t) = 1

cj(t) ≥ 0, ∀j = 1, ..., v.

Thus, one has that
a∑

i=1

θ̇i(t) =

v∑

j=1

cj(t)

a∑

i=1

d
(j)
i = 0.

Remark 4.2 The model(4.6) has been introduced by [97] and is developed as an

extension of models adopted in previous works [98, 99], including various famous

models as special cases.

• A prevailing model widely adopted by literatures is the uncertainty set of time-

invariant polytope. It can be obtained from(4.6) by selectingv = 1 and

d(1) = 0a.

• The model of time-varying uncertainty constrained in a polytope can be ob-

tained from(4.6) by selecting the scalara equal to the number of vertices

of the polytope and properly choosing the coupling matricesassociated to

θ1, ..., θa.
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The uncertain MASs with time-varying uncertainties is under following consensus

protocol

ẋi(t) = f(xi(t))− b
N∑

j=1

Lij(θ(t))Γxj(t), i, j = 1, . . . , N (4.8)

wherexi ∈ R
n is the state ofi-th agent,N is the number of agents,b is the coupling

weight,f(xi) ∈ Rn is a nonlinear function,Γ = diag(γ1, . . . , γn) ∈ Rn×n is a diag-

onal matrix whereγi > 0 means the agents communicating through theiri-th states.

Lij(θ(t)) is theij-th entry of the uncertain Laplacian matrixL(θ(t)) ∈ RN×N given

byLij(θ(t)) = −Gij(θ(t)) for all i 6= j and byLii(θ(t)) = −
∑N

j=1, j 6=i Lij(θ(t)).

Remark 4.3 Consensus protocol(4.8) is a general form and has a great number of

implementations. One special case of time-invariant uncertainty has already suc-

cessfully applied in voltage analysis of chaotic circuits [100]. As a non-autonomous

system with time-varying input, it implies that not only moving equilibrium point is

considered, but bounded manifolds like periodic orbit or chaotic oscillator.

Remark 4.4 Linear pertubation in communication network is widely employed in

literatures [45,64,83]. In this section, we also assumeGij(θ(t)) is a linear function

thus the uncertain Laplacian matrix can be displayed as

L(θ(t)) = L0 +
a∑

i=1

θi(t)Li.

Nonlinear coupling with nonlinear disturbs will also be discussed in Section 4.2.

Let us introduce the uncertain MAS (4.1) in compact form as

ẋ(t) = g(x(t))− b(L(θ(t))⊗ Γ)x(t) (4.9)

wherex(t) = (x1(t)
T , . . . , xN(t)

T )T andg(x(t)) = (f(x1(t))
T , . . . , f(xN(t))

T )T .

Then, the robust consensus problems can be shown as follows.

Problem 4.1 To establish whether the uncertain dynamical system(4.9) achieves
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robust global and exponential consensus, i.e. for anyǫ there exist positive constants

κ and c such that‖xi(t) − xj(t)‖ ≤ κ‖xi(0) − xj(0)‖e
−ct for all xi(0), xj(0),

θ(t) ∈ Ω andi, j = 1, . . . , N .

Problem 4.2 To establish whether the uncertain dynamical system(4.9) achieves

robust global and asymptotical consensus, i.e. for anyǫ there existT (ǫ) > 0 such

that‖xi(t)− xj(t)‖ ≤ ǫ andlimt→0 ‖xi(t)−xj(t)‖ = 0 for all t > T , xi(0), xj(0),

θ(t) ∈ Ω andi, j = 1, . . . , N .

4.2 Robust Consensus Conditions

In this section, the conception of parameter-dependent contractive matrix will be in-

troduced and corresponding robust consensus conditions will be built via the partial

contraction and SMR technique.

An intuitive yet effective way to analyze consensus withouttopological uncer-

tainty via using contraction theory is the method of partialcontraction, where an

auxiliary system is adopted and the desired convergence behaviour can be isolated

from the overall system dynamics [101].

Lemma 4.3 Consider a continuously differentiable nonlinear system of the form

ẋ = f(x, x, t) and there is an auxiliary systeṁy = f(y, x, t) which is contracting

with respect toy. If a particular solution of the auxiliaryy-system obtains a smooth

specific property, then all trajectories of the originalx-system have this property

exponentially. The original system is said to be partially contracting.

Let us observe that the virtual system (y-system) has two particular solutions,

i.e., y(t) = x(t) sharing this specific property. Provided that all trajectories of

virtual system converge exponentially to a specific trajectory, it directly yields that

x(t) exponentially verifies these properties.

Example 1 Let us investigate a consensus problem via using partial contraction.
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Considering a pair of unidirectional coupled oscillators as follows





ẋ1 = f(x1, t)

ẋ2 = f(x2, t) + u(x1)− u(x2)
(4.10)

wherex1, x2 ∈ Rn are state vectors,f(xi, t) is the dynamics of uncoupled oscilla-

tors andu(x1)− u(x2) is the coupling force. We can choose a virtual system

ẏ = f(y, t)− u(y) + u(x1).

It is clear thatx1(t) = x2(t) is a particular solution. On the condition thatf − u is

contracting, consensus can be achieved exponentially.

Definition 4.3 Let ẏ = h(y, θ, t) be an auxiliary system of(4.8), a symmetric and

uniformly positive definite matrixM(y, θ) is calledparameter-dependent contrac-

tion matrix(PD-CM) such that

he
(
2
∂hT

∂y
M +

∂M

∂θ
θ̇ +

∂M

∂y
ẏ
)
≤ −2γM (4.11)

whereγ is a strictly positive scalar. Similarly, a symmetric and uniformly posi-

tive definite matrixM(y, θ) is calledparameter-dependent asymptotical contraction

matrixsuch that

he
(
2
∂hT

∂y
M +

∂M

∂θ
θ̇ +

∂M

∂y
ẏ
)
≤ −2γI (4.12)

whereγ is a strictly positive scalar.

Lemma 4.4 (From [76]) LetA ∈ RN×N be a symmetric matrix. ProductWN
A =

(1N · 1TN ) ⊗ A is positive semidefinite if and only ifA ≥ 0, where1N is a column

vector whose entries are all one.

Theorem 4.1 Consider an uncertain system(4.9), an auxiliary system can be built
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as

ẏ(t) = g(y(t))− b(L(θ(t))⊗ Γ)y(t)−WN
PΓ(θ)y(t) +WN

PΓ(θ)x(t) (4.13)

whereWN
PΓ(θ) = (1N · 1TN) ⊗ (P (θ) · Γ) andP (θ) ∈ Rn×n is a positive definite

matrix for all (θ(t), θ̇(t)) ∈ Ω. In addition, robust global exponential consensus

can be achieved if there is a parameter-dependent contraction matrixM(y, θ) such

thatg(y(t))− b(L(θ(t))⊗ Γ)y(t) is contracting.

Proof

Considering a positive semidefinite matrixP (θ), for i, j = 1, . . . , N , (4.8) can

be equivalently represented as

ẋi(t) = f(xi(t))− b
N∑

j=1

Lij(θ(t))Γxj(t)− P (θ)
N∑

j=1

Γxj + P (θ)
N∑

j=1

Γxj . (4.14)

Then one can get a compact form from (4.9) such that

ẋ(t) = g(x(t))− b(L(θ(t))⊗ Γ)x(t)−WN
PΓ(θ)x(t) +WN

PΓ(θ)x(t). (4.15)

Let us considerWN
PΓ(θ)x(t) as the system inputs, the auxiliary system (4.13) can

be obtained that a particular solution of robust consensus isy∗ = 1N ⊗ y∞ where

ẏ∞(t) = f(y∞)−N PΓy∞ + P (θ)

N∑

j=1

Γxj , i, j = 1, . . . , N.

From Lemma 4.3, the robust consensus of system (4.9) for all(θ(t), θ̇(t)) ∈ Ω can

be achieved and the propertyx1 = ... = xN is able to be verified exponentially if

system (4.13) is contracting. Thus, (4.13) is an auxiliary system for system (4.9).

Next, it will show that the auxiliary system (4.13) is contracting if there is a

parameter-dependent contraction matrix. A concise proof of exponential conver-

gence of trajectories for contracting system can be found in[102] for an uncertainty-

free case. Lety0 andy1 be two different points and letΥ(y, θ, t) be the associated
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flow of the auxiliary system (4.13). If there is a parameter-dependent contraction

matrixM(y, θ) given by Definition 4.3, then by the Theorem 2 of [102] one can get

DM(Υ(y0, θ, t),Υ(y1, θ, t)) ≤ e(−c/2)tDM(y0, y1),

whereDM is the geodesic distance corresponding to the metricM(y, θ), and map-

pingΥ is a strict contraction. Then, from Contraction Mapping Theorem, it implies

the flowΥ(y, θ, t) verifies a specific manifoldy∞(t) exponentially [70].

Lastly we will show that there is a parameter-dependent contraction matrixM

such that (4.13) is contracting. Sinceg(y(t))− b(L(θ(t)) ⊗ Γ)y(t) is contracting,

one can obtain that there exists a matrixM̃(θ) such that

he
(∂hT
∂y

M̃ +
∂M̃

∂θ
θ̇ +

∂M̃

∂y
ẏ
)

= he
(∂gT
∂y

M̃
)
− bhe

(
(L(θ))⊗ Γ)TM̃

)
+

1

2
he(

∂M̃

∂θ
θ̇) +

1

2
he(

∂M̃

∂y
ẏ)

≤ −γM̃.

(4.16)

SinceΓ is diagonal positive semidefinite andP (θ) is a positive semidefinite matrix,

one can obtain thathe
(
WN
PΓ(θ)

)
≥ 0 by Lemma 4.4. Thus, the Riemanian manifold

of general infinitesimal length for the auxiliary system (4.13) can be represented by,

d
dt
δyTM̃(θ, y)δy

=
1

2

d
dt
δyThe

(
M̃(θ, y)

)
δy

=
1

2
δyThe

(
2
∂hT

∂y
M̃ +

∂M

∂θ
θ̇ +

∂M̃

∂y
ẏ
)
δy

=
1

2
δyThe

(
2
∂gT

∂y
M̃ − 2b(L(θ))⊗ Γ)TM̃ − 2(WN

PΓ(θ))
TM̃ +

∂M

∂θ
θ̇ +

∂M̃

∂y
ẏ
)
δy

=
1

2
δyThe

(
2
∂gT

∂y
M̃ − 2b(L(θ))⊗ Γ)TM̃ +

∂M

∂θ
θ̇ +

∂M̃

∂y
ẏ
)
δy

−δyT
((
WN
PΓ(θ)

)T
M̃
)
δy − δyT

(
M̃WN

PΓ(θ)
)
δy

≤
1

2
δyhe

(
2
∂gT

∂y
M̃ − 2b(L(θ))⊗ Γ)TM̃ +

∂M

∂θ
θ̇ +

∂M̃

∂y
ẏ
)
δy

≤ −γδyTM̃(θ, y)δy.

Therefore, the auxiliary system is contracting and hence the proof completes. �
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A result can also be gained for robust asymptotical consensus by using parameter-

dependent asymptotical contraction matrix as follows.

Theorem 4.2 Consider an uncertain system(4.9), an auxiliary system can be con-

structed as(4.13). Furthermore, robust asymptotical consensus can be achieved if

there is a parameter-dependent asymptotical contraction matrix M(y, θ) such that

g(y(t))− b(L(θ(t))⊗ Γ)y(t) is asymptotical contracting.

Proof One can obtain an auxiliary system as (4.13) by similar linesin proof of

Theorem 4.1. By Definition 4.3 and letδy0−1 be the infinitesimal distance between

trajectories starting fromy0 andy1, one gets

d
dtDM(Υ(y0, θ, t),Υ(y1, θ, t))

= 1
2
δyT0−1he

(
∂hT

∂y
M +M ∂h

∂y
+ ∂MT

∂θ
θ̇ + ∂MT

∂y
ẏ
)
δy0−1

≤ −γδyT0−1δy0−1, ∃γ > 0.

where

h(y) = g(y(t))− b(L(θ(t))⊗ Γ)y(t)− (1N · 1TN)⊗ (PΓ)y(t).

One can obtain that the trajectories inevitably converge tothe set where the Eu-

clidean distance vanishes, i.e., the robust consensus can be achieved for the asymp-

totical contracting system if there is a parameter-dependent asymptotical matrix.

Provided thatg(y(t))−b(L(θ(t))⊗Γ)y(t) is asymptotical contracting, via same

lines in proof of Theorem 4.1, the Riemanian manifold of general infinitesimal

length can be verified as asymptotically vanishing, i.e.,

d
dt
δyTM̂(θ, y)δy ≤ −γδyT δy.

hence it implies that the auxiliary system is asymptotical contracting. This com-

pletes the proof. �
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Remark 4.5 For Theorem 4.1 and Theorem 4.2, note that

• The virtual quantity of matrixP (θ) is to construct the auxiliary system(4.13),

satisfying
(
WN
PΓ(θ)

TM̃
)s

≥ 0. Note that it has no influence on the actual

systems, neither on the specific robust consensus manifold nor on the robust

consensus rate. Moreover, matrixP (θ) in the auxiliary system is not unique.

• Comparing with Lyapunov-like method which is broadly adopted in litera-

tures, a system error dynamics has to be constructed as

ε̇i = f(εi) + U(ε1, ..., εN , θ), i = 1, ..., N

whereεi = xi −
∑N

j=1 ejxj with ej > 0 and
∑N

j=1 ej = 1 and mapping

U is a linear function onε1, ..., εN and onθ. However, the nonlinear part

f(εi) is difficult to obtain and usually requires a linearization or other ap-

proximations (suffered to sorts of assumptions, e.g., global Lipchitz-like con-

dition) which definitely brings conservatism. Furthermore, even though the

system error dynamics can be established, a parameter-dependent Lyapunov-

like method or Krasovskii’s theorem can also be deemed as a special case of

contraction theory by selecting

V (x, θ, t) = f(x, t)TM(x, θ)f(x, t).

• From Lemma 4.1, a more general case can be obtained by using non-Euclidean

norms and introducing a general parameter-dependent contraction matrix

such that 



M(y, θ) =M(y, θ)T ≥ 0, ∀θ ∈ Ω.

d
dt |M(y, θ)δy|i ≤ −ci|M(y, θ)δy|i.

Robust consensus conditions can be established by using different vector

norms and corresponding induced matrix norms through similar arguments
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for Euclidean norm.

• As a natural extension, nonlinear coupling force is straightly investigated

with following consensus protocol.

ẋi = f(xi) +
N∑

j=1

g(xj − xi, θ)

where functiong is nonlinear onxj − xi and linear onθ. Similar results can

be gained under additional assumptions that

∂g(xj − xi, θ)

∂(xj − xi)
> 0,

∂g(xj − xi, θ)

∂θ
> 0.

Nonlinear mapping ofθ will be discussed in next subsection.

4.3 Analysis via HPD-PCM

Checking conditions of Theorem 4.1 and Theorem 4.2 are not simple in that they are

nonlinear inequality problems with time-varying uncertainties. However, via appro-

priate parameterizing some affine spaces, SMR technique provides an effective way

to solve these problems which amounts to handling with an LMIfeasibility test.

Indeed, by bringing in a new class of contraction matrix, i.e., HPD-PCM, robust

consensus conditions can be provided via solving an LMI feasibility test.

In this chaper, we concern with the robust consensus problems of polynomial

nonlinear system. Thus let us introduce the following assumption onf(x).

Assumption 4.1 The functionf(xi) in (4.8) is polynomial.

Remark 4.6 One-side global Lipschitz condition (or QUAD condition) isrequired

in an overwhelming number of existing methods for global consensus such as [50].

Nevertheless, the QUAD condition is not fulfilled for simplenonlinearities such as

quadratic and cubic functions. By contrast, Assumption 4.1includes such nonlin-
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earities, and also includes some essential systems like Lorenz-like system, Hamilto-

nian systems, Guckenheimer system and Rössler system.

Let us define homogeneous parameter-dependent polynomial as follows,

m(y, θ) =
∑

q∈Nn,
∑n

i=1 qi≤2dy
r∈Na,

∑a
i=1 ri=dθ

cq,ry
qθr, (4.17)

wherecq,r ∈ R is the coefficients of monomialyqθr, dθ of m(y, θ) denotes the

degree ina scalar variablesθ, 2dy of m(y, θ) is the degree iñn scalar variablesy

andñ = Nn. Thus, a set of homogeneous parameter-dependent polynomial can be

given asH = {m(y, θ) : (4.17)holds}. Then, the definition of HPD-PCM can be

given as

Definition 4.4 M(y, θ) is aHPD-PCMif it is a PD-CM and every entry ofM(y, θ)

satisfies

Mij(y, θ) ∈ H , ∀i, j = 1, ..., ñ.

By a similar way, homogeneous parameter-dependent polynomial asymptotical con-

traction matrix (HPD-PACM) can be defined by using condition(4.12). LetR(y, θ, θ̇, γ)

be a matrix of polynomial as

R(y, θ, θ̇, γ)

=
( a∑

i=1

θi

)
he
(∂gT
∂y

M
)
− bhe

(
(L(θ)⊗ Γ)TM

)
+

1

2

( a∑

i=1

θi

)2
he
(∂MT

∂θ
θ̇
)

+
1

2

( a∑

i=1

θi

)
he
(∂MT

∂y
g
)
−
b

2
he
(∂M
∂y

(L(θ)⊗ Γ)y
)
+ γ
( a∑

i=1

θi

)
M.

Thus, condition (4.11) can be displayed in a homogeneous form of degreedθ +1 in

θ since
∑a

i=1 θi = 1 for all θ ∈ Ω. The condition thatθ ∈ Λa can be relaxed to the

conditionθ ∈ Ra
0 by the following lemma.

Lemma 4.5 (From [88]) The functionH(θ) : Ra → R
n×n is a symmetric matrix
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composed of homogenous polynomials with degreedθ in a scalar variables. Then,

H(θ) > 0 ∀θ ∈ Λa ⇐⇒ H(sq(θ)) > 0 ∀θ ∈ R
a
0.

Lemma 4.6 Robust exponential consensus of(4.8)can be achieved under Assump-

tion 4.1 if there is a positive scalarγ and a HPD-PCMM(y, θ) such that





0 < M(y, sq(θ)) ∀y ∈ Rñ
0, ∀θ ∈ Ra

0

0 > R(y, sq(θ), θ̇, γ) ∀y ∈ R
ñ
0, ∀(θ, θ̇) ∈ Ω

(4.18)

Proof This result can be obtained directly from Definition 4.3, Theorem 4.1 and

Lemma 4.5. �

By the technique of SMR,M(y, sq(θ)) can be expressed by

M(y, sq(θ)) = Ψ(M̄, dy, dθ, ñ) (4.19)

where

Ψ(M̄, dy, dθ, ñ) = (∗)TM̄(φpol(y, dy)⊗ φhom(θ, dθ)⊗ Iñ),

φpol(y, dy) ∈ R
lpol(ñ,dy) is a power vector containing all monomials of degree less

than or equal tody, φhom(θ, dθ) ∈ Rlhom(a,dθ) is a power vector containing all mono-

mial of degreedθ, and lpol(ñ, dy), lhom(a, dθ) can be given by (1.6) and (1.11).

Symmetric matrixM̄ belongs to the set

M = {M̄T = M̄ : Ψ(M̄, dy, dθ, ñ) only contains

monomialsθi with even powerik}.
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Lemma 4.7 The setM is a linear space of dimension

σ(ñ, dy, dθ) = 1
2
ñ(lpol(ñ, dy)lhom(a, dθ)(ñlpol(ñ, dy)lhom(a, dθ) + 1)

−(ñ + 1)(lhom(a, 2dθ)− lhom(a, dθ))lpol(ñ, 2dy))

Proof Let M̄1 andM̄2 be any matrices inM . It directly follows that for any linear

combination ofM̄1 andM̄2, one hasc1M̄ + c2M̄2 ∈ M , for all c1, c2 ∈ R such that

c1 + c2 = 1. Thus, one can obtain thatM is an affine space.

Define

a = ñlpol(ñ, dy)lhom(a, dθ),

the total number of free entries of̄M ∈ R
a×a can be obtained as1

2
a(a + 1). Let

b ∈ R
1
2
a(a+1) be a vector containing the free entries of matrixM̄ , and define a linear

mappingE : R
1
2
a(a+1) → Ra×a satisfyingE(b) = M̄ . Thus, one has

Ψ(M̄, dy, dθ, ñ)

= (∗)TE(b)(φpol(y, dy)⊗ φhom(θ, dθ)⊗ Iñ)

= (Fb)T (φpol(y, 2dy)⊗ φhom(θ, 2dθ)⊗ Iñ)

whereF is a proper transformation matrix. Observe that

M = {E(b) : b ∈ ker(E)}.

It directly follows that

dim(M ) = dim({E(b) : b ∈ ker(E)})

= dim(ker(E))

= 1
2
a(a+ 1)− rank(E).

Let us observe that dimension ofM stems from the entries of some monomials with

even power inθ, yielding that

rank(E) = {number of distinct monomials ci,jθ
iyj with odd power ik}. (4.20)
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Thus, one can get a complete parametrization of the affine spaceM for HPD-PCM

of (4.19). Now let us investigate the SMR ofR(y, θ, θ̇, γ). Note that the degree of

polynomialg(y) is dg in y and let

dr = max(dg − 1 + 2dy, 2dy − 1 + dg, 2dy), (4.21)

and2d̃r = even+1(dr) (i.e.,2d̃r = dr if dr is even, and2d̃r = dr +1 if dr is odd). It

follows that,

R(y, θ, θ̇, γ) = Ψ(B(M̄, θ̇, γ) +N, d̃r, dθ + 1, ñ) (4.22)

whereB(M̄, θ̇, γ) is a multilinear function inM̃ and θ̇, i.e., it is linear inM̃ for

fixed θ̇ and fixedγ, and is also linear iṅθ for fixed M̃ and fixedγ, andN is a

symmetric matrix belonging to the set

N = {NT = N : Ψ(N, d̃r, dθ + 1, ñ) = 0}.

Lemma 4.8 N is a linear space whose dimension is

σ(ñ, d̃r, dθ + 1) =
1

2
ñ(l(ñl + 1)− (ñ + 1)lhom(a, 2dθ + 2)lpol(ñ, 2d̃r)) (4.23)

wherel = lpol(ñ, d̃r)lhom(a, dθ + 1).

Proof Similar to the proof of Lemma 4.7 and we omit it here. �

Interested readers can refer to [84, 88] and its recent developments in robust

consensus [81,82,87]. The following result provides a sufficient condition which is
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a convex problem of LMIs feasibility test.

Theorem 4.3 The robust exponential consensus of(4.8)can be achieved under As-

sumption 4.1 if there exist matrices̄M(α),N(β) and a positive scalarγ satisfying,





0 < M̄(α)

0 > B(M̄(α), dj, γ) +N(βj), ∀j = 1, ..., v.
(4.24)

whereM̄(α) andN(β) are linear parametrizations of affine spacesM and N

respectively, andα, βj are corresponding free parameters whose dimensions are

given by Lemma 4.7 and Lemma 4.8, for allj = 1, ..., v.

Proof Let us consider the first LMI condition in(4.24), ∀θ ∈ R
a
0, by pre- and

post-multiplying(φpol(y, dy)⊗φhom(θ, dθ)⊗ Iñ)
T and(φpol(y, dy)⊗ φhom(θ, dθ)⊗

Iñ), one can obtain

0 < M(y, sq(θ)).

Similarly, from the second condition in(4.24), ∀y ∈ Rñ
0 and ∀(θ, θ̇) ∈ Ω, by

pre- and post-multiplying(φpol(y, d̃r)⊗ φhom(θ, dθ + 1)⊗ Iñ)
T and(φpol(y, d̃r)⊗

φhom(θ, dθ + 1)⊗ Iñ), it follows that there is a positive scalarγ such that

0 > Ψ(B(M̄, dj, γ) +N(βj), d̃r, dθ + 1, ñ), ∀j = 1, ..., v.

In addition, consideringN(βj) ∈ N , one has

Ψ(N(βj), d̃r, dθ + 1, ñ) = 0, ∀j = 1, ..., v.

Therefore, it follows that there exists a positive scalarγ such that

0 > R(y, sq(θ), θ̇, γ),

SinceΞ is a convex hull of vectorsdj for j = 1, ..., v, the condition of Lemma 4.6

holds. �
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An analogous result can be given by using the same approach for robust asymp-

totical contraction as follows.

Corollary 4.1 The robust asymptotical consensus of(4.8) can be achieved under

Assumption 4.1 if it satisfies following condition,





0 < M̄(α)

0 > B̃(M̄(α), dj) +N(βj), ∀j = 1, ..., v,
(4.25)

where

R̃(y, θ, θ̇) = Ψ(B̃(M̄, θ̇) +N, d̃r, dθ + 1, ñ), (4.26)

and

R̃(y, θ, θ̇)

=
( a∑

i=1

θi

)
he
(∂gT
∂y

M
)
−
b

2

(
(L(θ)⊗ Γ)TM

)
+

1

2

( a∑

i=1

θi

)2
he
(∂MT

∂θ
θ̇
)

+
1

2

( a∑

i=1

θi

)
he
(∂MT

∂y
g
)
−
b

2
he
(∂M
∂y

(L(θ)⊗ Γ)y
)
.

4.4 Robust Consensus Performance

Section 4.2 and Section 4.3 propose conditions on which the robust exponential or

asymptotical consensus can be established. Follow-up question arises naturally that

what is the largest level of polytopic uncertainties where the robustness of asymp-

totical consensus remains. This section aims to answer thisquestion.

Considering time-varying bounded-rate polytopic uncertainty provided by (4.6),

a variation rate margin of robust asymptotical consensus can be introduced for un-

certain consensus protocol (4.8). Letη be variation rate margin for system (4.8) as
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follows.

η = sup
{
η ∈ R : (4.8)achieves robust consensus,

∀θ̇ ∈ co
{
ηd(1), ..., ηd(v)

}
, ∀θ ∈ Λa

}
.

(4.27)

It is useful to bring in another definition which concerns on the cases that robust

asymptotical consensus is guaranteed by a HPD-PACMM(y, sq(θ)) given by (4.19)

for system (4.8) as follows.

Definition 4.5 Defineη{dy ,dθ} as {dy, dθ}-HPD-PACM variation rate margin for

system(4.8) if there exists a HPD-PACMM(y, θ) given by(4.19) for system(4.8)

such that

η{dy ,dθ} = sup
{
η ∈ R : θ̇ ∈ co

{
ηd(1), ..., ηd(v)

}
, ∀θ ∈ Λa

}
. (4.28)

Obviously,η{dy ,dθ} is a lower bound of the variation rate margin, where the ro-

bust asymptotical consensus can be ensured by the class of HPD-PACM. In specific,

one has

η{dy ,dθ} ≤ η, ∀dy, ∀dθ.

The following results provide a strategy for obtaining a lower bound ofη{dy ,dθ}

by solving a GEVP problem.

Theorem 4.4 Define

η̂{dy ,dθ} =
1

ς∗
(4.29)

whereς∗ is the solution of

ς∗ = inf
ς, M̄ , α, β(0),...,β(a)

ς

s.t.





0 < ς

0 < M̄(α)

0 < B1(M̄(α)) +N(β0)

0 > ς
(
B1(M̄(α)) +N(β0)

)

+B2(M̄(α), di) +N(βi) ∀i = 1, . . . , a

(4.30)
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whereM̄(α) andN(β) are linear parametrization of spaceM andN respectively,

R(y, θ, θ̇) = R1(y, θ, θ̇) +R2(y, θ, θ̇),

R1(y, θ, θ̇)

=
( a∑

i=1

θi

)1
2
he
(∂gT
∂y

M
)s

−
b

2
he
(
(L(θ)⊗ Γ)TM

)

+
( a∑

i=1

θi

)1
2
he
(∂MT

∂y
g
)
−
b

2
he
(∂M
∂y

(L(θ)⊗ Γ)y
)
,

R2(y, θ, θ̇)

=
( a∑

i=1

θi

)2 1
2
he
(∂MT

∂θ
θ̇
)
,

and

R1(y, θ, θ̇) = Ψ
(
B1(M̄) +N, d̃r, dθ + 1, ñ

)
,

R2(y, θ, θ̇) = Ψ
(
B2(M̄, θ̇) +N, d̃r, dθ + 1, ñ

)
.

Thenη̂{dy ,dθ} is the lower bound ofη{dy ,dθ}, i.e. η̂{dy ,dθ} ≤ η{dy ,dθ}.

Proof Suppose that (4.30) holds. Pre- and post-multiplying the second LMI condi-

tion in (4.30) by(φpol(y, dy)⊗φhom(θ, dθ)⊗Iñ)
T and(φpol(y, dy)⊗φhom(θ, dθ)⊗Iñ),

respectively, one has that

0 < Ψ(M̄, dy, dθ, ñ)

hence implyingM(y, θ) is positive definite since(φpol(y, dy)⊗φhom(θ, dθ)⊗Iñ)
T (φpol(y, dy)⊗

φhom(θ, dθ)⊗ Iñ) > 0 for all y 6= 0. Then,R(y, θ, θ̇) for θ̇ = ς−1ν(i) is given by

R(y, θ, θ̇)|θ̇=ς−1ν(i)

= Ψ
(
B1(M̄) + ς−1B2(M̄, di), d̃r, dθ + 1, ñ

)

= ς−1Ψ
(
ςB1(M̄) +B2(M̄, di), d̃r, dθ + 1, ñ

)
.

(4.31)

sinceN(βi) ∈ N , ∀i = 0, 1, ..., a, it follows

R(y, θ, θ̇)|θ̇=ς−1ν(i)

= ς−1Ψ
(
ς(B1(M̄(α)) +N(β0))

+B2(M̄(α), di) +N(βi), d̃r, dθ + 1, ñ
)
.

(4.32)

112



Thus, due to the last condition in (4.30) one has

R(y, θ, θ̇)|θ̇=ς−1ν(i) < 0 ∀i = 1, ..., a.

Based on this, one can also obtain that there is a HPD-PCM for all θ(t) in fol-

lowing set

η{dy ,dθ} = sup
{
η ∈ R : θ̇ ∈ co

{
ς−1d(1), ..., ς−1d(v)

}
, ∀θ ∈ Λa

}
. (4.33)

Therefore, one haŝη{dy ,dθ} ≤ η which completes this proof. �

4.5 Numerical Examples

4.5.1 Example 1

In this case, a coupled model of Moore-Greitzer jet engines is considered in the

no-stall mode [46,89]. The intrinsic dynamicsf(x) in (4.8) is given by

f(xi) =




−0.5x3i1 − 1.5x2i1 − xi2

3xi1 − xi2




wherexi = (xi1, xi2)
′, i = 1, 2, xi1 relates to the mass flow andxi2 associates with

the pressure rise. The communications between these two jetengines are affected

by a time-varying uncertaintyθ(t). Let us choose the uncertain weighted adjacency

matrixG(θ(t)) as

G(θ(t)) =




1 0

1− 2θ(t) 1


 .

For θ(t) > 0.721, the consensus can not be achieved since a Hopf bifurcation takes

place as shown in Fig. 4.1 where error statesz(t) = x1(t) − x2(t). In (a) of Fig.

4.1, θ(t) = 0.6, θ̇ = 0, consensus can be achieved where trajectory of agent 1 is
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shown in (b). In (c) of Fig. 4.1,θ(t) = 0.75, θ̇ = 0, consensus can not be achieved

where trajectory of agent 1 is shown in (d). Since0a ∈ Ξ = co{d(1), ..., d(v)}, for

anyη given by (4.27), the robust consensus can not be achieved when θ(t) > 0.721.

Hence in this example we consider the parameter bound0 ≤ θ(t) ≤ 0.6.
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Fig. 4.1: Hopf bifurcation of coupled M-G jet engines.

Let c = 1, Γ = I2 and a maximum variation rateη of θ(t) is investigated such

that the robust asymptotical consensus can be achieved for any |θ̇(t)| ≤ η. Hence,

Ξ can be expressed as

Ξ = co








η
0.6

− η
0.6


 ,




− η
0.6

η
0.6







.

Then, we calculate the lower boundη̂ by using HPD-PCM withdθ = 0, 1, 2, 3

and dy = 1, 2, 3 as shown in Table 4.1. Comparing with other sufficient con-

ditions proposed by [98] (QLF with affine parameter dependence) and by [46]

(Parameter-independent polynomial contraction matrix),the proposed method gen-
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Table 4.1: Lower bound̂η, for some values ofdy anddθ
dy/dθ 0 1 2 3

1 N/A N/A N/A N/A

2 178.3 197.1 207.7 214.1

3 185.8 202.3 211.2 216.4

eralizes these cases and provides a less conservative result by using higher-order

HPD-PCM. Specifically, with respect to linear parameter-dependent quadratic Lya-

punov function, the robust asymptotical consensus can not be ensured wheredy = 1

anddθ = 1. In addition, the proposed method also has a significant larger bound

in contrast with the parameter-independent polynomial contraction matrix where

dθ = 0.

0 2 4 6 8
−4

−2

0

2

4

 t

 z

Fig. 4.2: Trajectories of robust consensus.

Figure 4.2 shows that 50 trajectories ofz(t) with θ(t) randomly chosen inΩ and

initialized with points randomly chosen in[−4, 4]4.
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Fig. 4.3: Topology of a six-agent system.

4.5.2 Example 2

In this case, a six-agent system in Figure 4.3 is investigated with intrinsic dynamics

in (4.8) as follows

f(xi) =




xi2

−3xi1 − xi2




Let a = 2, n = 2, N = 6, Γ = I2 and an uncertain weighted adjacency matrix is

given asG(θ) = G0 +
∑a

i Giθi where

G0 =




1 0 0 0 10 0

5 1 0 0 0 0

0 8 1 0 20 0

0 0 6 1 0 0

0 0 0 8 1 0

0 0 0 0 9 0




,
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G1 = −




0 0 0 0 0.2 0

0.1 0 0 0 0 0

0 0.3 0 0 0 0

0 0 0.2 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0 0




,

G2 =




0 0 0 0 −0.3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −0.1 0




.

θ = (θ1, θ2)
′, Λ2 = {θ(t) ∈ R2 : θ1 + θ2 = 1, θ1, θ2 ≥ 0}, v = 2 andΞ is chosen

to be co{d(1), d(2)} whered(1) = η(1,−1)T andd(2) = η(−1, 1)T . Note that this is

equivalent to|θ̇i| ≤ η for i = 1, 2 andθ̇1 + θ̇2 = 0.

Table 4.2: Comparison of lower bound̂η by different approaches withdy = 1.
Approaches/dθ 0 1 2 3

[98] N/A 57.34 N/A N/A

[46] 48.71 N/A N/A N/A

This chapter 48.71 59.52 67.13 70.81

Analogous with former example, we calculate the lower boundη̂ by using HPD-

PCM method withdy = 1 anddθ = 0, 1, 2, 3 as shown in Table 4.2. Comparing

with sufficient conditions given by [98] and by [46] , again, the proposed method

is verified to be less conservative and has a larger robust asymptotical consensus

margin withdθ > 1. Furthermore, it also displays that by increasing the degree of

uncertain parameterdθ, the conservatism level decreases progressively.

It is worth noting that, in contrast with the approach given by [98], even though

samedθ is considered, proposed method still has a bigger marginη̂ (also shown
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in Table 4.2) in that it completely parameterized corresponding affine spaces while

[98] does not.

4.6 Conclusions

In this chapter, robust consensus of MAS with polynomial nonlinear dynamics is

considered where the communication network is affected by time-varying polytopic

uncertainty with bounded variation rate. Thanks to partialcontraction, a novel ap-

proach is proposed by adopting a new class of contraction matrix, i.e., HPD-PCM,

and conditions for robust exponential consensus and robustasymptotical consen-

sus are both given. Corresponding sufficient conditions have also been provided

in terms of LMIs via exploring the parametrizations of related affine sets. Further-

more, we also investigate robust asymptotical consensus margin of the variation rate

where the lower bound of this margin can be estimated via solving GEVPs.

In contrast with Parameter Linear-dependent Quadratic Lyapunov Function (PLD-

QLF) and parameter-independent polynomial contraction matrix, numerical exam-

ples have demonstrated that the proposed method generalizeabove methods and the

conservatism level has apparently decreased by using a higher-order HPD-PCM, in

other words, an expanded lower bound of variation rate margin can be found via

increasing the values ofdy anddθ respectively.
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Chapter 5

Conclusions and Future Works

This chapter displays the conclusions of this thesis, and provides some possible

directions of interests for our future efforts.

5.1 Conclusions

This thesis is concerned with the consensus problems of MASswith different dy-

namics. More specifically, following kinds of MAS models have been studied and

corresponding consensus conditions are given.

1. In chapter 2, robust consensus of MASs with linear dynamics and topological

uncertainties is considered, both for continuous-time systems and for discrete-

time systems. First, necessary and sufficient conditions are provided for ro-

bust first-order consensus and for robust second-order consensus in different

cases of positive and non-positive weighted adjacency matrices. In addition,

this chapter also investigates robust consensus problem with discrete-time dy-

namics. Necessary and sufficient conditions are given for robust consensus

via finding a polynomial parameter-dependent Lyapunov function. It is also

shown that the necessity can be achieved by providing an upper bound on

the degree of candidate Lyapunov function required. Then, anecessary and

sufficient condition is given for robust first-order consensus with nonnegative

weighted adjacency matrices by checking the zeros of a polynomial. Finally,
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by expiating SOS technique, these robust consensus conditions can be tested

by solving convex optimization problems in terms of LMIs.

2. In chapter 3, HPLF are exploited to solve the consensus problem of MASs.

Firstly, local and global consensus in MASs with nonlinear dynamics are in-

vestigated. For local consensus, a method has been proposedbased on the

transformation into an uncertain polytopic system and on the use of HPLFs.

Meanwhile, regards to global consensus, another method hasbeen proposed

based on the search for a suitable Polynomial Parameter-dependent Lyapunov

Function. In addition, we have investigated robust local consensus in MASs

with time-varying parametric uncertainties. A novel convex approach has

been proposed based on the transformation from the originalsystem to an un-

certain polytopic system and on the use of HPLFs. Corresponding LMI-based

conditions are obtained by using SMR technique. Polytopic consensus mar-

gin has also been investigated by a convex optimization consisting of GEVPs.

3. In chapter 4, robust consensus of multi-agent system withpolynomial non-

linear dynamics is considered affected by time-varying polytopic uncertainty

with bounded variation rate. Based on partial contraction,a novel approach is

proposed by using a new class of contraction matrix, i.e., HPD-PCM, and con-

ditions for robust exponential consensus and robust asymptotical consensus

are both provided. Corresponding sufficient conditions have also been pro-

posed in terms of LMIs via exploring the parametrizations ofrelated affine

sets. Moreover, we investigate the variation rate for robust asymptotical

consensus margin whose lower bound can be estimated via solving GEVPs.

Comparing with PLD-QLF and parameter-independent polynomial contrac-

tion matrix, numerical examples have shown that the proposed method gen-

eralizes above methods and can successfully decrease the conservatism level

by using a higher-order HPD-PCM, in other words, an expandedlower bound

of variation rate margin can be obtained via increasing the value ofdy anddθ

respectively.
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5.2 Future Works

Several possible extensions of research topics consideredin this thesis are listed as

follows.

1. In our previous works, the consensus design approaches assume that the in-

formation of each agent is always available. Nevertheless,in many practical

applications, this assumption is not always satisfied in that the states of agents

may not be completely accessible due to difficulties in measurements and in-

formation transformation. Therefore, it is natural to use the observer-based

model where the state information are only available for measured output.

In many cases of MASs, implementations have already occurred in problems

where dynamic observers are designed to estimate the systemstates and a

feedback controller for each agent can be designed for distributed coopera-

tive control.

2. Based on model of MASs with observer-based controller, another interest-

ing extension is how to design an optimal distributed controller such that the

system estimation is as good as possible with considering the environmental

noises. Regards to this problem, a number of robust performance criteria can

be applied to measure the perturbation against the disturbance inputs, which

is usually measured by norms related to the system disturbance input and sys-

tem responses. A frequently employed measurement is theH∞ norm method,

by which the worst-case effect on the system output can be characterized un-

der the consideration of bounded disturbance.

3. Time-varying topological uncertainty is used to simulate the communication

disturbances, thus making the topology of MAS unfixed. Another widely

adopted model for chaining topology is MASs with stochasticswitching net-

work. It is natural to assume that each agent can only communicate with its

neighbours, and as the agent is moving, a time-varying communication net-

works can be represented by a moving neighbourhood graph, where the edges
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of moving neighbourhood graph are set by the location of agents in the lat-

tice. In addition, each agent is assumed to be a random walkerand occupies

one lattice where information exchange is available for agents in same lattice.

The dynamics of moving neighbourhood graph is determined bythe motion

of agents in lattices, and not affected by the states of agents. This model meets

many practical applications in engineering, physics and biology and consen-

sus conditions are expected by using Markov chains, stochastic stability and

fast switching theory.

4. As time-delay is a phenomenon commonly encountered in thepractical im-

plementations of networked control systems, it is worthy toconsider the ef-

fects of time-delays in communication for different MAS dynamics. Not

merely using the stability theory for time-delay system in existing results

of differential equation theory, consensus conditions should be emphasized

on the topological condition of MAS in which the consensability is ensured

by certain characteristic communication topology. A maximal time-varying

time-delay on communication is expected to be estimated by using some con-

vex optimization programming. In addition, other than considering first-order

consensus and second-order consensus, a higher-order consensus model can

be discussed for a more general case. A detailed analysis forthe higher-order

consensus algorithms can be an inevitable step to consider more realistic dy-

namics into the model of individual autonomous agent for future study.
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Appendix A

Runtime and Numerical Complexity

Let d, dθ, a, n andN be the degree of state variable, the degree ofθ, the number

of uncertain parameters, the number of inner states for a single agent and the total

number of agents, respectively. The computational timeTr and number of variables

̟ for some examples in this thesis are shown as Tab. A.1.

Table A.1: Number of variables and runtime for each example
Chapter Example Type Problem ̟ Tr (Second)

2
1 d=0,dθ=2,a=1,N=4,n=1 (2.22) 17 0.4368
2 d=0,dθ=2,a=2,N=6,n=1 (2.38) 2402 215.8274
4 d=0,dθ=1,a=2,N=6,n=1 (2.95) 247 0.5148

3

1 d=4,dθ=1,a=1,N=2,n=2 (3.10) 10 0.1680
2 d=4,dθ=1,a=1,N=2,n=2 (3.21) 117 1.1260
3 d=2,dθ=1,a=1,N=2,n=2 (3.38) 7 0.5304
4 d=8,dθ=1,a=1,N=3,n=1 (3.44) 123 2.7839

4
1 d=2,dθ=2,a=1,N=3,n=1 (4.24) 4653 473.2381
1 d=4,dθ=4,a=1,N=3,n=1 (4.30) 29613 3785.9542

Device information are given as follows:

- CPU: Intel Core (TM) i5, 2.67GHz;

- RAM: 4.00 GB;

- Operating System: 64-bit Operating system, Windows 7 Enterprise.
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