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Abstract— Robust synchronization problem is a key issue in
chaotic circuits and nonlinear systems. This paper is concerned
with robust synchronization problem of polynomial nonlinear
system affected by time-varying uncertainties on topology, i.e.,
structured uncertain parameters constrained in a bounded-
rate polytope. Via partial contraction analysis, novel conditions,
both for robust exponential synchronization and for robust
asymptotical synchronization, are proposed by using parameter-
dependent contraction matrices. In addition, for polynomial
nonlinear system, this paper introduces a new class of contrac-
tion matrix, i.e., homogeneous parameter-dependent polynomial
contraction matrix (HPD-PCM), by which tractable conditio ns
of linear matrix inequalities (LMIs) are provided via affine
space parametrizations. Furthermore, the variant rate margin
for robust asymptotical synchronization is, for the first time,
proposed and investigated via handling generalized eigenvalue
problems (GEVPs). A set of representative examples demonstrate
the effectiveness of proposed method.

I. INTRODUCTION

In the past decade, synchronization problem of chaotic
systems and complex dynamical networks has been an active
topic due to its broad applications in widespread academic
fields since the pioneering work of Pecora and Carroll [1].
Indeed, complex networks have been testified as useful and
powerful tools for modeling a great deal of chaotic circuitsand
other real-world systems which otherwise appear intractable
[2]. Another related and well-known issue of multi-agent
systems is the consensus problem, which, very interestingly,
shares common features with synchronization problem of
complex networks. Common examples exist in World Wide
Web, electrical power grid and biological Metabolism [3]–[5].

Synchronization of coupled networks is extensively inves-
tigated for fixed topology by first Lyapunov method and
Lyapunov exponents. Both methods can generate rigorous
stability conditions where the former one needs to construct
a suitable Lyapunov function, while the latter one, by local
linearization and by block diagonalizing vector fields, the
maximum Lyapunov exponents of complex system is intro-
duced to ensure the synchronization manifold to be locally
transversal stable [6]. Then, under miscellaneous assumptions,
local synchronization conditions of linearizable system are
provided based on wide variety of criteria [7]. As a different
approach which casts special attention to the evolution of
trajectories, the contraction theory has been brought in the
convergence analysis of nonlinear system and also has been
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identified as an effective tool for analyzing the exponential
synchronization of complex networks [8], [9].

However, real-world is overflowing with perturbations and
disturbances. For a simple instance in electrical power grid,
the basic parameters of transmission lines, such as the values
of resistance and capacitance, are vulnerable to change under
different temperature and air pressure, displaying uncertainties
from time to time. Thus, numerous attentions have recent-
ly been paid to robust synchronization of complex systems
with uncertainties and time-varying topology [10]–[14]. In
[10], by searching a Quadratic Lyapunov Functions (QLF),
robust synchronization conditions are provided for uncertain
system whose control gains are disturbed by square inte-
grable bounded time-varying uncertainties. In [11], impulsive
synchronization criteria is proposed for uncertain dynamical
network where the network coupling functions are unknown
but bounded, under assumptions that both the intrinsic non-
linear function and the coupling nonlinear function satisfy
Lipschitz-like conditions. In [12], for fast-switching topology,
a local synchronization criteria is given at a sufficiently large
switching rate. Also for local synchronization, conditions are
proposed by using the time-average topology to approximate
the time-varying topology [13]. By using contraction theory,
polynomial system with time-invariant uncertainty is con-
sidered where robust stability is established via searching a
parameter-independent polynomial contraction matrix [14].

Time-varying networks can also be modelled by stochastic
switching networks [15]–[19]. In [15], a connection graph
stability method, also proposed by [20], is extended to a
blinking model of small-world network in which both fixed
2K-nearest neighbor coupling and time-dependent on-off cou-
pling are considered. In [16], each agent is assumed to be
a random walker and random changes of network can be
described by the change of agents’ locations in the lattice
where information can be transmitted only for agents in the
same lattice. In [17], sufficient conditions are proposed for
global synchronization with a fast and random switching
network by using stochastic Lyapunov stability theory. In [18],
[19], a stochastically blinking system is considered where
topological parameters randomly switch within a discrete set
of values at a same time intervals.

The motivations of this paper rest with the facts that firstly,
robust synchronization with time-varying uncertainty desirably
meets the demand of practical implements and has already
been successfully applied in wireless sensor networks and
neural networks [21]. In addition, existing uncertain models
for synchronization protocols usually assume that there exists
time-invariant uncertainty or slowly time-varying uncertain-
ty, thus making special academic interests in time-varying
uncertainty with bounded variation rate (See Subsection II-



B). Furthermore, for adjacency matrix perturbed by uncertain
parameters, traditional approaches like eigenvalue analysis are
in an extremely difficulty to apply, while it can be suitably
tacked with parameter-dependent contraction theory. Lastbut
not the least, even comparing with the prevailing approaches,
the QLFs method or parameter-dependent Lyapunov method,
the parameter-dependent contraction analysis maintains its
advantages in that it does not require an error dynamics (whose
construction needs additional assumptions or approximations),
and in some circumstances makes the Lyapunov methods as
special cases (See Subsection III-A).

Based on the motivations aforementioned, and contrast
with the literatures, this paper considers robust exponential
synchronization and robust asymptotical synchronizationprob-
lems affected by time-varying topological uncertainty with
bounded variation rate via parameter-dependent contraction
analysis. The contributions of this paper are listed as below.
(1) For the first time, to the best of our knowledge, the time-
varying topological uncertainty with bounded variation rate is
considered in robust synchronization problem, making the case
with time-invariant uncertainty and the case with time-varying
polytopic uncertainty as special ones. (2) An approach of
parameter-dependent contraction matrix is proposed by using
a general infinitesimal length, which is less conservative than
the cases using constant contraction matrix or Lyapunov-like
approach. (3) Distinct with nonlinear inequalities provided by
traditional methods, this paper provides tractable conditions of
LMIs for robust synchronization problem by employing SMR
and by parametrizing suitable affine spaces. (4) For robust
asymptotical synchronization, the lower bound of variation rate
margin is estimated via handling GEVPs.

II. PRELIMINARIES

Notations:N,R: natural and real number sets;0n: origin
of Rn; Rn0 : Rn\{0n}; AT : transpose ofA; A > 0 (A ≥ 0):
symmetric positive definite (semidefinite) matrixA; In: n×n
identity matrix;A⊗B: Kronecker product of matricesA and
B; As: 1

2 (A+AT ), with A ∈ R
n×n; co{X1, . . . , Xp}: convex

hull of matricesX1, . . . , Xp ∈ R
m×n; xi: xi11 xi22 · · · xinn ,

x ∈ R
n, i ∈ N

n; sq(θ): (θ21 , ..., θ
2
a)
T ∈ R

a, θ ∈ R
a; (∗)TAB

in a form of SMR:BTAB.
Given a vector norm| · |i on Euclidean space (| · |), with a

induced matrix norm‖A‖i given by

‖A‖i = max
|x|i=1

|Ax|i
|x|i

and the associated matrix measureµi is defined as the one-
sided directional derivative of‖ · ‖i in the directionA, which
is denoted by

µi(A) := lim
ǫ→0

(‖I + ǫA‖i − 1)

ǫ
.

A. Basics of Contraction Theory

To introduce contraction theory, let us consider a determin-
istic dynamical sysem of following time-dependent ordinary
differential equation

ẋ = f(x, t), x(t0) = x0, t0 ≥ 0 (1)

wheref is a nonlinear vector field andx is a state vector in
a subset ofRn. Under the assumption thatf is continuously
differentiable, one can obtain an exact differential relation

δẋ = J(x, t)δx (2)

whereJ(x, t) = ∂f
∂x denotes the Jacobian of the vector field

f , and δx denotes an infinitesimal change evaluated along a
trajectory.δx is also called ”virtual displacement” pervasive in
classical mechanics and formally considered as a linear tangent
differential form with respect to time [8], [22].

Definition 1: (Contraction) System (1) is said to be con-
tracting if there exists somec > 0 such that for every
two solutions x(t) = ν(t, 0, ξ) and y(t) = ν(t, 0, ζ) of
System (1), starting from different initial conditions, converge
exponentially to each other, i.e.|x(t) − y(t)| ≤ e−ct|ξ − ζ|
wheref(x, t) is called a contracting function.

Paralleling with above definition, another one is given here
for global asymptotical contraction behavior.

Definition 2: (Asymptotical Contraction) System (1) is said
to be asymptotically contracting if for every two solutions
x(t) = ν(t, 0, ξ) andy(t) = ν(t, 0, ζ) of System (1), starting
from different initial conditions, converge asymptotically to
each other, i.e.limt→∞ |x(t) − y(t)| = 0 where f(x, t) is
called an asymptotically contracting function.

System (2) can be considered as a linear time-varying
differential equationδẋ = J(t)δx whereJ(t) is a function
of time. One can obtain an upper bound for the magnitude of
its solutions by the Coppel Inequality as follows [23],

|δx|i ≤ |δx0|ie
∫

t

0
µi(J(τ))dτ (3)

where µ(J) is the matrix measure of the Jacobian matrix
of f . Following result displays an essential conclusion about
contracting systems which can be tracked down from miscel-
laneous technical assumptions [8], [24].

Lemma 1:The system (1) is contracting if there exist some
matrix measureµi(J(x, t)) and a positive constantc such that

µi(J(x, t)) ≤ −ci (4)

where the scalarci denotes the contraction rate of the system
corresponding to vector norm| · |i.

The matrix measureµi corresponding to the induced matrix
norms‖ · ‖1, ‖ · ‖2 and‖ · ‖∞ can be calculated and given in
real domain [8], [25] and in complex domain [26]. However,
for a particular vector norm and its associated induced matrix
norm, it is in general a difficult task to obtain an explicit
expression [25]. From following Proposition, a clue will be
given on the relationship amongst different matrix measures
about contraction. At first, let us introduce following Lemma.

Lemma 2 ([27]): For any two positive real numbersp >
q > 0, considering a vector spaceV with finite dimensionn
respect to vector norms| · |q and | · |p, a relationship can be
given by

|x|p ≤ |x|q ≤ n(1/q−1/p)|x|p. (5)

Proposition 1: (Equivalence on contraction) For positive
real numbersp, q with p > q > 0, | · |q and | · |p are two
vector norms onV , System 1 is contracting for vector norm



| · |q with contraction ratecq, i.e., which implies that it is also
contracting for vector norm| · |p at the same contraction rate
with a time-shiftψ = (p−q) logn

(pqcq)
, i.e.,

|δx|p ≤ |δx0|pe
−cq(t−ψ).

Proof See Appendix A. �

Considering the equivalence of contraction, we select Eu-
clidean norm as [8] for ease of description and LMI relaxation.

B. Problem Formulation

In this paper, the uncertain multi-agent systems with time-
varying topological uncertainties is considered under following
synchronization protocol

ẋi(t) = f(xi(t))− b

N∑

j=1

Lij(θ(t))Γxj(t), i, j = 1, . . . , N

(6)
wherexi ∈ R

n is the state ofi-th agent,N is the number of
agents,b is the coupling weight,f(xi) ∈ R

n is a nonlinear
function, Γ = diag(γ1, . . . , γn) ∈ R

n×n is a diagonal
matrix whereγi > 0 stands for the agents communicating
through theiri-th states.θ(t) ∈ R

a denotes the time-varying
perturbations from environment to the network topology. Let

(θ(t), θ̇(t)) ∈ Ω = {(θ(t), θ̇(t)) : θ(t) ∈ Λa, θ̇(t) ∈ Ξ} (7)

in which Λa is a simplex andΞ is a polytope given by
{

Λa = {θ(t) ∈ R
a :

∑a
i=1 θi(t) = 1, θi(t) ≥ 0}

Ξ = co{d(1), ..., d(v)}
(8)

for some given vectorsd(1), ..., d(v) ∈ R
a such that∑a

i=1 d
(j)
i = 0, ∀j = 1, ..., v and 0a ∈ Ξ where 0a is a

column vector with alla entries being zero. The model (7)
has been introduced by [28] and is developed as an extension
of models adopted in previous works [29], [30], including
various famous models as special cases.Lij(θ(t)) is the ij-
th entry of the uncertain Laplacian matrixL(θ(t)) ∈ R

N×N

given by Lij(θ(t)) = −Gij(θ(t)) for all i 6= j and by
Lii(θ(t)) = −

∑N
j=1, j 6=i Lij(θ(t)).

Remark 1:Synchronization protocol (6) is a general and
applicable form. It generalises some typical models, e.g.,
synchronization protocol with time-invariant uncertainty ap-
plied in voltage analysis of chaotic circuits [2]. As a non-
autonomous system with time-varying input, it implies thatnot
merely moving equilibrium point is considered, but bounded
manifolds like periodic orbit or chaotic oscillator.

Remark 2:Linear pertubation in communication network
is widely adopted in literatures [10]. In this paper, we also
assumeGij(θ(t)) is a linear function thus the uncertain
Laplacian matrix can be expressed as

L(θ(t)) = L0 +

a∑

i=1

θi(t)Li.

Nonlinear coupling with nonlinear perturbations will alsobe
discussed in Section III.

Let us introduce the uncertain multi-agent dynamical system
(6) in compact form as

ẋ(t) = g(x(t))− b(L(θ(t)) ⊗ Γ)x(t) (9)

where x(t) = (x1(t)
T , . . . , xN (t)T )T and g(x(t)) =

(f(x1(t))
T , . . . , f(xN (t))T )T . Then, the robust synchroniza-

tion problems can be proposed as follows:
Problem 1: To establish if the uncertain dynamical system

(9) achieves robust global and exponential synchronization,
i.e. for anyǫ there exist positive constantsκ and c such that
‖xi(t)− xj(t)‖ ≤ κ‖xi(0)− xj(0)‖e

−ct for all xi(0), xj(0),
θ(t) ∈ Ω and i, j = 1, . . . , N .

Problem 2: To establish if the uncertain dynamical system
(9) achieves robust global and asymptotical synchronization,
i.e. for anyǫ there existT (ǫ) > 0 such that‖xi(t)−xj(t)‖ ≤ ǫ

and limt→0 ‖xi(t) − xj(t)‖ = 0 for all t > T , xi(0), xj(0),
θ(t) ∈ Ω and i, j = 1, . . . , N .

III. M AIN RESULTS

In this section, the conception of parameter-dependent con-
tractive matrix will be proposed and corresponding robust
synchronization conditions will be established via the partial
contraction and SMR technique.

A. Robust Synchronization Conditions

An easy yet effective way to analyze synchronization
without topological uncertainty via contraction theory isthe
method of partial contraction, where an auxiliary system is
introduced and the desired convergence behaviour is isolated
from the overall system dynamics [9].

Lemma 3 ([9]): Consider a continuously differentiable
nonlinear system of the forṁx = f(x, x, t) and there exists
an auxiliary systemẏ = f(y, x, t) which is contracting with
respect toy. If a particular solution of the auxiliaryy-system
verifies a smooth specific property, then all trajectories of
the originalx-system verify this property exponentially. The
original system is said to be partially contracting.

One can observe that the virtual system (y-system) has two
particular solutions, i.e.,y(t) = x(t) sharing the specific prop-
erty. If all trajectories of virtual system converge exponentially
to a specific trajectory, it directly impliesx(t) exponentially
verifies these properties.

Example 1:Let us consider a synchronization problem via
using partial contraction. Given a pair of unidirectional cou-
pled oscillators as follows:

{
ẋ1 = f(x1, t)
ẋ2 = f(x2, t) + u(x1)− u(x2)

(10)

wherex1, x2 ∈ R
n are state vectors,f(xi, t) is the dynam-

ics of uncoupled oscillators andu(x1) − u(x2) denotes the
coupling force. We can select a virtual system

ẏ = f(y, t)− u(y) + u(x1).

It is obvious thatx1(t) = x2(t) is a particular solution. On
the condition thatf −u is contracting, synchronization can be
achieved exponentially.

Definition 3: Let ẏ = h(y, θ, t) be the auxiliary system
of (6), M(y, θ) is defined to be aparameter-dependent con-
traction matrix (PD-CM) which is symmetric and uniformly
positive definite such that

(
2
∂hT

∂y
M +

∂M

∂θ
θ̇ +

∂M

∂y
ẏ
)s

≤ −γM (11)



whereγ is a strictly positive scalar. Similarly,M(y, θ) is called
parameter-dependent asymptotical contraction matrixwhich is
symmetric and uniformly positive definite such that

(
2
∂hT

∂y
M +

∂M

∂θ
θ̇ +

∂M

∂y
ẏ
)s

≤ −γI (12)

whereγ is a strictly positive scalar.
Lemma 4 ([31]): Let A ∈ R

N×N be a symmetric matrix.
Product matrixWN

A = (1N · 1TN)⊗A is positive semidefinite
if and only if A ≥ 0, where1N is a column vector with all
entries being one.

Theorem 1:Consider an uncertain system (9), an auxiliary
system can be obtained as

ẏ(t) = g(y(t))− b(L(θ(t))⊗ Γ)y(t)
−WN

PΓ(θ)y(t) +WN
PΓ(θ)x(t)

(13)

whereWN
PΓ(θ) = (1N · 1TN)⊗ (P (θ) ·Γ) andP (θ) ∈ R

n×n is
a positive definite matrix for all(θ(t), θ̇(t)) ∈ Ω. Furthermore,
robust global exponential synchronization can be achievedif
there exists a parameter-dependent contraction matrixM(y, θ)
such thatg(y(t))− b(L(θ(t))⊗ Γ)y(t) is contracting.
Proof By introducing a positive semidefinite matrixP (θ), for
i, j = 1, . . . , N , (6) can be equivalently expressed as

ẋi(t) = f(xi(t)) − b
∑N
j=1 Lij(θ(t))Γxj(t)

−P (θ)
∑N

j=1 Γxj + P (θ)
∑N

j=1 Γxj .

Then one can obtain a compact form similarly from (9) such
that

ẋ(t) = g(x(t)) − b(L(θ(t))⊗ Γ)x(t)
−WN

PΓ(θ)x(t) +WN
PΓ(θ)x(t).

Thus, by consideringWN
PΓ(θ)x(t) as the system inputs, the

auxiliary system (13) can be obtained that a particular solution
of robust synchronization isy∗ = 1N ⊗ y∞ where

ẏ∞(t) = f(y∞)−N PΓy∞+P (θ)

N∑

j=1

Γxj , i, j = 1, . . . , N.

Considering Lemma 3, the robust synchronization of system
(9) for all (θ(t), θ̇(t)) ∈ Ω can be achieved and the property
x1 = ... = xN can be verified exponentially if system (13) is
contracting. Thus, (13) is an auxiliary system for system (9).

Next, we will show that the auxiliary system (13) is con-
tracting if there exists a parameter-dependent contraction ma-
trix. A concise proof of exponential convergence of trajectories
for contracting system is given in [32] for an uncertainty-free
case. Lety0 andy1 be two different points and letΥ(y, θ, t)
be the associated flow of the auxiliary system (13). If there
exists a parameter-dependent contraction matrixM(y, θ) given
by Definition 3, then by the Theorem 2 of [32] one can obtain

DM (Υ(y0, θ, t),Υ(y1, θ, t)) ≤ e(−c/2)tDM (y0, y1),

whereDM is the geodesic distance corresponding to the metric
M(y, θ). Here mappingΥ is a strict contraction. Then, ac-
cording to Contraction Mapping Theorem, the flowΥ(y, θ, t)
verifies a specific manifoldy∞(t) exponentially [33].

Lastly it will be shown that there exists a parameter-
dependent contraction matrixM such that (13) is contracting.

Sinceg(y(t))−b(L(θ(t))⊗Γ)y(t) is contracting, one has that
there exists a matrix̃M(θ) such that

2
(
∂hT

∂y M̃ + ∂M̃
∂θ θ̇ +

∂M̃
∂y ẏ

)s

= 2
(
∂gT

∂y M̃
)s

− 2b
(
(L(θ))⊗ Γ)T M̃

)s

+(∂M̃∂θ θ̇)
s + (∂M̃∂y ẏ)

s

≤ −γM̃.

(14)

SinceΓ is diagonal positive semidefinite andP (θ) is a positive
semidefinite matrix, one has thatWN

PΓ(θ)
s ≥ 0 by Lemma 4.

Thus, the Riemanian manifold of general infinitesimal length
for the auxiliary system (13) can be expressed by

d
dtδy

T M̃(θ, y)δy

= d
dtδy

T M̃(θ, y)sδy

= δyT
((

2∂h
T

∂y M̃
)s

+
(
∂M
∂θ θ̇

)s
+
(
∂M̃
∂y ẏ

)s)
δy

= δyT
(
2
(
∂gT

∂y M̃
)s

− 2b
(
(L(θ))⊗ Γ)T M̃

)s

−2
(
(WN

PΓ(θ))
T M̃

)s
+
(
∂M
∂θ θ̇

)s
+
(
∂M̃
∂y ẏ

)s)
δy

= δyT
(
2
(
∂gT

∂y M̃
)s

− 2b
(
(L(θ))⊗ Γ)T M̃

)s

+
(
∂M
∂θ θ̇

)s
+
(
∂M̃
∂y ẏ

)s)
δy − δyT

((
WN
PΓ(θ)

)T
M̃

)
δy

−δyT
(
M̃WN

PΓ(θ)
)
δy

≤ δy
(
2
(
∂gT

∂y M̃
)s

− 2b
(
(L(θ)) ⊗ Γ)T M̃

)s

+
(
∂M
∂θ θ̇

)s
+
(
∂M̃
∂y ẏ

)s)
δy

≤ −γδyT M̃(θ, y)δy.

Therefore, the auxiliary system is contracting which completes
this proof. �

A result can also be obtained for robust asymptotical
synchronization by using parameter-dependent asymptotical
contraction matrix as follows:

Theorem 2:Consider an uncertain system (9), an auxiliary
system can be obtained as (13). Furthermore, robust asymptoti-
cal synchronization can be achieved if there exists a parameter-
dependent asymptotical contraction matrixM(y, θ) such that
g(y(t))− b(L(θ(t))⊗ Γ)y(t) is asymptotical contracting.
Proof Similar lines can be displayed in proof of Theorem 1.�

Remark 3:For Theorem 1 and Theorem 2, note that

• The virtual quantity of matrixP (θ) is to construct the
auxiliary system (13), satisfying

(
WN
PΓ(θ)

T M̃
)s

≥ 0.
Note that it has no influence on the actual systems, neither
on the specific robust synchronization manifold nor on
the robust synchronization rate. Moreover, matrixP (θ)
in the auxiliary system is not unique.

• From Lemma 1, a more general case can be derived
by using non-Euclidean norms and defining a general
parameter-dependent contraction matrix such that

{
M(y, θ) =M(y, θ)T ≥ 0, ∀θ ∈ Ω.
d
dt |M(y, θ)δy|i ≤ −ci|M(y, θ)δy|i.



B. Homogenous Parameter-dependent Polynomial Contrac-
tion Matrix

Establishing conditions of Theorem 1 and Theorem 2 is of
great difficulties in that they are nonlinear inequality prob-
lems with time-varying uncertainties. However, via suitable
parametrizations of affine spaces, SMR technique gives an
effective way to solve these problems which amounts to
tackling with an LMI feasibility test. Indeed, by introducing
a new class of contraction matrix, i.e., HPD-PCM, robust
synchronization conditions can be provided via solving an
LMI feasibility test.

In this paper, we are interested in investigating the robust
synchronization problems of polynomial nonlinear system.
Thus before proceeding, let us introduce the following assump-
tion on f(x).

Assumption 1:The functionf(xi) in (6) is polynomial.
Remark 4:An one-side global Lipschitz condition (or

QUAD condition) is assumed in an overwhelming number of
existing approaches for global synchronization such as [34].
However, the QUAD condition is not satisfied for simple
nonlinearities such as quadratic and cubic functions. Instead,
Assumption 1 includes such nonlinearities, and also includes
important systems such as Lorenz-like system, Hamiltonian
systems, Guckenheimer system and Rössler system.

Then, let us introduce the definition of homogeneous
parameter-dependent polynomial as follows:

m(y, θ) =
∑

q∈N
n,

∑n
i=1 qi≤2dy

r∈N
a,

∑
a
i=1 ri=dθ

cq,ry
qθr, (15)

wherecq,r ∈ R is the coefficients of monomialyqθr, dθ of
m(y, θ) is the degree ina scalar variablesθ, 2dy of m(y, θ)
is the degree iñn scalar variablesy and ñ = Nn. Thus, a
set of homogeneous parameter-dependent polynomial can be
given asH = {m(y, θ) : (15) holds}. Then, the definition of
HPD-PCM can be provided as

Definition 4: M(y, θ) is aHPD-PCM if it is a PD-CM and
every entry ofM(y, θ) satisfies

Mij(y, θ) ∈ H , ∀i, j = 1, ..., ñ.

Similarly, homogeneous parameter-dependent polynomial
asymptotical contraction matrix (HPD-PACM) can be defined
by using condition (12). LetR(y, θ, θ̇, γ) be a matrix of
polynomial as

R(y, θ, θ̇, γ)

= 2
( a∑

i=1

θi

)(∂gT
∂y

M
)s

− 2b
(
(L(θ)⊗ Γ)TM

)s

+
( a∑

i=1

θi

)2(∂MT

∂θ
θ̇
)s

+
( a∑

i=1

θi

)(∂MT

∂y
g
)s

−b
(∂M
∂y

(L(θ)⊗ Γ)y
)s

+ γ
( a∑

i=1

θi

)
M.

Thus, condition (11) can be expressed in a homogeneous form
of degreedθ + 1 in θ since

∑a
i=1 θi = 1 for all θ ∈ Ω. The

condition thatθ ∈ Λa can be relaxed to the conditionθ ∈ R
a
0

by the following lemma.

Lemma 5 ([35]): The functionH(θ) : R
a → R

n×n is a
symmetric matrix consisted of homogenous polynomials with
degreedθ in a scalar variables. Then,

H(θ) > 0 ∀θ ∈ Λa ⇐⇒ H(sq(θ)) > 0 ∀θ ∈ R
a
0.

Lemma 6:Robust exponential synchronization of (6) can be
achieved under Assumption 1 if there exists a positive scalar
γ and a HPD-PCMM(y, θ) such that

{
0 < M(y, sq(θ)) ∀y ∈ R

ñ
0 , ∀θ ∈ R

a
0

0 > R(y, sq(θ), θ̇, γ) ∀y ∈ R
ñ
0 , ∀(θ, θ̇) ∈ Ω.

(16)

Proof This result can be obtained directly from Definition 3,
Theorem 1 and Lemma 5. �

By the technique of SMR,M(y, sq(θ)) can be expressed
by

M(y, sq(θ)) = Ψ(M̄, dy, dθ, ñ) (17)

where

Ψ(M̄, dy, dθ, ñ) = (∗)T M̄(φpol(y, dy)⊗ φhom(θ, dθ)⊗ Iñ),

φpol(y, dy) ∈ R
lpol(ñ,dy) is a power vector containing all

monomials of degree less or equal tody, φhom(θ, dθ) ∈
R
lhom(a,dθ) is a power vector containing all monomial of

degreedθ, and

lpol(ñ, dy) =
(ñ+ dy)!

ñ!dy !
, lhom(a, dθ) =

(a+ dθ − 1)!

(a− 1)!dθ!
.

Symmetric matrixM̄ belongs to the set

M = {M̄T = M̄ : Ψ(M̄, dy, dθ, ñ) only contains
monomialsθi with even powerik}.

Lemma 7:The setM is a linear space of dimension

σ(ñ, dy, dθ) =
1
2 ñ(lpol(ñ, dy)lhom(a, dθ)(ñlpol(ñ, dy)lhom(a, dθ) + 1)
−(ñ+ 1)(lhom(a, 2dθ)− lhom(a, dθ))lpol(ñ, 2dy))

Proof See Appendix B. �

Thus, one can obtain a complete parametrization of the affine
spaceM for HPD-PCM of (17). Now let us consider the SMR
of R(y, θ, θ̇, γ). Note that the degree of polynomialg(y) is dg
in y and define that

dr = max(dg − 1 + 2dy, 2dy − 1 + dg, 2dy), (18)

and 2d̃r = even+1(dr) (i.e., 2d̃r = dr if dr is even, and
2d̃r = dr + 1 if dr is odd). It follows that,

R(y, θ, θ̇, γ) = Ψ(B(M̄, θ̇, γ) +N, d̃r, dθ + 1, ñ) (19)

whereB(M̄, θ̇, γ) is a multilinear function inM̃ and θ̇, i.e.,
it is linear in M̃ for fixed θ̇ and fixedγ, and is also linear
in θ̇ for fixed M̃ and fixedγ, andN is a symmetric matrix
belonging to the set

N = {NT = N : Ψ(N, d̃r, dθ + 1, ñ) = 0}.



Lemma 8:N is a linear space whose dimension is

σ(ñ, d̃r, dθ + 1) = 1
2 ñ(l(ñl + 1)

− (ñ+ 1)lhom(a, 2dθ + 2)lpol(ñ, 2d̃r))

wherel = lpol(ñ, d̃r)lhom(a, dθ + 1).
Proof Similar to the proof of Lemma 7 and we omit it here.

�

For more details of SMR and complete parametrization of
affine spaces, interested readers can refer [35], [36] and its
developments in robust consensus and robust synchronization
[37]–[39]. The following result gives a sufficient condition
which is a convex problem of LMIs feasibility test.

Theorem 3:The robust exponential synchronization of (6)
can be achieved under Assumption 1 if there exist matrices
M̄(α), N(β) and a positive scalarγ such that,
{

0 < M̄(α)
0 > B(M̄(α), dj , γ) +N(βj), ∀j = 1, ..., v.

(20)

whereM̄(α) andN(β) are linear parametrizations of affine
spacesM andN respectively, andα, βj are corresponding
free parameters whose dimensions are given by Lemma 7 and
Lemma 8, for allj = 1, ..., v.

Proof Let us consider the first inequality in (20),∀θ ∈ R
a
0 ,

by pre- and post-multiplying(φpol(y, dy)⊗φhom(θ, dθ)⊗Iñ)T

and (φpol(y, dy)⊗ φhom(θ, dθ)⊗ Iñ), one can obtain

0 < M(y, sq(θ)).

Similarly, from the second inequality in (20),∀y ∈ R
ñ
0 and

∀(θ, θ̇) ∈ Ω, by pre- and post-multiplying(φpol(y, d̃r) ⊗
φhom(θ, dθ+1)⊗Iñ)

T and(φpol(y, d̃r)⊗φhom(θ, dθ+1)⊗Iñ),
it follows that there exists a positive scalarγ such that

0 > Ψ(B(M̄, dj , γ) +N(βj), d̃r, dθ + 1, ñ), ∀j = 1, ..., v.

In addition, consideringN(βj) ∈ N , one has

Ψ(N(βj), d̃r, dθ + 1, ñ) = 0, ∀j = 1, ..., v.

Therefore, it follows that there exists a positive scalarγ such
that

0 > R(y, sq(θ), θ̇, γ),

SinceΞ is a convex hull of vectorsdj for j = 1, ..., v, the
condition of Lemma 6 holds which completes the proof.�

A paralleling result can be provided by the same approach
for robust asymptotical contraction as follows:

Corollary 1: The robust asymptotical synchronization of
(6) can be achieved under Assumption 1 if it satisfies following
condition,

{
0 < M̄(α)

0 > B̃(M̄(α), dj) +N(βj), ∀j = 1, ..., v,
(21)

where

R̃(y, θ, θ̇) = Ψ(B̃(M̄, θ̇) +N, d̃r, dθ + 1, ñ), (22)

and

R̃(y, θ, θ̇)

= 2
( a∑

i=1

θi

)(∂gT
∂y

M
)s

− 2b
(
(L(θ)⊗ Γ)TM

)s

+
( a∑

i=1

θi

)2(∂MT

∂θ
θ̇
)s

+
( a∑

i=1

θi

)(∂MT

∂y
g
)s

−b
(∂M
∂y

(L(θ)⊗ Γ)y
)s

.

Remark 5: It is useful to note that
• Considering the synchronization protocol

ẋi = f(xi, θ) +

N∑

j=1

uij(xj − xi, θ), ∀i = 1, ..., N,

where functionf is a polynomial in xi and θ, and
uij(xj − xi, θ) is also a polynomial in(xj − xi) and
θ. For this general case, an approach of polynomial
parameter-dependent polynomial contraction matrix can
be provided, while (17) can be presented similarly as

Ψ̃(M̄, dy, dθ, ñ) = (∗)T M̄(φpol(y, dy)⊗φpol(θ, dθ)⊗Iñ).

• Theorem 3 and Corollary 1 provide tractable conditions
for robust synchronization. However, it is admitted that
the conservatism arises between Theorem 1 and Theorem
3 because of the gap between positive polynomials and
Sum-of-Square polynomials which relates to the Hilbert’s
17th problem [40].

IV. ROBUST SYNCHRONIZATION PERFORMANCE

Section III provides conditions on which the robust ex-
ponential or asymptotical synchronization with bounded-rate
polytopic uncertainties can be achieved. Follow-up question
arises naturally that what is the largest level of polytopic
uncertainties on which the robustness of asymptotical syn-
chronization maintains. This section gives the answer for this
question.

Considering time-varying bounded-rate polytopic uncertain-
ty given by (7), a variation rate margin of robust asymptotical
synchronization can be defined for uncertain synchronization
protocol (6). Letη be variation rate margin for system (6) as
follows:

η = sup
{
η ∈ R : (6) achieves robust synchronization,

∀θ̇ ∈ co
{
ηd(1), ..., ηd(v)

}
, ∀θ ∈ Λa

}
.

(23)
It is of special usefulness that another definition comes from

a typical instance of above denotation, which concerns on the
cases that robust asymptotical synchronization is guaranteed
by a HPD-PACMM(y, sq(θ)) given by (17) for system (6)
as follows:

Definition 5: Defineη{dy,dθ} as{dy, dθ}-HPD-PACM vari-
ation rate margin for system (6) if there exists a HPD-PACM
M(y, θ) given by (17) for system (6) such that

η{dy,dθ} = sup
{
η ∈ R : θ̇ ∈ co

{
ηd(1), ..., ηd(v)

}
,

∀θ ∈ Λa

}
.



Obviously,η{dy,dθ} is a lower bound of the variation rate
margin under the guarantee of robust asymptotical synchro-
nization by the class of HPD-PACM. Specifically, one has

η{dy,dθ} ≤ η, ∀dy, ∀dθ.

The following results gives a strategy for obtaining a lower
bound ofη{dy,dθ} by solving a GEVP problem.

Theorem 4:Let us define

η̂{dy,dθ} =
1

ς∗
(24)

whereς∗ is the solution of

ς∗ = inf
ς, M̄, α, β(0),...,β(a)

ς

s.t.





0 < ς

0 < M̄(α)
0 < B1(M̄(α)) +N(β0)

0 > ς
(
B1(M̄(α)) +N(β0)

)

+B2(M̄(α), di) +N(βi) ∀i = 1, . . . , a
(25)

whereM̄(α) is a linear parametrization of spaceM ,N(β) is a
linear parametrization of spaceN , R(y, θ, θ̇) = R1(y, θ, θ̇)+
R2(y, θ, θ̇),

R1(y, θ, θ̇)

= 2
( a∑

i=1

θi

)(∂gT
∂y

M
)s

− 2b
(
(L(θ)⊗ Γ)TM

)s

+
( a∑

i=1

θi

)(∂MT

∂y
g
)s

− b
(∂M
∂y

(L(θ)⊗ Γ)y
)s

,

R2(y, θ, θ̇)

=
( a∑

i=1

θi

)2(∂MT

∂θ
θ̇
)s

,

and

R1(y, θ, θ̇) = Ψ
(
B1(M̄) +N, d̃r, dθ + 1, ñ

)
,

R2(y, θ, θ̇) = Ψ
(
B2(M̄, θ̇) +N, d̃r, dθ + 1, ñ

)
.

Then η̂{dy,dθ} is the lower bound ofη{dy,dθ}, i.e. η̂{dy,dθ} ≤
η{dy,dθ}.
Proof Suppose that (25) holds. Pre- and post-multiplying the
second inequality in (25) by(φpol(y, dy)⊗φhom(θ, dθ)⊗Iñ)T

and(φpol(y, dy)⊗φhom(θ, dθ)⊗Iñ), respectively, one has that

0 < Ψ(M̄, dy, dθ, ñ)

hence implying M(y, θ) is positive definite since
(φpol(y, dy)⊗φhom(θ, dθ)⊗Iñ)

T (φpol(y, dy)⊗φhom(θ, dθ)⊗
Iñ) > 0 for all y 6= 0. Then,R(y, θ, θ̇) for θ̇ = ς−1ν(i) is
given by

R(y, θ, θ̇)|θ̇=ς−1ν(i)

= Ψ
(
B1(M̄) + ς−1B2(M̄, di), d̃r, dθ + 1, ñ

)

= ς−1Ψ
(
ςB1(M̄) +B2(M̄, di), d̃r, dθ + 1, ñ

)
.

(26)

sinceN(βi) ∈ N , ∀i = 0, 1, ..., a, it follows

R(y, θ, θ̇)|θ̇=ς−1ν(i)

= ς−1Ψ
(
ς(B1(M̄(α)) +N(β0))

+B2(M̄(α), di) +N(βi), d̃r, dθ + 1, ñ
)
.

(27)

Thus, due to the last constraint in (25) one has

R(y, θ, θ̇)|θ̇=ς−1ν(i) < 0 ∀i = 1, ..., a.

Based on this, one can also have that there exists a HPD-
PCM for all θ(t) in following set

η{dy,dθ} = sup
{
η ∈ R : θ̇ ∈ co

{
ς−1d(1), ..., ς−1d(v)

}
,

∀θ ∈ Λa

}
.

Therefore, one haŝη{dy,dθ} ≤ η which completes this proof.�

V. NUMERICAL EXAMPLES

To illustrate our proposed approach, two deliberately simple
examples are provided by using MATLAB and its toolboxes
SMRSOFT and SeDuMi.

A. Example 1

In this example, a coupled model of Moore-Greitzer jet
engines is considered in the no-stall mode [14], [41]. The
intrinsic dynamics of each jet engine is described byf(x)
in (6) as

f(xi) =

(
−0.5x3i1 − 1.5x2i1 − xi2

3xi1 − xi2

)

where xi = (xi1, xi2)
′, i = 1, 2, xi1 relates to the mass

flow andxi2 relates to the pressure rise. The communications
between these two jet engines are disturbed by a time-varying
uncertaintyθ(t). Let the uncertain weighted adjacency matrix
G(θ(t)) be

G(θ(t)) =

(
1 0

1− 2θ(t) 1

)
.

For θ(t) > 0.721, the synchronization can not be achieved
since a Hopf bifurcation takes place as shown in Fig. 1 where
error statesz(t) = x1(t) − x2(t).In (a) of Fig. 1, θ(t) =
0.6, θ̇ = 0, synchronization can be achieved where trajectory
of agent 1 is shown in (b). In (c) of Fig. 1,θ(t) = 0.75, θ̇ = 0,
synchronization can not be achieved where trajectory of agent
1 is shown in (d). Since0a ∈ Ξ = co{d(1), ..., d(v)}, for anyη
given by (23), the robust synchronization can not be achieved
when θ(t) > 0.721. Hence in this example we consider the
parameter bound0 ≤ θ(t) ≤ 0.6.

Let c = 1, Γ = I2 and a maximum variation rateη of θ(t) is
considered such that the robust asymptotical synchronization
can be achieved for any|θ̇(t)| ≤ η. Hence,Ξ can be expressed
as

Ξ = co

{( η
0.6
− η

0.6

)
,

(
− η

0.6
η
0.6

)}
.

TABLE I: Lower boundη̂, for some values ofdy anddθ.

dy/dθ 0 1 2 3

1 N/A N/A N/A N/A

2 178.3 197.1 207.7 214.1

3 185.8 202.3 211.2 216.4
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Fig. 1: Example 1. Hopf bifurcation of coupled M-G jet
engines.

Then, we compute the lower bound̂η by employing HPD-
PCM method withdθ = 0, 1, 2, 3 anddy = 1, 2, 3 as shown in
Table I. Comparing with other sufficient conditions provided
by [29] (quadratic Lyapunov function method with affine
parameter dependence) and by [14] (Parameter-independent
polynomial contraction matrix), the proposed method gen-
eralize these cases and gives a less conservative result by
using higher-order HPD-PCM. Specifically, regards to linear
parameter-dependent quadratic Lyapunov function, the robust
asymptotical synchronization can not be guaranteed where
dy = 1 and dθ = 1. Moreover, the proposed method also
obtains a significant larger bound contrast with the parameter-
independent polynomial contraction matrix wheredθ = 0.
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−2

0

2

4

 t

 z

Fig. 2: Example 1. Trajectories of robust synchronization.

Fig. 2 shows that 50 trajectories ofz(t) with θ(t) randomly
chosen inΩ and initial conditionsx(0) randomly chosen in
[−4, 4]4.

Fig. 3: Example 2. Topology of six-agent system.

B. Example 2

In this case, a six-agent system in Figure 3 is considered
with following intrinsic dynamics in (6) as

f(xi) =

(
xi2

−3xi1 − xi2

)
.

Let a = 2, n = 2, N = 6, Γ = I2 and given an uncertain
weighted adjacency matrix asG(θ) = G0 +

∑a
i Giθi where

G0 =




1 0 0 0 10 0
5 1 0 0 0 0
0 8 1 0 20 0
0 0 6 1 0 0
0 0 0 8 1 0
0 0 0 0 9 0



,

G1 = −




0 0 0 0 0.2 0
0.1 0 0 0 0 0
0 0.3 0 0 0 0
0 0 0.2 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0 0



,

G2 =




0 0 0 0 −0.3 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −0.1 0



.

θ = (θ1, θ2)
′, Λ2 = {θ(t) ∈ R

2 : θ1 + θ2 = 1, θ1, θ2 ≥ 0},
v = 2 and Ξ is chosen to be co{d(1), d(2)} where d(1) =
η(1,−1)T andd(2) = η(−1, 1)T . Note that this is equivalent
to |θ̇i| ≤ η for i = 1, 2 and θ̇1 + θ̇2 = 0.

TABLE II: Comparison of lower bound̂η by different
approaches withdy = 1.

Approaches/dθ 0 1 2 3

[29] N/A 57.34 N/A N/A

[14] 48.71 N/A N/A N/A

This paper 48.71 59.52 67.13 70.81



Similar to former example, we compute the lower bound
η̂ by employing HPD-PCM method withdy = 1 and dθ =
0, 1, 2, 3 as shown in Table II. Comparing with sufficient
conditions provided by [29] and by [14] , again, the proposed
method is testified to be less conservative and obtains a larger
robust asymptotical synchronization margin withdθ > 1.
Furthermore, it also shows that by increasing the degree
of uncertain parameterdθ, the conservatism level decreases
progressively and apparently.

It is worthy to note that, comparing with approach of [29],
even though samedθ is considered, proposed method still
obtains a bigger margin̂η (also shown in Table II) in that this
paper completely parametrized corresponding affine spaces
while [29] does not.

VI. CONCLUSIONS

Robust synchronization of multi-agent system with poly-
nomial nonlinear dynamics is considered affected by time-
varying polytopic uncertainty with bounded variation rate.
Based on partial contraction, a novel approach is proposed by
using a new class of contraction matrix, i.e., homogeneous
parameter-dependent polynomial contraction matrix (HPD-
PCM), and conditions for robust exponential synchronization
and robust asymptotical synchronization are both provided.
Corresponding sufficient conditions have also been proposed
in terms of LMIs via exploring the parametrizations of related
affine sets. Moreover, we investigate the variation rate forro-
bust asymptotical synchronization margin whose lower bound
can be estimated via solving GEVPs.

Comparing with Parameter Linear-dependent Quadratic
Lyapunov Function (PLD-QLF) and parameter-independent
polynomial contraction matrix, numerical examples have
shown that the proposed method generalize above methods
and can successfully decrease the conservatism level by using
a higher-order HPD-PCM, in other words, an expanded lower
bound of variation rate margin can be obtained via increasing
the value ofdy anddθ respectively.

Future efforts will be devoted to investigate the upper bound
of degreedy anddθ to ensure the robust synchronization. In
addition, particular interests have casted on stochastic synchro-
nization with randomly switching topology, like representative
stochastic models used in [15], [16], [18].
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APPENDIX

A. Proof of Proposition 1

From (3), one obtains

|δx|q ≤ |δx0|qe
∫

t

0
µq(J(τ))dτ .

From Definition 1, the contraction of System 1 for| · |q yields
to

|δx|q ≤ |δx0|qe
−cq .

Clearly, one can obtain the contraction ratecq from the upper
bound of matrix measure of system Jacobian as

cq = −max{µq(J)}.

According to the equivalence between| · |q and | · |p from
Lemma 2, one has

|δx|p ≤ n(1/q−1/p)|δx0|pe
−cqt

which can be alternatively expressed as

|δx|p ≤ |δx0|pe
−cq(t−ψ)

whereψ = (p−q) logn
pqcq

denotes a time-shift.

B. Proof of Lemma 7

Let M̄1 andM̄2 be any matrices inM . It directly follows
that for any linear combination of̄M1 andM̄2, one hasc1M̄+
c2M̄2 ∈ M , for all c1, c2 ∈ R such thatc1 + c2 = 1. Thus,
one can obtain thatM is an affine space.

Define

a = ñlpol(ñ, dy)lhom(a, dθ),

the total number of free entries of̄M ∈ R
a×a can be calculated

as 1
2a(a + 1). Let b ∈ R

1
2a(a+1) be a vector containing the

free entries of matrixM̄ , and define a linear mappingE :
R

1
2a(a+1) → R

a×a satisfyingE(b) = M̄ . Thus, one has

Ψ(M̄, dy, dθ, ñ)
= (∗)TE(b)(φpol(y, dy)⊗ φhom(θ, dθ)⊗ Iñ)
= (Fb)T (φpol(y, 2dy)⊗ φhom(θ, 2dθ)⊗ Iñ)

whereF is a suitable transformation matrix. Observe that

M = {E(b) : b ∈ ker(E)}.

It directly follows that

dim(M ) = dim({E(b) : b ∈ ker(E)})
= dim(ker(E))
= 1

2a(a+ 1)− rank(E).

Let us observe that dimension ofM stems from the entries
of same monomials with even power inθ, implying that

rank(E) = {number of distinct monomials
ci,jθ

iyj with odd powerik}.

For scalar homogeneous polynomial inθ, the number of
distinct monomials with at least one odd power ofθ is
lhom(a, 2dθ)− lhom(a, dθ). Considering all the distinct mono-
mials in y of degree less or equal tody and in the matrix
form with sizeñ× ñ, the total number of distinct monomials
with at least one odd power ofθ can be expressed as12 ñ(ñ+
1)(lhom(a, 2dθ) − lhom(a, dθ))lpol(ñ, 2dy), which completes
the proof.
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