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Abstract— This paper presents a complete system for auto-
matic facial expression recognition. The Candide-3 face model
is used in conjunction with a learned objective function for face
model fitting. The resulting sequence of model parameters is
then presented to a recurrent neural network for classification.
The advantage of using a recurrent network is that the temporal
dependencies present in the image sequences can be taken into
account during the classification. Since the entire process is
automatic, and the recurrent networks can be used to make
online predictions, the system would be ideal for real-time
recognition. This would make it suitable for the CoTeSys ‘coffee
break’ scenario, where guests must be recognised and served
by robot waiters. Promising experimental results are presented
on the Cohn-Kanade database.

I. INTRODUCTION

Existing methods for human-machine interaction are often
considered unintuitive. As a consequence a lot of time is
required for humans to adapt to the operation of a specific
machine. In contrast, we aim at granting machines the ability
to adapt to typical human behaviour. To participate in natural
human-machine interaction, machines must be able to derive
information from human communication channels, such as
spoken language, gestures or facial expressions.

Model-based image interpretation techniques extract infor-
mation about human faces. Models impose knowledge about
the object of interest and reduce high dimensional image data
to a small number of expressive model parameters. This rep-
resentation of the image content facilitates subsequent recog-
nition and classification tasks. The model used by our system
is the deformable 3D wire frame Candide-3 face model [1].
The Candide parameter vector p = (rx,ry,rz,s, tx, ty,σ ,α)T

describes the affine transformation (rx,ry,rz,s, tx, ty) and the
deformation (σ ,α). The 79 deformation parameters indicate
the shape of facial components such as the mouth, the eyes,
or the eyebrows via a set of 116 anatomical landmarks
(see Figure 1). These parameters are estimated with help
of learned objective functions as described in our earlier
work [2]. This approach ensures accurate and robust esti-
mation of model parameters.

Recurrent neural networks use these features to classify
the facial expression. Recurrent networks are able to ro-

bustly derive information from sequences of data vectors
by exploiting the fact that data represented by successive
vectors is also connected semantically and therefore inter-
dependent. We present the classifier data that is extracted
from successive images in image sequences displaying facial
expressions. Unlike many competing systems, the approach
is fully automated and requires no human intervention.

A. Related Work

The task of recognising facial expressions is usually
subdivided into three subordinate challenges: face detection,
feature extraction, and expression classification [3]. The first
step aims at determining the position and shape of the face in
the image. Features descriptive for facial expressions or head
gestures are extracted in the second step. In the third step a
classifier is applied to the features to identify the expression
class.

1) Face Model Fitting: Cootes et al. [4] introduced mod-
elling shapes with Active Contours. Further enhancements
included the idea of expanding shape models with texture
information [5]. Recent research also considers modelling
faces in 3D space [1], [6].

Van Ginneken et al. learned local objective functions from
annotated training images [7]. In this work, image features

Fig. 1. The Candide-3 face model is able to reflect various face shapes
and facial expressions.



are obtained by approximating the pixel values in a region
around a pixel of interest The learning algorithm used to map
images features to objective values is a k-Nearest-Neighbor
classifier (kNN) learned from the data. Romdhani combines
the use of a multitude of features with a multi-stage fitting
approach to fit 3D face models to 2D images [8]. Each fitting
stage leads to more accurate model fits, and different features
are used in each stage.

Our methodology combines the two approaches above, in
that it uses a multitude of qualitatively different features [8],
determines the most relevant features using machine learn-
ing [7], and learns objective functions from annotated im-
ages [7]. Furthermore, we extend these two approaches, by
using machine learning to completely automate the process
of determining calculation rules by composing features.
More importantly, we formalise properties that ideal objec-
tive functions have, and enforce these during the generation
of training data. This influences the shape of the learned
objective function, which is approximately ideal.

2) Feature Extraction: Michel et al. [9] extract the loca-
tion of 22 feature points within the face and determine their
motion between an image that shows the neutral state of the
face and an image that represents a facial expression. The
very similar approach of Cohn et al. [10] uses hierarchical
optical flow in order to determine the motion of 30 feature
points. In contrast to our approach, these features are ex-
tracted from a sequence of images rather than from single
images. Since we use a classifier that inherently considers
temporal aspects we do not take this into consideration in
the feature extraction step.

3) Feature Classification: The facial expression is de-
termined from the extracted features. Mostly, a classifier
is learned from a comprehensive training set of annotated
examples. Some approaches infer the facial expression from
rules stated by Ekman and Friesen [11]. Kotsia et al. take
this approach [12]. Michel et al. [9] train a Support Vector
Machine (SVM) that determines the visible facial expression
within the video sequences of the Cohn-Kanade Facial
Expression Database by comparing the first frame with the
neutral expression to the last frame with the peak expression.

B. Organisation of the Paper

The remainder of this paper is structured as follows:
in section II we introduce our model fitting approach. In
section III we present the features we extract from images
and how this differs to related work. In section IV we
give details about our classification approach and present its
advantages. Section V provides an experimental evaluation of
our approach. Finally, Section VI summurizes our approach
and introduces future work.

II. FACE MODEL FITTING

In order to extract high-level information, model parame-
ters have to be estimated that best describe the face within
a given image. Model fitting solves this task and is often
addressed by minimising an objective function that evaluates
how well a model parameterisation fits a given image. The

objective function is often designed manually, such as the
pixel error between the model’s rendered surface and the
underlying image content. In contrast, we propose to learn
the objective function from annotated example images, see
Figure 2 [2].

The objective function f (I, p) yields a comparable value
that determines how accurately a parameterised model p fits
to an image I. The fitting algorithm searches for the model
parameters p that optimise the objective function. However,
this paper shall not elaborate on them but we refer to [13]
for a recent overview and categorisation.

The objective function, which we consider the core com-
ponent of the model fitting process, is often designed man-
ually using the designer’s domain knowledge and intuition.
Afterwards, its appropriateness is subjectively determined by
inspecting its result on example images and example model
parameters. If the result is not satisfactory the function is
tuned or redesigned from scratch [8], [14]. Since the design-
inspect loop is iteratively executed, manually designing the
objective function is highly time-consuming — see Fig-
ure 2 left.

A. Ideal Objective Functions

In contrast, we propose to learn the objective function
rather than designing it manually, see Figure 2 right. This
approach is based on the general properties of ideal objective
functions. The key idea behind the approach is that if
the function used to generate training data is ideal, the
function learned from the data will also be approximately
ideal. Furthermore, we provide a large number of image
features. The learning algorithm is able to consider all the
features together and the resulting objective function allows
model fitting with both good runtime performance and high
accuracy.

An ideal objective function should have two properties.
First, its global minimum should correspond to the correct
position of the contour point. Second, it should have no
other local minima. Equation 1 depicts an ideal objective
function f ?

n . It simply computes the Euclidean distance
between the correct location x̂?

n of the nth contour point and a
location u on the image plane. Note that the vector of correct
contour points x̂? must be specified manually.

The function f ?
n already shows ideal characteristics. Un-

fortunately, this function is not feasible for previously unseen
images, because it requires the correct locations of the
contour points x̂?, which have to be manually specified.
However, our approach uses f ?

n to generate training data for
learning an additional objective function f `

n that does not
require knowledge of x̂?.

f ?
n (I,u) = |u− x̂?

n| (1)

B. Learning Objective Functions

We annotate a set of images with the correct contour
points x̂?. For each x̂?

n, the ideal objective function returns the



Fig. 2. left: the design approach. right: the learn approach.

minimum f ?
n (I, x̂?

n) = 0 by definition. Further coordinate-to-
value correspondences are automatically acquired by vary-
ing x̂?

n along the perpendicular and recording the value
returned by the ideal objective function in the second step.

Finally, the calculation rules of the objective function are
learned with tree-based regression [16]. The advantage of
this machine learning approach is that it selects only the most
relevant features from the vast amount of features provided.
Therefore, the values of far fewer image features need to
be computed during the process of fitting the model which
reduces the time requirement.

This approach does not require expert knowledge and is
domain-independent. Furthermore it yields more robust and
accurate objective functions, which greatly facilitate the task
of the associated fitting algorithms. Accurately estimated
model parameters in turn are required to infer correct high-
level information, such as facial expression or gaze direction.
We refer to [2] for a detailed description and evaluation of
our approach.

happiness anger disgust

sadness fear surprise
Fig. 3. The six universal facial expressions as they occur in [15].

Fig. 4. The Candide-3 face model consists of 116 landmarks and reflects
the face shape by 79 shape parameters.

III. FEATURE EXTRACTION

Ekman and Friesen [17] identified six universal facial
expressions that are expressed and interpreted in the same
way by people all over the world. They do not depend on
the cultural background or the country of origin. Figure 3
shows one example of each facial expression.

The Facial Action Coding System (FACS) [18] expands on
this work to precisely describe the muscle activities within
a human face. Action Units (AUs) denote the motion of
particular facial parts and state the facial muscles involved.
Since our model has been designed with the work of Ekman
and Friesen in mind, we infer the facial expression currently
visible from the movement of its landmarks.

The deformation parameters (σ ,α) describe the constitu-
tion of the visible face and the position of the 116 land-
marks. The examples in Figure 4 illustrates the relationship
between the facial expression and the value of (σ ,α). We
therefore consider (σ ,α) to provide high-level information
to the interpretation process. To provide training data for the
classification step, we fit the model to every image of the
sequence and extract the model parameters. Note, that the
extracted features refer to a single image only and could also
be obtained for a set of non-dependent images. However, the
classifier will exploit the fact that the features are extracted
from semantically linked images.

IV. CLASSIFICATION

Given the sequence of extracted features, we then want
to classify the facial expression. This can be done directly,
by outputting a single class for the entire sequence (as in
e.g. [9]), or indirectly, by first classifying the individual
frames of the video sequence, then combining these to get the
overall expression. Although direct sequence classification
generally gives better results, it requires that the video
be presegmented into individual expressions. It also makes
real-time recognition impossible, since the classification is
only available at the end of the sequence. Our system is
based on frame classification, and has been designed with
unsegmented, real-time applications in mind.

As noted above, facial expressions are inherently temporal.
However most classifiers, including support vector machines,
decision trees and feedforward neural networks, are designed
for static patterns. This means that in order to use them as
expression classifiers, the sequence of input features must be
preprocessed into a single, fixed-length vector. As well as
requiring significant effort on the part of the experimenters,



this approach often throws away significant temporal depen-
dencies.

Recurrent neural networks are a connectionist architecture
where one or more of the network layers is connected to
itself (illustrated in Figure 5)

Fig. 5. Recurrent neural network.

The self connections allow the network to build an internal
representation of past events, thereby allowing it to make
flexible use of temporal context. In addition, the internal rep-
resentation tends to be more robust to shifts and distortions
in the input sequence (e.g. the same expression enacted at
different speeds) than static methods.

Since the network is designed for temporal patterns, the
sequence of extracted Candide features can be fed to it
directly.

One refinement to the basic recurrent architecture is the
use of long short-term memory (LSTM) [19] cells. As
shown in figure 6, LSTM cells use linear units protected by
multiplicative gates to store information over long periods of
time. This extends the range of temporal context available to
the net.
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Fig. 6. The long short-term memory architecture.

Another improvement is the use of bidirectional recurrent
networks [20] to provide future as well as past context. As
shown in Figure 7 bidirectional networks scan through the
same sequence forwards and backwards with two separate
hidden layers, both of which are connected to the same
output layer. The output classifications can therefore be made
in the light of all surrounding context in the input sequence.
However one disadvantage to bidirectional networks is that
the entire sequence must be complete before they can be
used, which makes them unsuitable for real-time applica-
tions.
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Fig. 7. Normal recurrent network (RNN) and Bidirectional recurrent neural
network (BRNN).

In the following experiments we evaluate both bidirec-
tional LSTM [21] and unidirectional LSTM for facial ex-
pression classification.

V. EXPERIMENTAL EVALUATION

We evaluated our system on the Cohn-Kanade facial
expression recognition database [15]. The task was to classify
each of the video sequences into one of the six standard
expression classes: happiness, anger, disgust, sadness, fear
and surprise. Following the methodology used in [9], we
used 5-fold cross validation to determine the classification
accuracy.

A. Data

The Cohn-Kanade Facial Expression Database is publicly
available and referenced by several research groups [22],
[12]. It contains short image sequences of about 100 persons
of both genders with age varying between 18 and 30 years.
The image sequences start with the neutral face and evolve
into the peak expression. All images are taken from a
frontal view. The database also includes specifications for
the activation of AUs and the facial expression depicted.

B. Classifier Parameters

We used two networks, a bidirectional LSTM network
with 100 LSTM cells in both the forward and backward
hidden layers, and a unidirectional LSTM network with 150
cells in the hidden layer. Both networks had 35 input units
and six output units, one for each target class. All hidden
layers were completely connected to themselves, and to the
input layer and output layer. The bidirectional network had



Classification error rate on the Cohn-Kanade database.

Classifier Mean Error Rate
bidirectional LSTM 14.6 ± 0.9%
unidirectional LSTM 18.2 ± 0.6%

110,606 trainable parameters in total, while the unidirectional
network had 112,956.

The output layer had a softmax activation function and
was trained with the cross-entropy objective function for
classification. During training, each frame of each video
was classified separately according the overall expression
in the video (there were no classification targets for the
first third of each video, since these were determined to be
expressionless). Once training was complete, the accuracy
of the network was assessed by summing up over the frame
classifications, then normalising to achieve a probabilistic
classification for the entire sequence

The inputs were normalised to have mean 0 and standard
deviation 1. Gaussian noise with standard deviation 0.5 was
added to them during training to improve generalisation.

To calculate the 5-fold classification score, the data was
divided into 5 test sets, each containing 20% of the exemplars
of each of the six expression classes. For each test set,
15% of the remaining sequences were used as validation
sets for early stopping, and the rest were used for training.
The network weights were randomly according to a Gaussian
distribution with a mean of 0 and a standard deviation of 0.1.
Each of the 5 experiments was repeated 10 times, to account
for the effects of random initialisation. The error rate quoted
in the results is the mean over all 50 experiments ± the
standard error.

C. Results

Table V-C shows the classification results on the Cohn-
Kanade database. As can be seen, the bidirectional network
gave significantly better performance. However the unidirec-
tional net is interesting in that it could be used for real-time
recognition.

Note that in both cases the training set was easily learned
by the classifier, with virtually all sequences correctly clas-
sified. This indicates that the key difficulty of the task
lies in generalising from the training to the test examples.
In particular, generalisation is difficult with such a small
number of training samples. We would expect a substantial
gain in performance if a larger dataset was used.

VI. CONCLUSIONS AND FUTURE WORK

We present an approach for facial expression estimation
that combines state-of-the-art techniques for model-based
image interpretation and sequence labelling. Learned objec-
tive functions ensure robust model-fitting to extract accurate
model parameters. The classification algorithm is explicitly
designed to consider sequences of data and therefore consid-
ers the temporal dynamics of facial expressions. Future work
aims at presenting the classifier training data that is obtained
from various publicly available databases to reflect a broader

variety of facial expressions. Furthermore, our approach will
be tuned towards applicability in real-time. It is planed to
create a working demonstrator from this approach.
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