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Abstract— Data or measurement-to-track association is an
integral and expensive part of any solution performing multi-
target multi-sensor Cooperative Localization (CL) for better
state estimation. Various performance evaluations have been
performed between various state-of-the-art solutions, but they
have been often limited within same family of algorithms.
However, there exist solutions which avoid the task of data
association to perform the CL in a multi-target multi-sensor
environment. Factor Graphs using Symmetric Measurement
Equations (SMEs) factor is one such solution. In this paper
we compare and contrast the state estimation using state-of-
the-art Random Finite Set (RFS) approach and using a Factor
Graph solution with SMEs. For a RFS we use multi-sensor
multi-object with the Generalized Labeled Multi-Bernoulli
(GLMB) Filter. These two solution use conceptually different
approaches, GLMB Filter solves the data association implicitly,
but Factor Graph based solution avoids the task altogether.
Simulations present an interesting results where for simple
scenarios implemented GLMB filter performs efficiently. But
the performance of GLMB Filter degrades faster than Factor
Graphs using SMEs when the error in the sensors increase.

I. INTRODUCTION

With tumbling hardware costs, number of sensors available
inside and outside the vehicle have increased. And along with
the possibility of sharing data in real time has revolutionized
the Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
(V2I) technologies. Hence, the task of Cooperative Local-
ization to arrive at better state estimates of the participating
vehicles has become a feasible solution [1].

Cooperative Localization (CL) is an old concept. [2] and
[3] use Kalman Filter and its derivatives to perform the
CL. Other researches provided novel solutions including
Maximum A Posteriori Estimation (MAP) [4], Particle Filters
[5], Markov localization [6], Split Covariance Intersection
Filter [7], and Random Finite Set framework (RFS) [8].

Howard et. el. [9] uses Maximum Likelihood Estimation
(MLE) to achieve the CL by combining relative measure-
ments between robots in a least square formulation and

*This work was supported by fortiss
http://www.fortiss.org/, BMWi IKT III SADA Project
http://www.projekt-sada.de/ and BMVI Providentia
http://testfeld-a9.de/.

1Dhiraj Gulati is with the fortiss GmbH, München,
gulati@fortiss.org

2Dhiraj Gulati, Uzair Sharif and Alois Knoll are with
Technische Universität München, Garching bei München, Germany,
dhiraj.gulati@tum.de, uzair.sharif@tum.de,
knoll@in.tum.de

3Feihu Zhang is with the School of Marine Science and Tech-
nology, Northwestern Polytechnical University, 710072, Xi’an, China;
feihu.zhang@nwpu.edu.cn

4Daniel Clarke is with Cogsense Technologies Limited, Berkshire, RG14
1QL England, UK; daniel.clarke@cogsense.co.uk

solving the same. Ahmad et. el. [10] does the same but also
includes moving landmarks. Gulati et. el. [11] formulates
the CL as a graphical model, adding sensor measurements
as SMEs to formulate the joint state of the system. This
is implemented as a factor graph within the Georgia Tech
Smoothing and Mapping (GTSAM) [12] framework.

Most of the CL methodologies also use some of the
popular state-of-the-art solution to manage the data origin
uncertainty. These techniques mostly fall in the following
categories: Nearest Neighbor (NN) methods, Probabilistic
Data Association (PDA) methods (like Joint PDA [13],
[14] and Joint Integrated PDA [15]), Multiple Hypothesis
Tracking (MHT) [16]–[18], multi-target particle filtering [19]
and lately methods based on RFSs [20]–[23].

Some researchers have come up with other interesting
methodologies to address the issue of data association.
Gidel et. al. [24] demonstrated the used non-parametric data
association for particle filter. Instead of the Gaussian Frame-
work, particle set is generally non-Gaussian and authors
propose non-parametric approaches of Parzen Window and
K-Nearest Neighbour to compute probabilities of each data
association. Bowman et. al. [25] formulate the problem of
data association as part of the Factor Graph. The landmarks
recorded in the system are identified using geometric and
semantic information. The process assign weights to the
subsequent measurements of the landmarks. The resulted
graph is optimised using GTSAM [12].

In this evaluation, we use RFS based algorithm applied
to a multi sensor multi target scenario. In the last decade
researchers have increasingly developed a lot of novel ap-
proaches using family of RFS algorithms. For our compar-
isons we use a fast implementation of Generalized Labeled
Multi-Bernoulli (GLMB) Filter [26].

Our previous work [11] using Factor Graph and SME suc-
cessfully solves the problem of CL. It avoids data association
and also scales optimally for non-linear cases.

II. PROBLEM DESCRIPTION

The scenario which we use to compare the two methods
shown in (Fig. 1(a)). The assumptions are:

1) Each vehicle is equipped with an Odometry and a GPS
sensor and can broadcasts its measurements. Further
GPS Sensor can localize itself in an absolute reference.

2) An external infrastructure RADAR sensor can derive
the global position of all the vehicles in its field of
view, but cannot uniquely identify the vehicles. This
introduces a challenge from the perspective of data
association, which is the main focus of our comparison.
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Fig. 1. (a) Four vehicles represented with solid circles. Local Coordinate
System in red is of RADAR. (b) Factor graph for n vehicles with three
state nodes each and corresponding Odometry Factors, GPS Factors and
SME Factors.

3) The vehicles and RADAR Sensor can communicate in
both directions without any timing delay or data error.

4) The system has no clutter and no miss detections.
We use cooperative multi-sensor (Odometry, GPS,

RADAR) and multi-target (for RADAR) data fusion to arrive
at the state estimates of the participating vehicles.

III. FACTOR GRAPHS AND SMES

This sections gives a brief overview of Factor Graphs and
SMEs. Interested reader should refer to [11] for details.

A. Factor Graphs

Localization can be represented by estimating the trajec-
tory x = {xi|i ∈ 0, ..., n}, for a given set of measurements
from various sensors, for example from Sensor-1 z1 =
{z1|i ∈ 0, ..., n}, Sensor-2 z2 = {z2|i ∈ 0, ..., n} and
Odometry u = {u|i ∈ 0, ..., n}. The joint density for the
measurements from all the Sensors can be then written as:

P (x, z1, z2,u) ∝ P (x0)

n∏
i

P (xi+1|xi, ui)
m∏
k

P (zk|xik) (1)

where zk ∈ {z1, z2} denotes the measurement, originating
from either Sensor-1 or Sensor-2. This can also be repre-
sented as a Factor Graph [27] where factors are formulated
from sensors measurements and connect the states.

To arrive at the optimized states, we calculate the max-
imum likelihood estimation (MLE) by using the nonlinear
least square method:

x̄ = argmaxP (xi|z,u) =

argmin{
n∑
i=1

||fi(xi−1 − ui)− xi||2Γi
+

m∑
k=1

||hk(xik)− zk||2Σk
}

(2)

where h and f denote the measurement and process models,
and Γi and Σk are the covariance matrices . Next we look
at the formulations of factors.

For a constant velocity model, the error function of the
binary factor fODOM between the states Xt, Xt−1:

fODOM (Xt, Xt−1) , d(zot − ho(zot−1)) (3)

where ho is the function to calculate the odometry measure-
ment at time t and zot is the measurement at time t. The
covariances are provided by the sensor manufacturer.

The GPS gives an unary factor fGPS for a state Xt, which
is written as:

fGPS(Xt) , d(zgt − h
g(zt)) (4)

where ng is the measurement noise, and hg is the measure-
ment function, providing the relation between the measure-
ment zgt and the position of the vehicle zt at time t. The
covariances are provided by the sensor manufacturer.

To avoid Data Association, the RADAR measurements
are incorporated using a N-ary SME factor for states
(X0, · · · , XN )t at time t as:

fSME((X0, · · · , XN )t) , d(zst − hs(z0, · · · , zN )) (5)

where hs is the new measurement function and zi is the ith

measurement. Fig. 1(b) shows the factor graph with three
kinds of factors.

The SME measurement is a pseudo measurement, hence
we also need to calculate the covariance for it. If σ2

x and
σ2
y are the X and Y variances respectively for the RADAR,

then we can write [28]:

σ2
topx,y

= M · Cov(x, y) ·MT (6)

where M is a 1X2N matrix as follows:

M =
[
∂
∂x1

(zst ), · · · , ∂
∂xn

(zst ), ∂
∂y1

(zst ), · · · , ∂
∂yn

(zst )
]

(7)

B. Smoothing

The formulated factor graph is solved using the Leven-
berg Marquardt Optimizer. Using an initial estimate x0 it
iteratively finds an update ∆ from the linearized system:

arg min
∆

J(x0)∆− b(x0) (8)

where J(x0) is the sparse Jacobian Matrix at the current
linearization point x0 and b(x0) = f(x0)− z is the residual
for given the measurement z. Further detail on this process
is presented within [11] and [29].

IV. RANDOM FINITE SETS (RFS) AND GLMB FILTER

This section gives a brief overview of RFS and GLMB
Filter. Interested reader should refer to [26], [30] for details.

A. RFS

Mathematically, the RFS framework lumps together all the
objects’ states and observations into finite-sets referred to as
multi-object state X and multi-object observation Z at any
time k. These sets are random in the number of elements,
while each element of such a set is modelled via a random-
variable in the single-object state-space X. This unifying
notion of entire system’s state and observation enables the
application of Bayesian-Inferential Statistics in the derivation
of optimal multi-object Bayes prediction-update recursion.
Denoting the multi-state prediction and filtering densities by
π̄+(X), π+(X) respectively, the recursion is given by:

π̄+(X) =

∫
f(X | .)π(.)µs(dX) (9)

π+(X) =
g(Z |X)π̄+(X)∫
g(Z | .)π̄+(.)µs(dX)

(10)



where f(X+ |X) is the multi-object transition-density, and
g(Z | X) is the multi-object likelihood function extracted
from the assumed system dynamics-model and sensor-model
respectively. The µs is an appropriate reference measure
on the RFS state-space denoted by F(X). Because of the
multiple integrals on F(X), the optimal Bayes filter is only
computationally tractable for very small number of objects
within the system.

B. GLMB Filter

Under the assumptions of standard multi-object transition
and observation models, Vo et al. in [31] have shown that a
special case of labelled RFS called the GLMB RFS enables
an exact solution to (9), (10). Mathematically a GLMB RFS
is characterized by the density:

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)δI(L(X))[p(ξ)]X (11)

where Ξ is a discrete space. Essentially (11) gives GLMB
density as a mixture of multi-object exponentials where each
component is identified by a hypothesis (I, ξ) with weight
w(I,ξ). As shown in [32], given a GLMB initial density all
subsequent multi-object densities are GLMBs and can be
computed exactly by a tractable recursion. This recursion
starts with a prediction step given by:

π̄+(X) = ∆(X)
∑

ξ,J,L+

ω̄
(ξ,J,L+)
+ δJ∪L+

[L(X)]
[
p̄

(ξ)
+

]X
(12)

ω̄
(ξ,J,L+)
+ = 1F(B+)(L+) r

L+

B,+ [1− rB,+]B+−L+

×
∑

I∈F(L)

1F(I)(J)
[
P̄

(ξ)
S

]J [
1− P̄ (ξ)

S

]I−J
ω(I,ξ)

(13)

P̄
(ξ)
S (`) =

〈
p(ξ)(·, `), PS(·, `)

〉
(14)

p̄
(ξ)
+ (x+, `+) = 1L(`+)

〈
PS(·, `+)f+(x+|·, `+), p(ξ)(·, `+)

〉
P̄

(ξ)
S (`+)

+ 1B+
(`+)pB,+ (x+, `+). (15)

The recursion continues by applying the measurement-
correction on the predicted density to compute the filtering
density as:

π+(X) ∝∆(X)
∑

ξ,J,L+,θ+

ω
(ξ,J,L+,θ+)
Z+

δJ∪L+
[L(X)]

×
[
p

(ξ,θ+)
Z+

]X
(16)

ω
(ξ,J,L+,θ+)

Z+
= 1Θ+(J∪L+)(θ+)

[
ψ̄

(ξ,θ+)

Z+

]J∪L+

ω̄
(ξ,J,L+)
+

(17)

ψ̄
(ξ,θ+ )

Z+
(`+) =

〈
p̄

(ξ)
+ (·, `+), ψ

(θ+(`+))

Z+
(·, `+)

〉
(18)

p
(ξ,θ+ )

Z+
(x+, `+) =

p̄
(ξ)
+ (x+, `+)ψ

(θ+(`+))

Z+
(x+, `+)

ψ̄
(ξ,θ+)

Z+
(`+)

(19)

To compute this recursion we make use of the Gaussian-
Mixture implementation of the GLMB filter as provided

in [21]. This implementation assumes linear-Gaussian con-
straints on target dynamics and sensor observations. Under
these assumptions, the individual target states take on the
form of Gaussian Mixtures on X.

V. EVALUATION

A. Simulation Setup

To compare the two approaches, we set an simulation
of two vehicles on a ground plane. The factor graphs and
corresponding factors are implemented using GTSAM open
source library [12]. We use GLMB Filter [26] to implement
the RFS solution. The tests are coded in C++ and run on
an Ubuntu 16.04 LTS 64-bit machine with 16 GB RAM and
Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz processor.

Simulated vehicles are assumed to have Odometry and
GPS Sensors. GPS Sensor provides the location in global
coordinates. The infrastructure RADAR is mounted such
that it is able to observe the vehicles for the complete
trajectory. We assume its location is known and provides the
measurement in global coordinate without performing any
data association. The measurement noises are assumed to
be Gaussian. The covariance are assumed as diag[1.0, 1.0],
diag[9.0, 9.0] and diag[0.1, 0.1] for the Odometry, the GPS
and the RADAR respectively.

As outlined in the initial assumptions we don’t have any
miss detection or clutter, therefore the detection probability
for GLMB Pd = 1.0. Infrastructure sensor is able to observe
the entire trajectory, the survival probability Ps = 1.0.
The multi-sensor GLMB filter is implemented via the Gibbs
sampling technique, the filter is configured with maximum
association hypothesis Hmax = 100. Further the GLMB [26]
is a Gaussian Mixture implementation, that assumes that the
targets move with a constant velocity model.

Results from the simulation are compared three ways,
between:

• the fused trajectory for GLMB using GPS and RADAR;
and

• the fused trajectory for Odometry, GPS, SME Factor
(constructed using RADAR) [11].

Current implementation of GLMB Filter assumes the
measurements from the sensors as the target positions in the
global coordinate framework. On the other hand, Odometry
is only the difference between the two consecutive states of
the vehicles. Using the cumulative Odometry to calculate the
position increases the covariance for each subsequent step.
This results in the failure of the tracker. Hence we did not
use the Odometry for our final comparison for GLMB Filter.
Further we also compare with two other covariances of the
RADAR as [3, 3] and [5, 5].

The performance of the algorithms is measured by Optimal
Sub-pattern Assignment (OSPA). This was proposed first in
[33] and calculates the miss-distance and the corresponding
error between the calculated and estimated individual target
states. If X is the set of estimated states with cardinality m
and Y is the set of true target states with cardinality n, then
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Fig. 2. Trajectories of the two vehicles showing Ground Truth,
and calculated from GLMB Filter and Factor Graphs with RADAR
covariance as [.1, .1].
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Fig. 3. OSPA for fused trajectories from GLMB Filter and Factor
Graph for RADAR covariance [.1, .1].
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Fig. 4. Total system RMSE and Cumulative OSPA for fused trajec-
tories from GLMB Filter and Factor Graph for RADAR covariance
[.1, .1].

OSPA measure is defined as:

dcp(X,Y ) = (
1

n
(min

m∑
i=1

dc(xi, yπ(i))
p + cp(n−m)))1/p (20)

if m ≤ n and dcp(X,Y ) = dcp(Y,X) otherwise. Here,
dc(x, y) , min(c, d(x, y)) is the distance between x and
y, cut-off at c. For our comparison we have kept c as 100.

The performance is also measured by calculating Root
Mean Square Error (RMSE) value for the complete system.
The total error is the sum of the RMSE of each vehicle for
n steps:

Error =

√∑n
j=1

∑2
i=1[(xiest − xireal

)2 + (yiest − yireal
)2]j

n

B. Results

Figure 2 shows the Ground Truth and fused trajectories
using GLMB Filter and Factor Graphs. Since the fused
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Fig. 5. OSPA for fused trajectories from GLMB Filter and Factor
Graph for RADAR covariance [3, 3].
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Fig. 6. Total system RMSE and Cumulative OSPA for fused trajec-
tories from GLMB Filter and Factor Graph for RADAR covariance
[3, 3].

trajectories are very near to the Ground Truth, it is difficult to
analyse the performance. Therefore, Fig. 3 shows the OSPA
for the 1000 steps. Again it becomes difficult to judge the
performance. Hence we plot the RMSE for the same as
shown in Fig. 4. It can be clearly seen GLMB Filter performs
better than the Factor Graphs. For the first few steps, the
RMSE is very high. This is intentionally kept high because
GLMB Filter at beginning is unable to detect all the targets.

Now, GLMB Filter does not always detect the targets and
also results in state estimates of the targets in a random order,
hence calculating RMSE becomes challenging. Therefore we
plot the cumulative OSPA which is calculated as:

C −OSPA =

∑N
i=1 d

c
p

N

where dcp is defined in Eq. 20, and N is the number of steps.
From Fig. 4, we can see that cumulative OSPA not only

conveys the same information as RMSE but also does not
suffer the problem of undetected targets and the correct order
of the fused results. GLMB Filter performs quite optimally
because it gives high weight to the RADAR measurements
which have a very low covariance. On the other hand
Factor Graph avoids the data association using SME Factor
which is a derived pseudo-measurement. The corresponding
covariance is also a derived one and is not able to match the
native RADAR covariance.

To further evaluate the differences, we change the covari-
ance of the RADAR to [3, 3]. Figure 5 shows the OSPA
and Fig. 6 shows the RMSE and cumulative OSPA for
the same. It can be seen both the methods perform almost
similarly. Figure 7 shows the OSPA and Fig. 8 shows the
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Fig. 7. OSPA for fused trajectories from GLMB Filter and Factor
Graph for RADAR covariance [5, 5].
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Fig. 8. Total system RMSE and Cumulative OSPA for fused trajec-
tories from GLMB Filter and Factor Graph for RADAR covariance
[5, 5].

RMSE and cumulative OSPA for the RADAR covariance of
[5, 5]. With increase in the RADAR covariance, the GLMB
Filter degrades faster than Factor Graphs. This is because
Factor Graph also uses the Odometery and hence this extra
information keeps the degradation in check.

To further evaluate the stability of both the solutions we
run a Monte Carlo Simulation of 1000 iterations for 2, 3 and
4 targets. Here we compare using the above proposed Cu-
mulative OSPA, as already mentioned above that calculating
RMSE for GLMB Filter is a challenging task. Table I shows
the corresponding results rounding upto three decimal places.

TABLE I
AVERAGE FINAL CUMULATIVE OSPA VALUES FOR 1000 ITERATIONS

GLMB Filter Factor Graph
Total targets Covariances Covariances

[.1,.1] [3,3] [5,5] [.1,.1] [3,3] [5,5]

2 .116 1.952 2.719 .263 1.987 2.221
3 .116 1.958 2.728 .888 1.996 2.232
4 .116 1.951 2.721 .733 1.978 2.221

As can be seen from the Table I, with an increase in the
targets, the system performance remains stable. It reflects
the results discussed for a system of 2 targets. Next we
analyse the execution performance by running Monte Carlo
Simulation of 1000 iterations for 2, 3 and 4 targets. Table
II shows the corresponding results in seconds rounding upto
four decimal places.

As can be seen from the Table II, GLMB Filter takes
less time for all the cases of 2, 3 and 4 targets. This is
expected because Factor Graph based solution currently

TABLE II
AVERAGE FINAL EXECUTION TIME IN SECONDS FOR 1000 ITERATIONS

GLMB Filter Factor Graph
Total targets Covariances Covariances

[.1,.1] [3,3] [5,5] [.1,.1] [3,3] [5,5]

2 .0602 .0603 .0602 .1942 .1249 .1220
3 .1257 .1260 .1236 .3546 .2244 .2109
4 .2252 .2245 .2229 .5904 .3290 .3213

uses offline batch optimization smoother which solves the
complete graph. On the other hand, GLMB being a filter
only calculates the current state, thereby executing faster.
The table shows an anomaly as well. The Factor Graph for
3 vehicles seem to perform better than 2 or 4. But we did
not see any such behaviour in our past results in [11].

In our simulations, original measurements from the
RADAR have been used, hence data association is avoided
in Factor Graph with SME method or is solved internally
by GLMB Filter. Instead of various states and covariances
with each time step, only measurements are sent, keeping the
bandwidth requirements to minimum for both the solutions.

C. Remarks

Although we have successfully avoided the data associa-
tion issue in the RADAR, the current results assume clutter
free environment. In practice this is not the case. GLMB
Filter is capable to perform under the clutter scenario while
Factor Graph solution would need additional solutions like
[34], [35] to tackle the challenge.

Currently GLMB Filter is a Gaussian Mixture implemen-
tation, that assumes that the targets move with a constant
velocity model. Hence it can only handle targets travelling
in relative straight trajectories. For complex scenarios like
constant turn or acceleration and random trajectories, addi-
tional solutions like Particle Filter have to be used. But the
Factor Graph based solution does not require any additional
solution to handle complex scenarios. But using particle filter
may increase the average execution time.

For online real scenarios online incremental smoothing
algorithm like iSAM2 [36] (supported in GTSAM) is re-
quired. Further the GTSAM framework supports the notion
of plug and play [37] thereby providing a efficient platform
for scenarios when all the measurements are not present from
all the sensors. This is not possible for GLMB Filter.

VI. CONCLUSION

In this paper we evaluate two state-of-the-art methods
which are used to address the data association challenge
for multi-target multi-sensor scenarios. On one hand we
estimate the states using multi-sensor multi-object with the
Generalized Labeled Multi-Bernoulli (GLMB) Filter and and
on the other hand use a factor graph solution using SMEs
for cooperative localization. The performance is primarily
assessed by cumulative OSPA with upto 4 targets.

In this evaluation we find that GLMB Filter performs
better when the error covariance of the RADAR sensor
is low. But with an increase in the error covariance the



performance for GLMB Filter degrades faster than the Factor
Graph with SME. GLMB Filter has lower execution time
when compared to Factor Graph solution. But this is expected
as we use the offline batch optimization for Factor Graph.

Both the solutions address the challenges of bandwidth
issue and scalability for the given test scenarios. But it
warrants further testing with highway like scenarios where
the number of vehicles can range between 20− 40.

Future research work will focus on the comparison when
influence of clutter and miss-detections is present like in
a real-world system. It will also consider comparing im-
plementations incorporating other models like constant turn
and constant acceleration and random trajectories for both
the solutions. Additionally online incremental smoothing
algorithm will be used for comparisons.
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