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Abstract— Safety is one of the critical challenges for a
semi or fully automated driving assistance systems. One of
the key parameters for a safe automated driving assistance
system is precise localization of the self and surrounding
vehicles. Our previous work demonstrated the use of Symmetric
Measurement Equations (SME) in a Factor Graph framework
and exploited the use of sensor located outside the vehicle. In
this paper we present a new approach which not only performs
above mentioned cooperative vehicle infrastructure localization
but also uses Dedicated Short Range Communication (DSRC).
This work goes further in the direction of a complete V2X
solution not only involving the infrastructure sensor but also
the neighbouring vehicles. DSRC has been increasingly incor-
porated in all the the modern vehicles. Better state estimation is
achieved by formulating the range information from DSRC as a
new DSRC Range Factor in the Factor Graph. Simulations indi-
cate better performance over the previously proposed approach
of only using SME in the Factor Graph, thereby progressing a
step further towards safe automated driving assistance systems.

I. INTRODUCTION

Semi or fully automated driving assistance system is
heavily dependent on subsystems like collision avoidance
and path planning for safety. These subsystems further expect
a precise localization of ego and neighboring vehicles in a
common coordinate framework. With decreasing hardware
costs, amount of sensors available inside and outside the
vehicle have increased. And along with the possibility of
sharing data in real time has revolutionized the Vehicle to
Vehicle (V2V) and Vehicle to Infrastructure (V2I) technolo-
gies. Hence, the task of Cooperative Localization (CL) has
become a feasible solution for safe autonomous vehicles [1].

Cooperative Localization is an old concept. [2] and [3] use
Kalman Filter and its derivatives to perform the CL. Other
researches provided novel solutions including Maximum A
Posteriori Estimation (MAP) [4], Particle Filters [5], Markov
localization [6], Split Covariance Intersection Filter [7], and
Random Finite Set framework (RFS) [8].

Howard et. el. [9] uses Maximum Likelihood Estimation
(MLE) to achieve the CL by combining relative measure-
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ments between robots in a least square formulation and
solving the same. Ahmad et. el. [10] does the same but also
includes moving landmarks. Gulati et. el. [11] formulates
the CL as a graphical model, adding sensor measurements
as SMEs to formulate the joint state of the system. This
is implemented as a factor graph within the Georgia Tech
Smoothing and Mapping (GTSAM) [12] framework.

Since early 2000 radio based communications have been
explored to perform localizations for sensor networks[13].
And in the last decade concept has been extended to develop
protocols and algorithms to localize the vehicles using Ve-
hicular Ad-hoc Networks (VANETs) [14]. This has evolved
into DSRC. Various researchers have proposed novel ways
to use DSRC to perform CL. Parker et. al. [15] uses signal
strength of DSRC to calculate the inter node distance. It then
performs CL by fusing inter node distance, road maps and
vehicle kinematics using Extended Kalman Filter. Moham-
madabadi et. al. [16] uses inter-node distances determined
by Positive Orthogonal Codes in combination with semi-
extended Kalman Filter to perform CL.

Mensing et. al. [17] use range information calculated by
time of difference of arrival from 3GPP-LTE. They then use
Kalman Filter and Particle Filter to fuse and perform CL.
Alam [18] performs CL using DSRC and other sensor infor-
mation like infrastructure nodes and GPS. He not only relies
on range of vehicle but also on range-rate. He demonstrates
his results using Kalman Filter, Extended Kalman Filter and
Particle Filter.

Our previous work [11] using Factor Graph and SME
successfully solves the problem of CL. Further it also avoids
data association and scales optimally for non-linear cases. In
this paper we propose the novel idea of use of a DSRC
Range Constraint Factor, in addition to the SME Factor, into
a factor graph to perform CL for semi or full autonomous
vehicles. Our simulations indicate that the new combination
of DSRC Range and SME Factor for CL performs better
than the stand alone SME Factor.

Rest of the paper is organized as follows. Section II defines
the problem with its constraints. Section III and IV give
the overview of the SME and DSRC respectively, which is
followed by explanation of Factor Graphs and Non linear
Least Square Optimization methods in Section V. Section
VI presents the evaluation and VII concludes the paper.

II. PROBLEM DESCRIPTION

A typical scenario which we would like to address by
vehicle-infrastructure CL is shown in (Fig. 1(a)). Various
assumptions are:
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Fig. 1. (a) Three vehicles represented with solid circles. Local Coordinate
System in blue is of RADAR. Dotted circles around the circles represent the
DSRC communication field of the vehicle. (b) Factor graph with variables
w, x, y, z and functions f1(w, x, y) and f2(y, z).

• Each vehicle has an Odometry and a GPS sensor to lo-
calize itself in an absolute reference and can broadcasts
its measurements.

• Each vehicle has the capability to perform ranging using
DSRC. Ranging is the method to uniquely identify the
vehicle and its distance from the ego vehicle.

• The infrastructure RADAR sensor can derive the global
position of all the vehicles in its field of view, but
cannot uniquely identify the vehicles. This introduces
a challenge from the perspective of data association.

• The vehicles and RADAR Sensor can communicate in
both directions without any timing delay or data error.

• The environment has no clutter and there are no miss
detections.

The goal of vehicle-infrastructure CL is to improve the
precision of position estimates of the participating vehicles.

III. SYMMETRIC MEASUREMENT EQUATIONS

The aim of the SME is to generate ’pseudo-measurements’
using symmetric functions from the original measurements
[19]. This is achieved by adding or multiplying the sensor
measurements to generate new measurements having values
from all the targets. The resulting measurements are inde-
pendent of the targets, thereby avoiding a computationally
expensive data-association step. Following are two SME
representations of the three targets in 1 dimension:

• Sum-of-powers:

Spow =

m1 +m2 +m3

m2
1 +m2

2 +m2
3

m3
1 +m3

2 +m3
3

 (1)

• Sum-of-product:

Sprod =

 m1 +m2 +m3

m1m2 +m2m3 +m1m3

m1m2m3

 (2)

where mi is the measurement from the ith target.
For further details reader can refer to [19] and [11].

IV. DEDICATED SHORT RANGE COMMUNICATION

For real time wireless communication, a dedicated Wire-
less Local Area Network (WLAN) protocol IEEE802.11p has
been proposed. U.S. Federal Communication Commission
has already allocated 75 MHz in the 5.9 GHz band in 1999
for the same [20]. Similarly European Telecommunication
Standards Institute (ETSI) allocated 30 MHz in 5.9 GHz
band [21]. Various other authorities around the world have
also reserved dedicated bandwidth. This bandwidth is called
DSRC. DSRC is for data-only systems and has a range for
about 1000 m for Line-Of-Sight conditions. But practically
this range is lower and highly dependent on obstacles and
objects in the environment. Most of the modern day cars
capable of semi or fully automated driving are equipped with
the DSRC transceivers and transponders.

One of the important property of DSRC is that using
DSRC vehicles can be uniquely identified. Since we want
to estimate the distance of neighboring uniquely identified
vehicles from the ego vehicle, we only concentrate on the
methodologies using DSRC to find the same. There are
various radio-ranging methodologies like received signal
strength (RSS), time of arrival (TOA), time difference of
arrival (TDOA), Doppler Shift and Angle of Arrival (AOA).
Each of the methods have their benefits and problems.

Like the name suggests RSS uses the received
strength/power of the signal to estimate the range. The
attenuation of signal strength is governed by the path loss
model and this is used for range estimation. TOA/TDOA
use signal propagation time to estimate the distance and
requires the clocks of sender and reviver to be synchronized.
Doppler Shift is the difference between emitted frequency
and observed frequency. Using the combination of vehicular
speeds from the data over DSRC and doppler shift the range
can be calculated. AOA is used to get the bearing of received
signals.Interested reader can refer Alam et. al. [22] for details
of the above methods along with the performances of each
of them.

V. NONLINEAR LEAST SQUARE OPTIMIZATION

A. Factor Graphs
A factor graph is a bipartite graph Gk = (Fk, Vk, Ek) with

two types of nodes: factor nodes fi ∈ Fk and variable nodes
vj ∈ Vk. Edges eij ∈ Ek can exist only between factor nodes
and variable nodes, and are present if and only if the factor fi
involves a variable vj [23]. It can also represent Probabilistic
Graphical Models (PGM) and used to implement Bayesian
networks [24] and Markov random fields [25].

Fig. 1(b) is an example of a factor graph with vari-
ables w, x, y, z and functions f1 and f2 with factoriza-
tion: f(w, x, y, z) = f1(w, x, y) ∗ f2(y, z). Using PGM,
the example can also be represented as P (w, x, y, z) =
P (w, x, y) ∗ P (y, z). Similarly we use the factorized prob-
ability distribution to represent the entire trajectories of all
the participating vehicles as an optimization problem. The
localization can then be represented as by estimating the
trajectory x = {xi|i ∈ 0, ..., n}, for a given set of mea-
surements from various sensors, for example from Sensor-1



z1 = {z1|i ∈ 0, ..., n}, Sensor-2 z2 = {z2|i ∈ 0, ..., n} and
Odometry u = {u|i ∈ 0, ..., n}. Thus the joint density for
the measurements from the three Sensors can be represented
as:

P (x, z1, z2,u) ∝ P (x0)

n∏
i

P (xi+1|xi, ui)
m∏
k

P (zk|xik)

(3)
where zk ∈ {z1, z2} denotes the measurement, originating
from either Sensor-1 or Sensor-2.

Now the factorization is done based on Gaussian distribu-
tions for the process and measurement models as:

xi = fi(xi−1, ui)− wi ⇔ P (xi+1|xi, ui)

∝ exp(−1

2
||fi(xi−1 − xi||2Γi

) (4)

zk = hk(xik)− vk ⇔ P (zk|xik)

∝ exp(−1

2
||hk(xik)− zk||2Σk

) (5)

where h and f denote the measurement and process models,
and v and w are the corresponding noises with covariance
matrices Σk and Γi.

In this paper, the goal is to calculate the maximum
likelihood estimation (MLE) by using the nonlinear least
square method:

θ̄ = argmaxP (θ|z,u) =

argmin{
n∑

i=1

||fi(xi−1 − ui)− xi||2Γi
+

m∑
k=1

||hk(xik)− zk||2Σk
}

(6)

Next we look at the formulations of factors.

B. Odometry Factor

For a constant velocity model, the error function of the
binary factor fODOM between the states Xt, Xt−1:

fODOM (Xt, Xt−1) , d(zot − ho(zot−1)) (7)

where ho is the function to calculate the odometry measure-
ment at time t and zot is the measurement at time t

The covariances provided by the sensor manufacture are
used while formulating the corresponding factors.

C. GPS Factor

The GPS measurement results in an unary factor fGPS

for a state Xt, which is written as:

fGPS(Xt) , d(zgt − hg(zt)) (8)

where hg is the measurement function, providing the relation
between the measurement zgt and the position of the vehicle
zt at time t.

The covariances provided by the sensor manufacture are
used while formulating the corresponding factors.
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Fig. 2. Factor graph for n vehicles with four state nodes each and
corresponding Odometry Factors, GPS Factors, SME Factors and DSRC-
Range Factors.

D. SME Factor

To perform CL, the node running the fusion also receives
absolute positions, in global coordinates, of all vehicles in the
field of view of RADAR. As the RADAR does not perform
any data association, it will not associate the calculated
positions to the individual vehicles. To incorporate such
information in the factor graph, we construct the N-ary SME
Factor for states (X0, · · · , XN )t at time t as follows:

fSME((X0, · · · , XN )t) , d(zst − hs(z0, · · · , zN )) (9)

If σ2
x and σ2

y are the X and Y variances respectively
for the RADAR, then we have (see [26] for more details)
Cov(x, y) = [σ2

x1
, · · · , σ2

xn
, σ2

y1
, · · · , σ2

yn
]. Then we obtain

the covariance for the topology estimate at any time t as:

σ2
topx,y

= M · Cov(x, y) ·MT (10)

where M is a 1X2N matrix as follows:

M =
[

∂
∂x1

(zst ), · · · , ∂
∂xn

(zst ), ∂
∂y1

(zst ), · · · , ∂
∂yn

(zst )
]

(11)

E. DSRC Range Factor-the novel idea

For an ego vehicle, the distance between any neighboring
vehicle v in the DSRC range can be calculated as:

zdsrct = hdsrc(vt) + nd (12)

where hdsrc is any of the range calculating functions as
described in the Sec. IV at time t. nd represents the mea-
surement noise. Eq. (12) gives a binary factor between the
states of ego (Xe

t ) and neighboring (Xv
t ) vehicles as:

fdRange(Xe
t , X

v
t ) , d(zdsrct − hdsrc(vt)) (13)

As the distance can be calculated by any of the methods
based on DSRC as mentioned in Sec. IV. Hence the error
in measurement depends on the method used and is adjusted
while formulating the corresponding factors.

Fig. 2 shows the factor graph with four kinds of factors.

F. Smoothing

The formulated factor graph is solved using the Leven-
berg Marquardt Optimizer. Using an initial estimate x0 it
iteratively finds an update ∆ from the linearized system:

arg min
∆

J(x0)∆− b(x0) (14)
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Fig. 3. (a) Star Architecture. (b) Cluster Architecture.

Fig. 4. Simulation scenario of a highway with vehicles. Simulated
RADAR is mounted above the ground on a beam across the highway.
The RADAR is assumed to have a filed of view in both the directions.
The vehicles represent the approximate state of their trajectory at some
time t. The circles around the vehicles represent the DSRC signal.

where J(x0) is the sparse Jacobian Matrix at the current lin-
earization point x0 and b(x0) = f(x0)−z is the residual for
given the measurement z. After solving (14), the linearization
point is updated to the new estimate x0 + ∆. Further detail
on this process is presented within [27].

The Jacobian for Odometry and GPS is diag[1, 1] and
for DSRC Range is 1. The Jacobian for each of pth SME
Measurement equation (p = 1 · · ·n) is:

M = diag
[
∂(

∑n
i=1(xp

i ))

∂x ,
∂(

∑n
i=1(yp

i ))

∂y

]
∀x, y (15)

VI. EVALUATION

A. Simulation Setup

CL using DRSC can be primarily done using Star Ar-
chitecture or Cluster Architecture (fig (3)). Since we only
concentrate on direct distance measurement using DSRC we
only consider the scenario of star architecture. The other
needs more information to be sent from the participating
vehicles.

We simulate a highway scenario with 16 vehicles with
an infrastructure RADAR mounted across the lanes of the
highway (Fig. (4)). We assume the infrastructure RADAR
has equal field of view in both the directions. We simulate
the various tests for 200 time steps. GTSAM [12] is used to
implement the factor graphs.

Simulated vehicles provide their own odometry mea-
surements and location in global coordinates. Infrastructure
RADAR provides global coordinates for vehicles in its
field of view without performing any data association. The
noises are assumed as diag[1.0, 1.0], diag[10.0, 10.0] and
diag[0.5, 0.5] for the Odometry, the GPS and the RADAR
respectively.

Alan et. al. [22] point the error for various ranging
methodologies using DSRC from as good as 1m and worse
even upto 10m. So instead of using one error value we
run our simulations for error in range measurement between
1m− 6m. Also as mentioned DSRC signals have the range
from 100m to 1000m, with 1000m difficult to achieve. For
the simulations of the ego vehicle (depicted in red in fig ((4))
we use DSRC range from 100m to 600m.

Results from the simulation are compared three ways,
between:

• the fused trajectory only using Odometry and GPS;
• the fused trajectory for Odometry, GPS and SME Factor

[11]; and
• the fused trajectory for Odometry, GPS, SME Factor

and DSRC Range Factor.
Then the above experiments are repeated with different error
in measurement and different DSRC range.

To clearly analyse the benefits of adding DSRC fac-
tors we run use MonteCarlo simulation methodology of
1000 iterations. To avoid the influence of any other Sensor
measurement, we keep the simulated measurements from
Odometry, GPS and RADAR same in all the 1000 iterations.

The performance is measured by calculating Root Mean
Square Deviation (RMSE) value for the complete system.
The total error is the sum of the RMSE of each vehicle for
n steps:

Error =

√∑n
j=1

∑2
i=1[(xiest − xireal

)2 + (yiest − yireal
)2]j

n

B. Results
Fig. 5 to Fig. 7 show the total system RMSE results for the

simulation of the DSRC range of 100m, 300m, and 600m.
For each DSRC range we plot only the error of 1m and 6m
against the case of no factor and SME Factor. From each of
the figures it is clearly visible that the combination of SME
and DSRC Factors gives a superior performance than the
other two. Although the SME incorporates full information
but adding DSRC Range Factor adds more information to the
given factor graph and hence achieves better performance.

We only plot the RMSE for the 1m and 6m for all
the DSRC range because the graphs for various standard
deviations are very close and is difficult to notice any
significant gain. This can be clearly seen seen in the table
I. The table shows the final RMSE values obtained from
Monte Carlo simulation of 1000 iterations The simulation
was run for DSRC range for 100m − 600m for the error
between 1m − 6m. Also mentioned in the last column are
the average number of DSRC Range Factors added for the
various DSRC ranges (calulated in Table II).

It can be seen from the table (I) that:
• For each range, with increase in the error, generally the

RMSE value increases. This is expected and implies that
the lower is the error in measurement the better will be
the estimation.

• For each error in the measurement, with increase in
the range, generally the RMSE value decreases. This



TABLE I
AVERAGE FINAL SYSTEM RMSE VALUES AFTER 200 STEPS FOR DIFFERENT DSRC RANGES AND DIFFERENT ERRORS FOR 1000 ITERATIONS.

DSRC Standard Deviation (m) Average Number of

Range (m) 1 2 3 4 5 6 DSRC Range Factors for this range

100 11.1620 11.1944 11.2368 11.2810 11.3283 11.3571 515
200 11.0086 11.0841 11.1594 11.2210 11.2818 11.3270 633
300 10.8503 10.9263 11.0065 11.0840 11.1600 11.2199 762
400 10.7180 10.8004 10.8915 10.9846 11.0678 11.1436 913
500 10.5989 10.7162 10.8202 10.9219 11.0147 11.0954 1052
600 10.4531 10.5961 10.7208 10.8378 10.9368 11.0285 1166

is also expected as increase in the range for the same
error in measurement implies more DSRC range factors
can be added thereby adding more information to the
factor graph and reaching a better estimation. This is
confirmed by the last column of the table which shows
the average number of DSRC Range Factors added to
the graph for the given range.

The table (I) also presents some more interesting results:
• It can be seen the final system RMSE value for DSRC

range of 100m with error of 1m is 11.1620 and for
DSRC range of 600m with error of 6m is 11.0285.
The error reduces by almost 1.2%. The general trend
of the reducing error can be observed in the full table.
Hence it can be seen that for a little more error with
bigger range can perform better than the small error
with smaller range. This happens because as the number
of factors added to the system increase and hence also
the information to the graph. This helps in reducing the
overall error in the system. But this observation is true
for linear increase in the error and can’t be generalized
because if errors increase non-linearly there may not be
a significant gain.

• Lowering the DSRC range implies lowering the number
of detected vehicles around the ego vehicle. This also
means that the lower number of the vehicles in the
whole system does not decrease the error significantly.
But the total error is still upper bounded by the error of
SME Factor which would be the case that no vehicle is
present in the DSRC Range of the ego vehicle.

In our simulation experiments original measurements from
the RADAR have been used, hence data association is
avoided. Also the original measurements are used to con-
struct the new SME measurements, therefore no information
is lost during transformation. Using Factor Graphs helps
in addressing the non-linear systems efficiently. With the
increase in the DSRC range, the number of DSRC Range
Factors added to the system can increase non-linearly. But
because of the use of factor graphs this does not pose
a challenge and the scalability of the proposed solution
remains intact. Instead of various states and covariances with
each time step, only measurements are sent, keeping the
bandwidth requirements to minimum.

C. Remarks

Although we have successfully avoided the data associa-
tion issue in the RADAR, the current results assume clutter
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Fig. 5. Total system RMSE with DSRC range as 100m.
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Fig. 6. Total system RMSE with DSRC range as 300m.
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Fig. 7. Total system RMSE with DSRC range as 600m.

free environment. In practice this is not the case.

VII. CONCLUSION

A novel way of improved state estimation using Dedicated
Short Range Radio (DSRC) and Factor Graphs is presented
in this paper. In addition to the DSRC we use RADAR
measurements from the infrastructure as SME factors. The
idea presented in this paper goes is the direction of achieving
a complete V2X Communication mechanisms. With the
presented technique we increase the precision of localization
of the ego and the surrounding vehicles. Precise localization



TABLE II
AVERAGE NUMBER OF DSRC RANGE FACTORS USED FOR 1000 ITERATIONS.

Standard Deviation (m)

DSRC Range (m) 1 2 3 4 5 6 Average for this Range

100 515.495 515.362 515.190 515.214 515.135 515.342 515
200 633.387 633.824 633.939 633.900 633.800 633.724 633
300 762.224 762.539 762.578 762.630 762.626 762.610 761
400 912.082 912.577 912.909 913.055 913.055 912.964 912
500 1051.732 1051.600 1051.600 1051.761 1051.761 1051.998 1052
600 1166.163 1166.180 1166.391 1166.615 1166.535 1166.498 1166

increases the effectiveness of various technologies (like col-
lision avoidance and path planning) used in semi and fully
autonomous vehicles. This addresses our initial goal of safe
automated driving assistance systems. By using SME we also
address one of the critical problems of data association in
CL. Other challenges of bandwidth issue and scalability are
also addressed. In our simulation we also demonstrate the
trade off of higher range vs higher error rate in the range
measurement using DSRC.

Further research work is underway, considering the in-
fluence of clutter and miss-detections present in real-world
systems. It will also focus on implementation with in-
cremental smoothing for live scenarios incorporating other
models like constant turn and constant acceleration. Also we
investigate the capabilities of DSRC to exploit the true V2V
communication, in order to get even better state estimates
of the ego vehicle using Factor Graphs, using the data of
communicated from in-range vehicles, about the vehicles
which are not in direct range of the ego vehicle.
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1998.

[27] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization
and mapping via square root information smoothing,” Int. J. Rob.
Res., vol. 25, no. 12, pp. 1181–1203, Dec 2006. [Online]. Available:
http://dx.doi.org/10.1177/0278364906072768


