
Product-Driven Generation of Action
Sequences for Adaptable Manufacturing

Systems

Nadine Keddis Gerd Kainz Alois Zoitl

fortiss GmbH
Guerickestr. 25

80805 Munich, Germany
{keddis, kainz, zoitl}@fortiss.org

Abstract: In times of fast changing markets and short product life-cycles manufacturing
systems have to be adaptable and able to support a variety in products and product volumes.
Production has to be product-driven and switching between different products should be possible
with little manual intervention. We suggest an action sequence generation approach that tailors
the control programs of resources to product needs. The approach requires a model of the
available resources with their capabilities and internal material flow, the material flow between
resources as well as a product description. An action sequence can then be generated out of
these models and later translated into an executable action sequence. The action sequence can
be automatically downloaded and executed on a resource. The approach is evaluated on an
educational production system with industrial components.

Keywords: Flexible manufacturing systems, Information technology, Machine code,
Model-based control, Planning

1. INTRODUCTION

After the peak of mass production in 1955 there has been
a shift towards mass customization (Iacocca Institute,
1991; Hu et al., 2008; Koren, 2010). The revolution of
manufacturing is continuing with a trend towards person-
alized products (Koren, 2010). This revolution is driven
by customer demands that vary over time. Current mar-
kets are saturated (Westkämper and Decker, 2006) with a
higher supply than demand which forces suppliers to be
more flexible in their processes to be economically viable.
Manufacturing systems nowadays have to support hetero-
geneous products with low volume in order to be able
to compete in highly competitive markets. Changeable
manufacturing systems as described by Wiendahl et al.
(2007) are necessary to cope with turbulent environments.
They are characterized by being adaptable, intelligent, and
versatile (Zor et al., 2010).

The role of IT in manufacturing has increased (Vogel-
Heuser et al., 2009). However, current IT systems are still
too inflexible (Zor et al., 2010; Sauer and Jasperneite,
2011) and require a lot of manual efforts when changes in
the production are required (Zäh et al., 2010). Especially,
scheduling and planning software requires a lot of manual
effort to set-up (Klöpper et al., 2009). Some approaches
are available that can automatically generate schedules.
Nevertheless, they cannot react to dynamic changes of
the scheduling problem and are only suitable for static
environments (Cheeseman et al., 2005). Additionally, au-
tomatic transformation from schedule to machine code
would be beneficial to complement such tool chains.

This paper proposes an approach for automatic generation
of action sequences for production resources to handle
current problems in the manufacturing domain. Produc-
tion resources in this context refer to hardware entities
that can execute production steps and are called resources
throughout this paper. Resources have to provide prede-
fined interfaces that give access to available control code
implementations to execute actions (Zoitl et al., 2013).
Additionally, the approach is based on models of resource
capabilities and material flows. Action sequences for the
production can be automatically generated using these
models. The action sequence considers available material
flow information to ensure that it is valid. For this, we
differentiate between external and internal material flow.
External material flow describes the material flow be-
tween different resources, whereas internal material flow
is limited to the material flow within a resource. The first
contribution of this paper is the automatic generation of
action sequences that consider product requirements as
well as internal and external material flow. The second
contribution is an approach to automatically make action
sequences executable. The benefit of this is the reduction of
manual effort when switching between different products
and factory setups. A factory setup refers to a set of
available resources and their relations within the factory.
This is demonstrated using a modular production system.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of available work in the field
of action sequence generation. In Section 3 a brief intro-
duction of the execution of action sequences on resources
is given. The required models to enable the approach
are explained in Section 4. In Section 5 the generation

process is introduced in detail. Section 6 describes the
experimental setup and the evaluation of the approach.
Finally, Section 7 concludes the paper.

2. RELATED WORK

There has been much work in the past years to in-
crease software quality and re-usability of control software,
e.g., (Sünder et al., 2006; Eckert et al., 2012; Sorouri
et al., 2012; Zoitl and Prähofer, 2012). The approaches
mainly try to develop design patterns and improve the
development of control software to achieve this. However,
they focus on control software of a resource only and not on
generating the equivalent action sequences. Additionally,
they target rigid control software and focus on how to
manage variability for different resources. In our case, we
also consider that different products and their variants
might be produced on the same resource. The resource
must be able to support different action sequences and be
able to work in different factory setups containing different
resources. The goal is to allow the execution of different
operations on the same resource depending on the desired
product. Nevertheless, such modular concepts for control
software are necessary to enable such an approach. They
act as a starting point for our approach.

There has been much work in the field of recipes in manu-
facturing as well. They are similar to action sequences but
more static and defined manually for each resource.

For fixed factory setups and plant structures, standards
like ISA 88 were developed by the International Stan-
dardization Association (Brandl, 2006). ISA 88 separates
the description of production steps from manufacturing
resources. The standard provides means to coordinate dif-
ferent resources based on a predefined recipe for a product.
Originally this was developed for the process manufactur-
ing, but similar concepts for the discrete manufacturing
exist, e.g., PackML guideline (Arens et al., 2006).

The NAMUR association gives a recommendation for
recipes and defines general requirements of recipes in
NE033 (NAMUR, 2003). It gives a recommendation on
how to structure recipes for discontinuous processes and
mainly focuses on the process industry. It is a good founda-
tion for introducing recipe-based operation. Nevertheless,
it does not propose how these recipes can be used from a
planning and scheduling perspective.

In the field of agent-based planning and scheduling there
has been plenty of work to develop suitable platforms
and planning strategies, e.g., (Bussmann and Schild, 2001;
Gabel and Riedmiller, 2008; Leitão, 2009; Alexakos et al.,
2012; Lepuschitz et al., 2013). Holonic manufacturing
tackles similar problems. They are used for coordination
and sequencing of manufacturing resources (McFarlane
and Bussmann, 2003; Lohse et al., 2005). Such approaches
focus on negotiating schedules and allocating resources
for the operations. The agents execute available code
depending on the negotiated schedule.

Zäh et al. (2008) propose an approach to generate sched-
ules using different capabilities. However, they do not
discuss how the generated schedules can be translated into
machine-readable control commands that can be used to
automatically execute them on resources.

Module Test
Height

Module Drill
Attributes:

Material plastic,
 8mm hole

Module Lever

Module Rotary Table

Interaction
Points

Material Flow

* Drill
* Test Height

* Transport
Capabilities:

Fig. 1. Resource model for a processing station with
capabilities and internal material flow information.

3. BACKGROUND

The starting point for our approach is a modular pro-
grammable logic controller (PLC) program. This is de-
scribed in detail in the work of Zoitl et al. (2013). We
just give a brief overview here. Every component is rep-
resented by a module comprising all functions required
to control it as well as a set of interfaces to access the
functions. Additionally, there is a recipe controller that is
responsible for coordinating the execution of the module
programs. Moreover, each program has a startup code,
called program outline, which includes the basic control of
a resource with its locking mechanisms. It also triggers the
recipe controller that executes the currently loaded action
sequence. Each command in an action sequence consists of
a flag in the beginning to indicate whether this is a branch
instruction or not. This is followed by a set of flags to
determine the branch. Afterwards, the command is speci-
fied using an identifier for the used module, interface, and
parameters. The execution of action sequences is similar
to how CPUs function.

4. SYSTEM MODELING

In order to generate action sequences based on the product
requirements, a factory-independent description of the
product has to be provided. Additionally, a description
of the factory and the available resources is necessary.
As proposed in previous work (Keddis et al., 2013, 2014)
the resources are modeled based on their capabilities.
Capabilities of each resource express the processing steps
that are supported and can be executed by this resource.
We just give a brief example of the resource model, for
more information see (Keddis et al., 2013). In addition
to modeling capabilities, the internal material flow of the
resource has to be modeled. The internal material flow
describes the internal structure of a resource and how it is
actually built to be able to support the processing steps.
Moreover, a factory model is provided that represents
how the different resources interact within the factory.
Combining this information with a model for the control
software of the resource can then enable an automatic
generation of a product-based action sequence that can
be directly executed on the resource. In the following, the
different required models are presented in detail.

Input Point
input1

Rotation
Plate P2

Rotation
Plate P1 Drill P1

Verify
Orientation P1

Lever P1

Rotation
Plate P3

Rotation
Plate P4

Rotation
Plate P5

Rotation
Plate P6

Lever P2

Output Point
output1

Input Point
input2

Overlapping positions

Input and Output positions

Material Flow

Fig. 2. Resulting internal material flow information for a
processing station.

4.1 Modeling Resources

A resource model consists of all capabilities of a resource as
well as its internal material flow. A resource is composed
of several modules that offer a specific capability. Fig. 1
illustrates an example of such a model. The processing
station is composed of a drill module, a testing module,
a rotary table module, and a lever module. All modules
are composed of actuators and sensors. The rotary table
and the lever provide a transport capability. The drill
provides a drill capability. The testing module provides
a test orientation capability.

The internal material flow is used to describe how material
can get from one place to another within a resource. It
describes the logical flow of material. Since we are looking
at adaptable manufacturing systems, this is necessary to
be able to use different modules of a resource for different
products. To ensure that the paths between the modules
used in an action sequence exist, the internal material flow
has to be modeled. Therefore, each module in the resource
model additionally has at least one position. Modules that
can transport material have several positions, describing
all the places the material can be transported to and
from. Furthermore, the links between different positions
of one module can be unidirectional or bidirectional. This
depends on the type of the module. A conveyor belt
for example can transport in one or both directions.
Positions of different modules can overlap to model that
the material can be handed over from one module to
the next. Overlapping positions are physically the same
position but logically they indicate that material can move
in both directions between modules (bidirectional flow). In
the example in Fig. 1 the rotary table has 6 positions, the
lever 2, and the other modules have one position each.
Both the rotary table and the lever have a unidirectional
material flow between their different positions. The testing
module and the rotary table overlap in the second position
of the rotary table. The drill and the rotary table overlap
in the third position of the rotary table. Finally, the lever
and the rotary table overlap in the fourth position of the
rotary table. As a last step in the modeling process, the
inputs and outputs of the resource have to be mapped to
a position of a module. This is similar to the concept of
overlapping positions. The only difference is that material
can only be moved in one direction. It is either transported
from the input to the module or from the module to the
output. Fig. 2 shows the resulting material flow graph for
the processing station.

4.2 Modeling Factories

After modeling the resource capabilities and internal mate-
rial flow, instances of the resource models can be combined
to model a whole factory. Additionally, external material
flow information has to be added to the model to ensure
that only feasible action sequences are generated. The
factory model stores information about the current factory
setup with available resources and their relations. The
relations are represented by connections between differ-
ent resources. This is the required external material flow
information that is necessary to ensure that the material
can later on get to the right resource. Each connection
is a link between two interaction points, each belonging
to a different resource. The interaction points for the
processing station are illustrated in Fig. 1. The connection
also has a direction that is inferred based on the types of
interaction points that are linked together. Connecting an
output of resource X with an input of resource Y results
in a unidirectional connection from X to Y . Bidirectional
connections are a result of connecting input/output points
of different resources. The arrow above the interaction
points in Fig. 1 indicates whether the material flow is
bidirectional or unidirectional. In the latter case it also
depicts the direction. The graph in the lower left box in
Fig. 3 depicts a factory model with external material flow
information represented by the arrows in the graph. The
factory model can be automatically generated at run-time
as described in our previous work (Keddis et al., 2013).

4.3 Mapping Resource Interfaces to Control Software

Executable action sequences can only be automatically
generated when there is a defined interface with the
corresponding control software for each module. For each
required operation there has to be a mapping to the
commands that have to be executed on the resource. Since
we use a modular concept, the operations are specific to a
module and thus, are attached to the module description.
For each operation that is supported by a module, there is
an executable command attached that can be downloaded
to the control device of the resource in case this operation
is required for the current product. For the processing
station example there are interfaces related to each of the
modules. The rotary table provides a transport interface
with two positions as parameters. Whenever a transport
operation using the rotary table is required, two positions
are passed to the module and the corresponding control
code is executed. The first position in that case describes
from where to transport the material while the second
position corresponds to the position where the material
should go to. Similarly, the lever module provides an
interface to its transport operation. The drill and the
testing module offer an interface to their operation. This
is a drill interface and a test height interface respectively.
Each module implements an interface that contains the
execution of the operation on this specific module. Two
resources that both have two different types of e.g. a drill
module will use the same interface to access the drill
functions, but might have two different implementations
of this interface.

4.4 Product Description

The product is described by its required production steps
and their dependencies. Each of the production steps is
described as a capability. The capabilities are the same
as used in the resource model to enable an automatic
mapping of production steps to resources. A simplified
example is illustrated in Fig. 3 in the upper left box.

5. GENERATING ACTION SEQUENCES

In adaptable manufacturing systems several products can
be produced using the same resources. If it is possible,
the factory setup is reused for the different products
and only the action sequences are updated accordingly.
In some cases a change in the factory setup might be
necessary. Changes include adding or removing resources,
or changing the position of a resource within the factory.
It is also possible to use different modules of a resource
for different products. In order to automatically generate
action sequences for the different products, two aspects
have to be considered during the generation process: the
product description and the factory setup. These can then
be combined to automatically generate executable action
sequences. Fig. 3 illustrates this workflow.

5.1 Automatic Action Sequence Generation

Based on the required capabilities defined in the product
description and the factory setup, action sequences can
be generated automatically. The factory model mentioned
earlier contains all the needed information about the fac-
tory setup. It includes all available resources with their ca-
pabilities and internal material flow description as well as
all the connections between different resources that model
the external material flow. The first step in the automatic
generation of action sequences maps each production step
to all the resources providing the required capability. The
mapping can be generated by a simple matching algo-
rithm that iterates over all available resources and checks
whether they can provide the capability or not. If there is
no matching resource for one production step, then the
product cannot be produced using the current factory
setup. The algorithm stops in that case and no action
sequences are generated. In case there is a match, the
production step is mapped to the corresponding module
that supports the capability on the resource.

The second step generates a valid action sequence con-
sidering the internal and external material flow. To find
a valid action sequence we suggest using a branch-and-
bound complete search with backtracking. The action se-
quence is generated backwards starting with the last pro-
duction step of the product description. This ensures that
the precedence relations described by the dependencies in
the production plan are maintained because no operation
is planned before its predecessors have finished. The re-
source mapping to the production steps introduced earlier
is the starting point for the generation process. After find-
ing suitable resources for each operation, we have to check
whether there are valid internal and external material
flows when these resources are used. The algorithm that
generates a valid action sequence considering the external
material flow is described in our previous work (Keddis

et al., 2014). In this paper, we focus on integrating the
internal material flow as well and generating executable
code out of it.

The action sequence is generated iteratively. While gener-
ating the action sequence, we have to consider the internal
material flow in addition to the external material flow
in each step. Let’s assume that the required operation
in that step is mapped to module m1 on resource r1.
If the previous operation was assigned to a module m2

on the same resource (r1), then we only have to check
whether there is a valid internal material flow from m1

to m2. The external material flow is irrelevant in this
case. If the previous operation was assigned to a module
m3 on a different resource (r2), then both the internal
and external material flows are relevant. We first check
whether we can get from the input of r1 to m1. If r1 has
several inputs, we consider the one connected to r2. The
material can flow from the input to the module if there is
a path in the internal material flow graph as illustrated in
Fig. 1. The path is determined using a breadth-first-search.
Since this returns the shortest path, we ensure hereby
that we do not consider overlapping positions and modules
and thus the path does not contain unnecessary detours
through the resource. For each intermediate module a
transport operation is added, so that the material can be
transported from the input to m1. We store these steps
in the action sequence. The same procedure is done to
determine how to get from m3 to the output of r2. Then
we check if there is a valid external material flow from
r2 to r1. For each intermediate resource, we determine a
valid path from the input to the output of this resource
and add all intermediate transport operations to the action
sequence as done while checking the internal material flow.
The previous steps are repeated for each operation in
the product description until a valid action sequence is
found. If several modules of a resource are required in
consecutive steps, we first check whether we can get from
the input to the first required module. Then the path
between all the required modules is determined. Finally,
we check how to get from the last module to the output.
The search is stopped whenever there is no valid internal
or external material flow and backtracking to the next
branch is triggered. There is no valid action sequence when
there are no backtracking branches left and no previously
evaluated branch in the search tree has led to a valid
action sequence. The resulting action sequence is depicted
in Fig. 3 in the middle. The color of the ellipse indicates
the resource that should execute the operation. The text
in the ellipse indicates which operation has to be executed
and which module is assigned for it.

5.2 Executable Action Sequences

After generating a valid action sequence, it is translated
into an executable one. The translation is based on the
interfaces that are defined for each module of the re-
source. Each module includes a mapping from its inter-
faces that are used in the generated action sequence to
the corresponding control code. The planning component
informs each resource which modules should be used and
which commands are required and the resource defines
the required executable action sequences by invoking the
respective modules. For each operation in the action se-

Supply Case Supply Temperature
Sensor

Assemble

Sort

Supply Case Supply Temperature
Sensor

Assemble

Sort

Supply Case

Test Height Test Orientation

Drill
Supply Temperature

Sensor

Assemble

Store

Production Plans

Transport
from P1 to P2

(Conveyor)

Transport
from P1 to P3

(Conveyor)

Assemble
(Pick&Place)

Supply
Sensor

(Pick&Place)

Supply Black
Case (Stack
Magazine

Black)

Transport
from P1 to P2

(Conveyor)

Transport
form P1 to P2

(Conveyor)

Transport
form P2 to P3

(Conveyor)

Store
(Storage

Black)

IF Workpiece detected THEN
 Conveyor.transportWP(P1, P2);
END IF;

Pick_Place.assemble(true);

Conveyor.transportWP(P2, P3);

Supply_RBS

Pick&Place
Temperature

Pick&Place
Cover

Sorting
• Sort Workpieces
• Store Workpieces

• Supply Cover
• Assemble
• Transport

• Supply Temperature Sensor
• Assemble
• Transport

• Supply Black Case
• Supply Silver Case
• Supply Red Can

Factory Model with Material flow and capabilities

Fig. 3. The workflow for generating action sequences. A valid action sequence is generated from the product and factory
descriptions. This is later translated into an executable action sequence.

quence, the executable is then composed of the required
code snippets. For example if we only want to drill on
the processing station, the action sequence would include
a transport operation on the rotary table from the in-
put position to the drill, a drill operation on the drill,
a transport operation on the rotary table from the drill
to the lever, and a transport operation from the lever to
the output position. The processing station would then
translate these four operations to the necessary control
code. The control code includes the module that should
execute the operation, the operation it should execute,
and the parameters that are specific for this product. An
example of the translation is depicted in Fig. 3 on the right.
In general, this results in one executable action sequence
that includes all the control code that is required by a
resource. In case a resource is used at two different times
in the action sequence, several executable action sequences
can be generated for each point in time. Each executable
action sequence is then automatically downloaded to the
resource when the corresponding operation should start.
Afterwards, the resource processes the executable action
sequence and performs the operation included in it. The
download process is illustrated in Fig. 4.

6. EXPERIMENTAL SETUP AND RESULTS

6.1 Experimental Setup

A simplified industrial manufacturing system is used to
evaluate the approach. The setup is used for educational
purposes and consists of different combinable resources
from the Festo modular production system. One possible
setup is shown in Fig. 4 on the right 1 . Different products
can be produced within the manufacturing system: black,

1 The experimental setup and the results can be seen in the following
video: http://www.youtube.com/watch?v=Tkcv-mbhYqk.

red, or silver thermometers, black, red, or silver hygrom-
eters, red boxes, black, red, or silver workpieces with
different characteristics. The different characteristics allow
changing the production steps required for a product to
demonstrate that different action sequences are generated
for different products. The manufacturing systems can be
composed of different Festo stations, conveyor belts, and
mobile robots. Each of them provides a set of capabilities
to support the production of the above mentioned prod-
ucts. To increase variability, production steps supported
by the stations can be included or skipped in the produc-
tion plan. Optional steps are testing, verifying orientation,
drilling, and assembly. Stations are either controlled by
a Siemens S7 300 PLC or a Festo CoDeSys PLC. Ad-
ditionally, a PC is used as a supervisory control. The
supervisory control calculates the valid action sequences
based on the resource models and the factory model. The
models are defined using the Eclipse Modeling Framework
(EMF). EMF4CPP is used to generate C++ classes out
of the models. Besides, a graphical user interface (GUI)
runs on the supervisory control to enable user interaction.
The user can specify the type of product that should be

Production Control

Sort

Transport

Assemble

Supply
Sensor

Supply
Black Case

Fig. 4. A simplified action sequence is divided into an
executable action sequence for each resource and
downloaded to it.

produced in the GUI and trigger the generation of ac-
tion sequences that are afterwards automatically executed.
Several products can be selected at the same time. If
the selected products cannot be produced on the current
setup, this is displayed in the GUI by highlighting the
missing capabilities. Missing links between resources can
also be highlighted in the GUI.

6.2 Evaluation

For the evaluation we produce different products that
require different modules of the resources to be active. For
each product a valid action sequence can be found within
seconds without manual configuration or programming.
Product descriptions included up to ten production steps
and the factory setup was composed of up to seven
resources. Since the number of machines that have to be
considered in each step is much smaller than the number
of operations, the search space is small. Branches can be
bound as soon as there is no resource that provides the
capability, there is no external material flow, or there
is no internal material flow. This can quickly limit the
search and only a few branches of the search tree reach
the last level. After generating a valid action sequence,
this was successfully translated into executable action
sequences. The translation was done automatically and
no further manual changes were necessary to execute
the action sequences. When changes in the factory setup
occurred, this was automatically reflected in the generated
action sequence in form of a changed number of transport
operations for different modules on different resources.
In order to use this approach, the resource models and
the product models have to be created manually once in
the beginning. The factory model can be automatically
generated as described in previous work (Keddis et al.,
2013). Afterwards, the models can be used for different
products and factory setup. This procedure is less-error
prone than traditional engineering because models can be
thoroughly tested and reused later. The program outline
and the recipe controller for the resource have to be
programmed once manually and later the generated action
sequence can be downloaded and executed automatically.
The demonstration showed that the proposed approach
is suitable for adaptable manufacturing systems where
there are frequent switches between different products and
factory setups, because it reduces manual effort, while
ensuring that the production can be executed correctly.
The approach still has to be evaluated on large problems.

7. CONCLUSION

In this paper we proposed an approach to automatically
generate action sequences for adaptable manufacturing
systems. The approach takes the requirements of the prod-
uct into consideration and generates an action sequence
that can be executed directly in the given manufacturing
system. For this, a valid action sequence is generated based
on resource and factory models, as well as mapping from
interfaces to control software for each module. Thus, the
action sequence generation adapts to changes in the man-
ufacturing system in addition to changed product descrip-
tions. It is suitable for adaptable manufacturing systems
that have to deal with lots of product variants and different

products. A simplified industrial setup was used to evalu-
ate the approach. For different products and factory setups
different action sequences were generated without manual
effort and user interaction. The action sequences were
automatically downloaded to the resources when needed
and the production was triggered and executed without
further intervention. The contribution in this work is an
adaptable planning algorithm that adapts resource control
programs depending on product requirements and factory
topology.

Currently, the approach is limited to small problems. The
next step in our work involves evaluating the approach on
larger problems. Additionally, we intend to expand the ap-
proach to other PLC systems. Currently, the approach was
tested with Siemens S7 only. Other technologies should be
supported in the future. For this, the interpretation and
execution of the generated recipes must be implemented
on the different PLCs.

AKNOWLEDGMENT

This approach is a result of the research and development
project “SpeedFactory”, which was funded by the German
Federal Ministry for Economic Affairs and Energy as part
of the technology programme “Autonomics for industry
4.0” and supervised by the German Aerospace Center
(DLR) under Grant No. 01MA13002B.

REFERENCES

Alexakos, C., Georgoudakis, M., Kalogeras, A., and
Likothanassis, S. (2012). Adaptive Manufacturing Uti-
lizing Ontology-driven Multi-Agent Systems: Extending
Pabadis’ Promise Approach. In IEEE International
Conference on Industrial Technology (ICIT), 42–47.
IEEE.

Arens, D., Hopfgartner, T., Jensen, T., Lamping, M.,
Pieper, M., and D., S. (2006). Packaging Machine
Language V3.0 Mode & States Definition Document.
OMAC Motion for Packaging Working Group.

Brandl, D. (2006). Design Patterns for Flexible Manufac-
turing. ISA.

Bussmann, S. and Schild, K. (2001). An Agent-based Ap-
proach to the Control of Flexible Production Systems.
In IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), volume 2,
481–488. IEEE.

Cheeseman, M., Swann, P., Hesketh, G., and Barnes, S.
(2005). Adaptive Manufacturing Scheduling: A Flexible
and Configurable Agent-based Prototype. Production
Planning & Control, 16(5), 479–487.

Eckert, K., Hadlich, T., Frank, T., Fay, A., Diedrich,
C., and Vogel-Heuser, B. (2012). Design Patterns for
Distributed Automation Systems with Consideration of
Non-Functional Requirements. In IEEE International
Conference on Emerging Technologies & Factory Au-
tomation (ETFA). IEEE.

Gabel, T. and Riedmiller, M. (2008). Adaptive Reac-
tive Job-Shop Scheduling with Reinforcement Learning
Agents. International Journal of Information Technol-
ogy and Intelligent Computing, 24(4).

Hu, S., Zhu, X., Wang, H., and Koren, Y. (2008). Prod-
uct Variety and Manufacturing Complexity in As-

sembly Systems and Supply Chains. CIRP Annals-
Manufacturing Technology, 57(1), 45–48.

Iacocca Institute (1991). 21. Century Manufacturing
Enterprise Strategy: An Industry-Led View. Technical
report, Iacocca Institute, Bethlehem, Pennsylvania.

Keddis, N., Kainz, G., Buckl, C., and Knoll, A.
(2013). Towards Adaptable Manufacturing Systems. In
IEEE International Conference on Industrial Technol-
ogy (ICIT), 1410–1415. IEEE.

Keddis, N., Kainz, G., and Zoitl, A. (2014). Capability-
based Planning and Scheduling for Adaptable Manufac-
turing Systems. In IEEE International Conference on
Emerging Technologies & Factory Automation (ETFA).
IEEE.

Klöpper, B., Sondermann-Wölke, C., Romaus, C., and
Vöcking, H. (2009). Probabilistic Planning Integrated
in a Multi-level Dependability Concept for Mechatronic
Systems. In IEEE Symposium on Computational In-
telligence in Control and Automation (CICA), 104–111.
IEEE.

Koren, Y. (2010). The Global Manufacturing Revolution.
John Willey & Sons, New Jersey.

Leitão, P. (2009). Agent-based Distributed Manufacturing
Control: A State-of-the-Art Survey. Engineering Appli-
cations of Artificial Intelligence, 22(7), 979–991.

Lepuschitz, W., Groessing, B., Merdan, M., and Schit-
ter, G. (2013). Evaluation of a Multi-agent Approach
for a Real Transportation System. In IEEE Inter-
national Conference on Industrial Technology (ICIT),
1273–1278. IEEE.

Lohse, N., Hirani, H., Ratchev, S., and Turitto, M.
(2005). An Ontology for the Definition and Valida-
tion of Assembly Processes for Evolvable Assembly Sys-
tems. In The 6th IEEE International Symposium on
Assembly and Task Planning: From Nano to Macro
Assembly and Manufacturing (ISATP), 242–247. doi:
10.1109/ISATP.2005.1511480.

McFarlane, D.C. and Bussmann, S. (2003). Holonic
Manufacturing Control: Rationales, Developments and
Open Issues. In Agent-based manufacturing, 303–326.
Springer.

NAMUR (2003). NE 033 Requirements to be met by
Systems for Recipe-Based Operations.

Sauer, O. and Jasperneite, J. (2011). Adaptive Informa-
tion Technology in Manufacturing. In CIRP Conference
on Manufacturing Systems. Madison, WI, USA.

Sorouri, M., Patil, S., and Vyatkin, V. (2012). Distributed
Control Patterns for Intelligent Mechatronic Systems.
In IEEE Conference on Industrial Informatics (INDIN).
IEEE.

Sünder, C., Zoitl, A., and Christoph, D. (2006). Functional
Structure-based Modelling of Automation Systems. In-
ternational Journal of Manufacturing Research, 1(4),
405–420.

Vogel-Heuser, B., Kegel, G., Bender, K., and Wucherer, K.
(2009). Global Information Architecture for Industrial
Automation. atp.

Westkämper, E. and Decker, M. (2006). Einführung in die
Organisation der Produktion. Springer.

Wiendahl, H.P., ElMaraghy, H., Nyhuis, P., Zäh, M.F.,
Wiendahl, H.H., Duffie, N., and Brieke, M. (2007).
Changeable Manufacturing – Classification, Design and
Operation. CIRP Annals-Manufacturing Technology,
56(2), 783–809.

Zäh, M.F., Beetz, M., Shea, K., Reinhart, G., Stursberg,
O., Ostgathe, M., Lau, C., Ertelt, C., Pangercic, D.,
Rühr, T., et al. (2008). An Integrated Approach to
Realize the Cognitive Machine Shop. In Proceedings
of the 1st International Workshop on Cognition for
Technical Systems, 6–8.

Zäh, M.F., Reinhart, G., Ostgathe, M., Geiger, F., and
Lau, C. (2010). A Holistic Approach for the Cognitive
Control of Production Systems. Advanced Engineering
Informatics, 24(3), 300–307.

Zoitl, A. and Prähofer, H. (2012). Guidelines and Pat-
terns for Building Hierarchical Automation Solutions
in the IEC 61499 Modeling Language. IEEE Trans-
actions on Industrial Informatics, PP(99), 1. doi:
10.1109/TII.2012.2235449.

Zoitl, A., Kainz, G., and Keddis, N. (2013). Production
Plan-Driven Flexible Assembly Automation Architec-
ture. In Industrial Applications of Holonic and Multi-
Agent Systems, 49–58. Springer.

Zor, S., Görlach, K., and Leymann, F. (2010). Us-
ing BPMN for Modeling Manufacturing Processes. In
Proceedings of 43rd CIRP International Conference on
Manufacturing Systems, 515–522.

