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ABSTRACT

The Asynchronous Hidden Markov Model (AHMM) models the joint
likelihood of two observation sequences, even if the streams are not
synchronised. We explain this concept and how the model is trained
by the EM algorithm. We then show how the AHMM can be applied
to the analysis of group action events in meetings from both clear
and disturbed data. The AHMM outperforms an early fusion HMM
by 5.7% recognition rate (a rel. error reduction of 38.5%) for clear
data. For occluded data, the improvement is in average 6.5% recog-
nition rate (rel. error red. 40%). Thus asynchronity is a dominant
factor in meeting analysis, even if the data is disturbed. The AHMM
exploits this and is therefore much more robust against disturbances.

Index Terms— Meetings, Video signal processing, Robustness,
Hidden Markov models, Multimedia communication

1. INTRODUCTION

In a recent study [1] the participants were asked to select emotion
terms that they thought would be frequently perceived in a meeting:
Two third of the participants named “boring”, nearly one third men-
tioned “annoyed” as a frequently perceived emotion. On the other
hand meetings, lectures and conferences can consume large parts
of our working days and are mandatory for the information flow in
companies and other organisational structures. The Intel Corpora-
tion – for example – schedules around 3 million meeting hours and
another 5.7 million hours of audio bridge conferences each year [2].
Even more interestingly: Intel spends 56 thousand hours each year
only on teaching their employees how to hold an effective meeting.

Thus there is a huge discrepancy between the importance of
meetings in organisational structures on the one hand and the partic-
ipants perception about these meetings on the other hand. Projects
like the ICSI meeting project [3], Computers in the Human Interac-
tion Loop [4], or Augmented Multi-party Interaction [5] therefore
investigate how computers can be used to make meetings and lec-
tures more effective, and how to automatically analyse them.

A first step for the automatic analysis of the meetings is a seg-
mentation into meeting group action events like discussion or pre-
sentation [6]. This structuring can then be used to produce an agenda
and a summarisation of the meeting. Different automatic methods
for this structuring have been introduced [6, 7, 8, 9] and successfully
applied to the analysis of recorded meeting data sets.

However, in real meetings the data can be disturbed in various
ways: events like slamming of a door or background babble can

This work is supported by the European IST Programme Project FP6-
0033812.

mask the audio channel. The visual channel can be (partly) masked
by persons standing or walking in front a camera, or a laptop com-
puter can be placed in front of the meeting participants. All these
realistic conditions influence the behaviour and therefore generally
decrease the performance of the proposed meeting analysis meth-
ods. In [10] a graphical model, based on a multi-modal mixed-state
dynamic Bayesian network (DBN), was proposed to handle occlu-
sions in meeting data. The proposed model was successfully ap-
plied to both clear and occluded meeting data and it was shown that
the recognition performance for the disturbed data only slightly de-
creased. However the mixed-state DBN is computational very com-
plex and therefore computational infeasible in (near) real-time.

In this work we therefore propose to apply the Asynchronous
Hidden Markov Model (AHMM) to the analysis of disturbed meet-
ing data. The AHMM [11, 12] can model the joint likelihood of
two observation streams, even if they are not synchronised. This is
the main advantage of the AHMM compared to other multi-modal
Markov models, like coupled, multi-stream, or early fusion HMMs.
Previously the AHMM has therefore been successfully applied to
audio-visual speech recognition [11, 12], person identification [13],
the fusion of speech and gestures [14], and – in a two-layer version
– for meeting analysis [15]. We will show how the AHMM can
be learned from data and then used for the classification of meeting
group action events. In an experimental section we will evaluate the
model on real meeting data.

2. MEETING ROOM AND DATA SET

The data for this work was recorded in the IDIAP smart meeting
room [16], which is equipped with a table, a whiteboard, and a pro-
jector with screen. The corpus consists of 60 videos with a length
of approximately 5 minutes. Each meeting has 4 participants and is
recorded with 3 cameras. All participants have a lapel and a headset-
microphone attached and a microphone array is placed on the table.

To investigate the influence of disturbances to the recognition
performance, the evaluation data was cluttered: The audio data was
disturbed with a background-babble with 10 dB SNR. To simulate a
person standing (or walking) between the camera and the recorded
persons, the video data was occluded with a grey bar covering one
third of the image at different positions (left, middle, and right third).
For another evaluation set, a grey cross, covering 5/9 of the video
was added. In a final set, a 10 dB SNR Gaussian noise was added to
the video. Fig. 2 shows a snapshot of a meeting and the occlusions.

For this work 30 clean videos were used for the training of the
models. For the evaluation, the remaining 30 unknown videos have
been cluttered with one or a combination of disturbances.
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Fig. 1. Video snapshots of a meeting in the smart meeting room (a) and the same image with different kind of occlusions added (b-e)

3. GROUP ACTION MEETING EVENTS

For a first structuring of the meeting the eight different group actions
E = {ED, EM,1, EM,2, EM,3, EM,4, EN, EP, EW} are widely used [6,
7, 8, 9, 10]. The events Ej are

ED: Two or more persons are talking with each other.
EM,Id: The person Id is talking without being interrupted.
EN: All persons write something down.
EP: One person in front of the room gives a presentation.
EW: One person writes on the whiteboard.

Each meeting can then be modelled as a sequence of these group
actions Ej . In average each meeting in the corpus consists of five
action segments. This sequence of actions can then be used as a
rough structuring of the meeting [6], e. g. in a meeting browser [17].

4. FEATURES

Visual features: In the meeting room the persons are usually at one
of six locations: one of four chairs, the whiteboard, or at a presenta-
tion position: L = {C1, C2, C3, C4, W, P}. For each location L a
difference image sequence IL

d (x, y) is calculated by subtracting the
pixel values of two subsequent frames from the video stream. Then
seven global motion features [18] are derived from this image se-
quence: The centre of motion is calculated for the x- and y-direction:

mL
x (t) =

P
(x,y) x · |IL

d (x, y, t)|P
(x,y) |IL

d (x, y, t)|
and

mL
y (t) =

P
(x,y) y · |IL

d (x, y, t)|P
(x,y) |IL

d (x, y, t)| (1)

The changes in motion express the dynamics of movements:

ΔmL
x (t) = mL

x (t)−mL
x (t− 1)

and
ΔmL

y (t) = mL
y (t)−mL

y (t− 1) (2)

Furthermore the mean absolute deviation of the pixels relative to the
centre of motion is computed:
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P
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´
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Finally the intensity of motion is calculated from the average abso-
lute value of the motion distribution:

iL(t) =

P
(x,y) |IL

d (x, y, t)|P
(x,y) 1

(4)

These seven features are concatenated for each frame in the location
dependent vector �xL(t) = [mL

x , mL
y , ΔmL

x , ΔmL
y , σL

x , σL
y , iL]T .

With this motion vector the video stream is reduced to a seven di-
mensional vector, but it preserves the major characteristics of the
observed motion. Concatenating the motion vectors from each of
the six positions �xL(t) leads to the final visual feature vector �xV(t)
that describes the overall motion in the room with 42 features.

Audio features: For each speaker four Mel frequency cepstral
coefficients (MFCCs) and the energy were extracted from the lapel-
microphones. This results in a 20-dimensional vector �xS(t) with
speaker-dependent information. A binary speech and silence seg-
mentation (BSP) for each of the six locations L in the room was ex-
tracted with the SRP-PHAT measure [6] from the microphone array,
resulting in a six-dimensional vector �xBSP(t) containing position de-
pendent information. The speaker- and the position-dependent vec-
tors have been concatenated �xA(t) = [�xS(t), �xBSP(t)] resulting in
the final audio feature vector. The feature frequency of the audio
signal was four times higher than the video feature frequency.

5. THE ASYNCHRONOUS HMM

The AHMM is used to model the joint likelihood p(�x, �y) of two
observation sequences �x with length T , and �y with length S. Without
loss of generality it is assumed that S ≤ T (if T > S a simple
extension is necessary). The joint likelihood can of course not be
calculated directly, as it is intractable.Therefore two hidden variables
are introduced: the first variable qt = 1 . . . N is synchronised with
the stream �x and identical to the state in standard HMMs. The total
number of states in the model is denoted as N . It is assumed, that a
state always emits a symbol from the stream �x at each time step t.
Furthermore each state qt = i emits with the probability ε(i, t) at the
same time a second symbol from the stream �y. The hidden variable
τt = 0 . . . S models the alignment between �x and �y. Whenever
a state emits a symbol from stream �y, the alignment variable τt is
incremented, until all symbols from �y have been emitted and τt = S.

This can be represented in a three dimensional trellis, as shown
in Fig. 2. The two axis time t and state qt are identical to those from
HMMs. The axes τt represents the alignment between the streams.
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Fig. 2. 3-dimensional AHMM trellis (left) and projection (right).
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In each time step t one symbol from �x is emitted. This corresponds
to move one step right in the trellis. If a state also emits a sym-
bol from �y, the movement is one step right and one step in the τt-
direction. The model can of course in each step jump to any of the
states from the state axes (for an ergodic model). The projections to
the three planes are shown in Fig. 2 (right). The most interesting one
is the (t-τt)-plane (yellow): The projection of the path to this dimen-
sion represents the alignment between the �x- and the �y-stream. For
comparison, an early fusion HMM always emits both a symbol from
the �x- and the �y-stream, thus the alignment would be a straight line
from the origin to the right-upper corner of the alignment plane.

5.1. Parameters

The AHMM is parameterised with five distributions λ:

• The initial state distribution: πi = p(q1 = i)

• The state transition distribution: Aji = p(qt+1 = i|qt = j)

• The probability of emitting two symbols in a state:
εi = p(τt = s|τt−1 = s− 1, qt = i)

• The emission distributions for a single symbol p(�xt|qt = i)
and for a pair of symbols p(�xt, �yt|qt = i).

As with standard HMMs, the emission distributions can be modelled
discretely or continuously (e. g. with a mixture of Gaussians). Fur-
thermore the distribution for a pair of symbols p(�xt, �yt|qt = i) can
be modelled in various ways: jointly, independently, or conditional
on each other. This allows a flexibility, that is not trivially possible in
other multi-modal Markov models (e. g. early fusion HMMs, where
the output is always modelled jointly).

5.2. Likelihood computation

To compute the joint likelihood p(�x, �y|λ) of two streams, a forward
procedure has been developed in [11] and slightly extended in [14].
The forward path variable is defined as:

α(i, s, t) = p(qt = i, τt = s, �xt, �ys) (5)

The model can start with either emitting one or two symbols in the
first step. The initialisation step therefore is:

α(i, 0, 1) = [1− εi] · πi · p(�x1|qt = i) (6)

α(i, 1, 1) = εi · πi · p(�x1, �y1|qt = i) (7)

for all 1 ≤ i ≤ N . In Fig. 2 the initialisation is plotted as a blue
circle, resp. green triangle for a model that can only start in the first
state. As long as none of the symbols from �y have been emitted
(s = 0), the induction step is:

α(i, 0, t + 1) =

[1− εi] · p(�xt+1|qt+1 = i) ·
NX

j=1

p(qt+1 = i|qt = j) α(j, 0, t)

(8)

for all 1 ≤ i ≤ N and 1 ≤ t ≤ T − S. If a symbol from �y has
already been emitted (s > 0), the induction step becomes:

α(i, s + 1, t + 1) =

εi · p(�xt+1, �ys+1|qt+1 = i) ·
NX

j=1

p(qt+1 = i|qt = j) α(j, s, t)

+[1− εi] · p(�xt+1|qt+1 = i) ·
NX

j=1

p(qt+1 = i|qt = j) α(j, s + 1, t)

(9)

for all 1 ≤ i ≤ N , 1 ≤ t ≤ T , and max{0; t − (T − S)} ≤
s ≤ min{S; t}. Finally the termination with the likelihood of the
observation is:

p(�x, �y|λ) =

NX
j=1

α(j, S, T ) (10)

In Fig. 2 the termination point is plotted as a red square for a model
that has to end in the last state N . This procedure calculates the
likelihood of an observation in O`

N2[TS − S2 + T ]
´
.

Replacing the summations in Eq. (8 – 10) with maximisations
leads to a Viterbi-algorithm. Then the best state-sequence and the
best alignment between the two streams can be derived. In Fig. 2
(right) the alignment path is shown through the yellow (t-τt)-plane.

5.3. EM Training

To learn the parameters λ of an AHMM, an EM training procedure
can be derived [11]. A backward variable is defined as β(i, s, t) =
p(xt+1, ys+1|qt = i, τt = s) and can be calculated analogous to
the forward path. Furthermore for the learning of the output dis-
tributions, we need two auxiliary forward path variables, α0(i, s, t)
and α1(i, s, t). They represent those parts of α where a state emits
only one, resp. a pair of symbols. They can easily be calculated by
only considering the single symbol-emitting, resp. pair of symbol-
emitting parts of Eq. (6 – 10). As a matter of fact: in a practical
implementation one would first calculate both α0 and α1 and then
sum the two components to derive α.

We can then derive an EM Q-function, as shown in Eq. (11), on
top of this page. In this function all parameters are separated. Intro-
ducing Lagrangian multipliers and derivation of the parameters leads
to the update equations for the learning of the model parameters:

πi =

P1
s=0 p(�x, �y, q1 = i|τ1 = s, λ′)

p(�x, �y, τ1 = s|λ′) (12)

aij =

P2
t=1

Pt
s=0 p(�x, �y, qt = j|qt−1 = i, τt = s, λ′)PT

t=2

Pt
s=0 p(�x, �y, qt−1 = i|τt = s, λ′)

(13)

εi =

PT
t=1

PT
s=0 p(�x, �y, τt = s|τt−1 = s− 1, qt = i, λ′)PT

t=1

Pt
s=0 p(�x, τt = s|qt = i, λ′)

(14)

The re-estimation equations for the output probabilities p(xt|qt)
and p(xt, ys|qt) depend on the output probability modelling and are
not shown here. However their derivation is identical to the output
distributions in standard HMMs.
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Test Set Single-Modal Multi-Modal
Audio Visual HMM DBN AHMM

a) Clear data 83.1 67.2 85.2 88.7 90.9
b) Left occ. 40.9 82.6 87.8 89.9
c) Middle occ. 44.3 83.5 76.5 87.9
d) Right occ. 52.2 85.2 86.1 91.9
e) Cross occ. 33.0 79.1 81.7 88.9
f) Gauss. noise 42.6 84.4 87.8 89.9
I) Audio noise 61.1 80.9 87.0 80.8

Table 1. Recognition rates in percent (%) for the different models.

6. EXPERIMENTS

The AHMM was evaluated on the IDIAP meeting corpus (see Sec. 2)
and compared to single-modal audio and visual HMMs, an early
fusion HMM, and the DBN proposed in [10]. Each single-stream
HMM was trained and evaluated with only one modality. For the
early fusion HMM the frame rates of the two streams were adjusted
and concatenated. For the DBN and the AHMM this is not neces-
sary, because each stream is handled separately. The models were
trained with clear data from 30 videos and tested with clear and clut-
tered data from the remaining 30 unknown videos. In test set (a),
the audio and visual channel had no disturbances. Three sets had
the visual channel partly occluded: A grey bar covering one third
of the image was added at the left (b), the middle (c), and the right
(d). For set (e), a grey cross was used (Fig. 2). In set (f), Gaussian
noise with 10 dB SNR was added. For sets (b - f) the audio was not
disturbed. For comparison an audio disturbed set (I) was included: a
background-babble with 10 dB SNR was added to the audio channel.

Tab. 1 shows the recognition rates (RR) for all models. The au-
dio stream has a good RR (83.1%) for clear data (a), while the visual
stream alone provides less information (67.2%). All tested multi-
modal systems outperform the single-modal HMMs. The AHMM
reaches the best RR of 90.9% and therefore outperforms the early
fusion HMM by 5.7% absolute RRs – a relative error reduction of
38.5%. For clear data the AHMM also outperforms the DBN (19.5%
rel. error reduction). Asynchronity in the data seems to be a domi-
nant factor, which is best exploited by the AHMM.

This behaviour is increased if visual occlusions are added. Now
the visual HMM drops significantly in the RR (33.0% - 44.3% de-
pending on the occlusion). The early fusion HMM and the DBN
drop slightly in their RRs. The AHMM however remains nearly un-
affected from the occlusions. For one occlusion (d) the RR is even
increased compared to the clear data. We have not fully investigated
this effect, but the same tendency can be found for both the HMM
and the DBN: the rate does not drop much for occlusion (d). Thus
some misleading motion might be covered in this set. The same ef-
fect might lead to the increase in RR for the AHMM between set (c)
and (e). In average for the disturbed sets (b-f) the AHMM outper-
forms the HMM by 6.5% and the DBN by 5.7% RR (a rel. error red.
of 40%, resp. 32.8%). Again this shows that the alignment between
visual and acoustic information and the asynchronity is a dominant
factor, even in disturbed data. By exploiting this asynchronity with
the AHMM the system gets much more robust against occlusions.

In a final evaluation we used the audio disturbed data. Here, the
AHMM reaches a RR comparable to the standard HMM, but worse
than the DBN. The DBN uses a Kalman filter structure to heavily
improve the visual channel, thus it uses much more information from
the visual channel than the AHMM and the HMM have available.
Thus the asynchronity becomes less dominant for audio noise.

7. CONCLUSIONS

In this work we proposed to apply the asynchronous HMM for the
recognition of group actions in meetings from disturbed data. The
AHMM exploits the audio-visual stream alignment and can model
asynchronity between them. Experiments showed that compared to
an HMM, the AHMM improves the recognition rate by 5.7% for
clear and in average by 6.5% for occlusions in the visual channel –
a relative error reduction of 38.5%, resp. 40%. Thus asynchronity
seems to be one of the dominant factors in the multi-modal analysis
of meetings, even if the channels are heavily disturbed.

However, we found that the AHMM performance strongly de-
pends on a careful model initialisation. In the future we therefore
like to investigate the influence of initial parameters on the training.
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