
Fusion Algorithm Based on Fuzzy Neural Networks
Alexey Natekin

fortiss Gmbh
Guericksr. 25

Munich, Germany
natekin@fortiss.org

Alois Knoll
Technical University Munich

Boltzmannstr.3
Garching, Germany

knoll@in.tum.de

Abstract—The problem of optimal fusion of several predictive
machine learning regression models is considered. The method
of combining different predictive models based on additive fuzzy
systems is presented. The framework of model fusion based
on fuzzy neural networks is described and the appropriate
algorithms are derived. Learning process justifications and the re-
quirement of the separate fusion set are discussed. The presented
models are supported with the real world application example
of robotic hand control.

Index Terms—machine learning; data fusion; model fusion;
fuzzy associative memory; predictive ensembles

I. INTRODUCTION

Data fusion is a wide branch of methods, used in a number
of different practical applications [1]. In machine-learning the
most common data fusion problem considered, is how to
blend, or fuse, several predictive models. One of the most
notable examples of such applications was described in the
winning solution of the Netflix Grand Prize [2]. Authors
carefully applied and tuned a large number of different pre-
dictive models and blended them together in the form of the
linear combination. That same approach of model blending has
become popular among practitioners, and currently is one of
the most frequently used winning strategies in various online
machine learning competitions like kaggle [3], [4].

However, linear blending has it’s shortcomings. This model
simplicity doesn’t allow one to exploit the model specializa-
tion. In particular, if one has a set of very specialized local
models, like the ones used in the Mixture of Experts (MoE)
[5], a linear fusion will likely result in aggregating all of the
expert’s weaknesses together with their strengths thus, loosing
most of the potential benefit of fusion. Despite this fact, when
considering MoE as the single predictive model, it cannot
compete with the strong ensemble models like GBMs [6], [7]
or Random Forests [8], in neither accuracy nor their learning
speed.

To exploit each of the local model’s information, and
make the blending process more interaction-specific, we adopt
the model fusion approach, based on additive fuzzy systems
[9]. We learn a fuzzy neural model, initialized by clustering
with gaussian fuzzy patches, which builds atop the original
predictor models. We treat the obtained predictive models as
the final estimates of the consequent parameters in the fuzzy
rules after what we optimize the gaussian parameters of the
fuzzy rules obtained. Hence, unlike most of the other fuzzy

neural fusion approaches, our fuzzy model behaves as if the
consequents were fixed strong nonlinear models, learned with
different processes.

In Section II, we describe the fuzzy neural network models.
In Section III, we provide the learning algorithm for the
fuzzy model fusion. In Section IV, the properties of the fuzzy
model fusion are analyzed and the justifications about solving
the arising issues are considered. Section V provides the
application examples with the proposed fuzzy neural model
on the robotic hand controller data. In Section VI, the results
and conclusions are discussed.

II. FUZZY NEURAL NETWORKS

In this article only the regression problem will be con-
sidered. Suppose we are given the dataset (x, y)Ni=1, where
x = (x1, ..., xd) ∈ Rd refers to the input variables and
y ∈ R to the response variable. The goal is to reconstruct
the functional dependence x

f−→ y with the estimate f̂(x, θ),
such that the squared error function is minimized. We will
consider the estimate f̂(x, θ) to be the additive fuzzy system.

A. Additive fuzzy system model

Fuzzy system is a set of fuzzy ”IF-THEN” rules that maps
the input variables x to the response variable y. Additive fuzzy
systems reconstruct the underlying functional dependence by
covering the joint input-output distribution with fuzzy patches.
Fuzzy patches form coordinate-wise fuzzy sets in the premise
part of the fuzzy rules, and local regression models in the
consequent part. Given G fuzzy rules, the i-th fuzzy rule is
given in (1), i = 1..G.

Rulei : IF x Is Ai THEN y is f̂i(x), (1)

• Ai is a fuzzy set defined on x, i = 1..G;
• f̂i(x) is a consequent model of the rule i.
We will consider the additive model, where the fuzzy sets Ai

are defined on Rd by cartesian product: Ai = Ai1× ... ×Aid.
Each fuzzy set Aij , defined on xj , is characterized with some
membership function µAij (xj) ∈ [0, 1], i = 1..G, j = 1..n.
In this paper we will focus on the Gaussian model of the
membership function, parameterized with it’s mean mij and
standard deviations sij :

µAij
(xj) = e

−
(xj−mij)

2

2s2
ij , i = 1..G, j = 1..d (2)

978-1-4673-4544-6/13/$31.00 ©2013 IEEE

Fig. 1: Neural network representation of the additive fuzzy
system. Each rule comprises of two parametric layers. The
defuzzification layer is functional and parameter free.

The consequent models f̂i(x) used can be of different
form and complexity. The most commonly used are the linear
regression consequents, as they are easy to estimate.

After all the G fuzzy rules are fired, having calculated all the

µAij and f̂i, the aggregated memberships µAi =
n∏

j=1

µAij (xj)

are calculated. At last, the overall output of the network
is calculated as the weighted average of consequents, with
weights equal to normalized aggregated memberships. The
overlapping fuzzy rules are fused with respect to their relative
certainty. The resulting fuzzy model is given in (3):

ŷ =

G∑
i=1

µAi
f̂i

G∑
i=1

µAi

, i = 1..G (3)

B. Fuzzy neural network model

The (3) fuzzy function estimator can be represented in
the form of a feedforward neural network [13] with two
parametric layers, containing the evaluation of the premise and
consequent parts of fuzzy rules. The resulting neural network
architecture is shown on Figure (1). From the purely functional
perspective, this architecture corresponds to the first order
Takagi-Sugeno-kang (TSK) model [11]. The only difference
is that the membership functions are conveniently reorganized
in the form of multidimensional clusters µAi

, each of which
corresponds to the cartesian product of marginal membership
functions µAij (xj), i = 1..G, j = 1..d.

To efficiently initialize the fuzzy rule-base, one can ap-
ply unsupervised clustering procedures [12]. The joint input-
output x × y space is covered with cluster patches in an
unsupervised way. Then, the obtained clusters are marginalized
over y, in order to get cluster projections on x and extract the
fuzzy rule’s membership functions parameters.

Having the initial estimate of the membership function
parameters, one can proceed to learning the resulting neural

0 1 2 3 4 5 6

−1
.0

−0
.5

0.
0

0.
5

1.
0

Fuzzy neural example

x

y

0 1 2 3 4 5 6

0.
0

1.
0

Extracted fuzzy sets

x

y

0 1 2 3 4 5 6

0.
0

1.
0

Normalized memberships

x

y

����
������������

���
����
������

��������
��

0 1 2 3 4 5 6

−1
.0

Linear consequents

x

y

Fig. 2: Example of the fitting stages of the fuzzy neural
network. The Gaussian patches in the joint input-output space
are shown before marginalization.

network model. Demonstration of the initialization process
steps is shown on Figure (2). For the demonstration purposes,
synthetic noisy sin(x) function was used as the data input.
The final smoothed estimate of the local linear consequents
is plotted on the first picture together with the fuzzy patches.
At first the two-dimensional Gaussian patches are fitted to the
data and marginalized over y in order to extract functions of
x only. To fit the local linear consequents, the membership
functions are normalized.

III. FUZZY MODEL FUSION

The main difference between the fuzzy model fusion and
the fuzzy neural model described above is that in our scenario
the consequent functions f̂i(x) are considered to be already
learned and fixed. Moreover, we assume that one doesn’t have
access to the consequent function parameters and can only
build a model atop the consequents. This might be the case
of both simplifying the learning task with submodels built in-
dependently, or using models of different types(categorical or
continuous) built on different subspaces. Another motivation
for such design option would be to use domain-specific models
to match different types of data simultaneously, for example
sensor reading and camera image data. This is the most critical
difference, when comparing this method to other fuzzy neural
fusion algorithms.

There are different ways of combining a set of predictive
models. One can consider stacking procedures [14], fusion
through linear formulas or portfolio-based linear fusion [15].
These approaches can increase the overall accuracy of the
system, but they are typically considered for models of the
same type [16], [17]. However if the models come from very
different functional families, like a linear regression model and
a random forest, stacking of these models will not allow one to
benefit from this dramatic difference. In this same example,
linear regression can work significantly better in the farther
regions of data distributions, including extrapolation, whereas

−10 −5 0 5 10

−1
.5

−0
.5

0.
5

1.
0

1.
5

Fusing different classes of models

x

y

GBM model
Linear model

Fig. 3: Artificial data example of fitting two different classes
of models: linear regression and a GBM.

the tree-based ensembles will give constant extrapolative pre-
dictions, whereas being very precise in the dense regions of
data.

To illustrate our motivation to use a diverse set of conse-
quent models which form the ensemble, consider the following
scenario: a nonlinear function with two predictive models
considered: a linear regression and a GBM. The dataset with
the two fitted models is shown on (3). We know that by design,
the tree-based GBM model cannot extrapolate, as it consists
of piecewise constant functions. However, the GBM ensemble
can efficiently catch the principal dynamics of the function,
reconstructing most of the original nonlinear dependencies.
Linear regression model, on the contrary, can’t catch the
nonlinear dynamics, however it is well generalizing across the
whole dataset. If we stack these models linearly, we would
have to loose either the nonlinear part in the center or the
values in the tails of the joint distribution.

The straightforward extension to the fusion framework
would be to use local-linear fusion models, smoothly switching
one another within the fuzzy neural model. It is a nonlinear
model, which not only can be efficiently learned, but also
pertains the tractability as a grey box model. In this example
it would result in using the linear model only in the farther
regions of data, whereas exploiting the GBM nonlinearities in
the central region. This would let us stay assured about the
generalizing properties of the linear model, not loosing the
benefits of the strong nonlinear learners.

To proceed with the fusion model, operating on the ex-
ternal consequent models f̂ , we must make one important
transformation. In order to maintain the model stability, the
fuzzy rules should be learned on the joint distribution of
the noise terms ε = f̂ − E(f̂) and E(f̂), where E(f̂) is
the mean prediction over the whole set of predictors. This
transformation is essential because the high correlation of both
the consequents f̂ among each other, and their joint correlation
with y may lead to both unstable and unreliable clustering
results in this joint space. It is important to note that the

consequent layer in this type of model will still be using the
true values of f̂ , concentrating the fuzzy rule learning on the
differences between models.

To initialize the appropriate fuzzy rules, we consider the
complete joint space of ε×E(f̂)×y. The option of considering
the complete x× ε×E(f̂)× y space in order to extract more
discriminative information from the complete distribution is
also feasible, however it becomes more prone to the curse
of dimensionality. Afterwards, given the number of rules G,
we apply the Gaussian Mixture Model [10], fitted to the data
with the Expectation-Maximization algorithm. The choice of
the number of Gaussians G, which corresponds to the number
of fuzzy rules in the model, can be done by either trial-and-
error, or by means of Bayesian Information Criterion, which
is well suited for this type of model.

To proceed with learning of the whole model, one can
apply the hybrid learning algorithm. At each iteration, at first,
the membership function parameters mij , sij are modified
by means of gradient descent. Afterwards, given the new
parameter estimates, the normalized membership values are
calculated W = {w1, ... , wG}:

wi(x) =
µAi

(x)
G∑

j=1

µAj
(x)

(4)

Given processed k predictive models f̂N×k = {f̂1, ... , f̂k}
to fuse and the normalized membership matrix WN×G, their
column-wise Kronecker product (f̂ ⊗W)N×Gk can be used
to fit the local linear coefficients. One high-level design
difference with the conventional fuzzy neural networks is that
we use fixed f̂i instead of the input variables x. However the
linear parameters are still needed to adjust each Rule’s fusion
of models.

IV. MODEL FUSION DESIGN

A. Fusion set

When building a machine learning model, one typically
separates the data into training and validation sets (unless the
test set is considered). When fitting a nonlinear fusion model,
based on different types of models, one has to consider the
chance that some of these models suffer from the overfitting.
In the perfect situation, fusion algorithm would simply dis-
card these models with nearly-zero weights in the ensemble.
However if only the training set is considered, the valuable
information about the model interactions will be omitted and
the overfitted models will receive inappropriately high weights
in each of the fuzzy rules.

To overcome this problem, one has to separate the data
into three distinct non-overlapping sets: the external nonlinear
consequent-fitting training set, the fuzzy neural fusion set, and
the final validation set. This will lead to the tradeoff between
the training set sizes, whether to invest some of the training
points into the fusion process or not.

B. Reference fusion

One design advantage of fuzzy model fusion is that we
can embed information from several features x for building
the corresponding membership functions in the fuzzy fusion
stage. For example, if one has a MIMO system, one can use
estimates of the other variables as references for fusing some
particular response variable. This idea can be a perspective
approach to feature engineering in the model fusion, having
relevant information embedded into the model from different
sources selectively. A practical example could be to use some
nonlinear projectors like the autoassociative neural networks,
as the feature proxy for a more reliable fuzzy neural fusion.

V. APPLICATION EXAMPLE

We will consider building a regression model to map the
EMG signals to the robotic hand controller, in a similar manner
as described in [18]. The data was provided by the TUM
Roboroterhalle machine learning laboratory. 8 surface EMG
electrodes, positioned on the hand, were used to record the
muscular activity of the person performing different hand
movements. These movements were then visually tracked to
gather the actual spatial positions of the hand. The machine
learning task was to reconstruct the hand’s position and
orientation from the EMG channels. For simplicity, we will
consider predicting only the first positional target variable.

For each of the hand position coordinates, the data com-
prises 8 pre-processed signal features and 27,161 observations.
The training, fusion and validation set separation is organized
sequentially: the first 100 points are used for training, the
following 40 points for fusion and the next 60 points for
validation; the next 100 points are used for training again and
so on. As a consequence, the training set consists of 13,561
points, the fusion set of 5440 points and the test set consists of
8160 points. The predictive models considered were the tree-
based Gradient Boosting Machine (GBM), Random Forests,
Support Vector Regression (SVR)R and Linear regression.
Each of the model’s hyperparameters was chosen by means
of 5-fold cross-validation.

The result of fitting the models is presented on Figure (4).
For this application we considered using G = 10 fuzzy rules,
as we found it optimal for our application. It is important to
note once again that even though the consequent models were
fixed, they could form smooth nonlinear combinations with
negative weights, which eventually resulted in fixing some of
the unfitted regions. However, even though the fusion is carried
out in a smooth and continuous manner, the resulting model
fusion still retains both noise artifacts and the model-specific
noncontinuous behavior(due to decision tree ensembles). To
summarize, each model’s accuracy on the test set is given
in Table. 1, together with the 1 standard deviation estimate,
obtained from 20 model runs (on the same data). The per-
formance metric used was the RMSE. We have also fitted a
linear GLM-based model fusion, which resulted in successful
accuracy improvement too. But the fuzzy neural-based fusion
provided significantly more accurate results.

3600 3800 4000 4200 4400

−0
.6

−0
.2

0.
2

Base predictive models

x

ta
rg

et
 v

ar
ia

bl
e

true values
LR
SVR
RF
GBM

3600 3800 4000 4200 4400

−0
.6

−0
.2

0.
2

Fuzzy model fusion, G = 10

x

ta
rg

et
 v

ar
ia

bl
e

true values
Fused

Fig. 4: The fuzzy fusion results.

TABLE I: Machine learning algorithm accuracy

Method RMSE

Fuzzy fusion, G=10 0.027 ± 0.02
Linear fusion, GLM 0.055 ± 0.02
GBM, trees 0.064 ± 0.03
Random Forests 0.064 ± 0.03
Support Vector Machine 0.080 ± 0.07
Linear Regression 0.099 ± 0.00

VI. CONCLUSION

In the application example we have shown that one can
benefit from more sophisticated strategies of model fusion.
Fuzzy model fusion provided significant boost in accuracy,
when compared to both initial methods and to the linear
fusion. It is important to note that this fusion technique worked
properly only with the separate fusion set taken into account.
Both the RF and the GBM models are already very strong on
their own, which lead to the overly high weights for both of
these models.

However, the method has several shortcomings. It greatly
suffers from the curse of dimensionality, which affects both the
unsupervised initialization stage, and the fuzzy membership
function parameter learning. Also, the procedure can be sensi-
tive to the number of fuzzy rules considered, which currently
requires some trial and error process. Therefore in order to
use the model in high-dimensional tasks with large pools of
predictors, these problems should be dealt with.

The above mentioned problem with the curse of dimen-
sionality can be partially neglected with more constrained

rule models and the exploitation of either subspace clustering,
or some projection pursuit stage before clustering. Anther
approach to dealing with this problem would be to make model
fusion a hierarchical process. One potential solution to the
problem of choosing the number of clusters can be to use some
more sophisticated ensemble model of fusion, which will trade
the trial and error process with the higher computational cost,
like for example, boosting the simple fuzzy fusion networks.

ACKNOWLEDGMENT

The authors would like to thank Prof. Patrick van der Smagt,
Jorn Vogel and Justin Bayer from TUM Roboterhalle for
providing the robotic control data. The authors also want to
thank the anonymous reviewers for their valuable feedback.

REFERENCES

[1] James Llinas, Martin E. Liggins, David L. Hall. Handbook of Multisensor
Data Fusion: Theory and Practice, Second Edition. CRC Press, 2008

[2] Toscher A., Jahrer M., and R. Bell.: The BigChaos Solution to the Net
ix Grand Prize. Tech report, (September 2009)

[3] Wu K. et al., A Two-Stage Ensemble of Diverse Models for Advertise-
ment Ranking in KDD Cup 2012. KDD Cup 2012

[4] Caruana R. et al., Ensemble selection from libraries of models. In
Proceedings of the twenty-first international conference on Machine
learning (ICML ’04). ACM, New York, NY, USA, 18-.

[5] Yuksel, S.E. Twenty Years of Mixture of Experts. Neural Networks and
Learning Systems, IEEE Transactions on, 23, 8 (August 2012), 1177 -
1193

[6] Natekin, A, Knoll, A. Gradient Boosting Machines, A Tutorial. Frontiers
in Neurorobotics, 2013, doi:10.3389

[7] Johnson, R., Zhang, T., Learning Nonlinear Functions Using Regularized
Greedy Forest. arXiv:1109.0887, 2012

[8] Leo Breiman Statistics and Leo Breiman, Random Forests, Machine
Learning. 2001, 5–32

[9] Kosko B.: Fuzzy Systems as Universal Approximator. B.s IEEE Trans-
actions on Computers, 1994, 43, 1329-1333

[10] Ming-Tao Gan, M. Hanmandlu, and Ai Hui Tan.: From a Gaussian
mixture model to additive fuzzy systems. Trans. Fuz Sys. 13, 3 (June
2005), 303-316

[11] Babak Rezaee and M.H. Fazel Zarandi. 2010. Data-driven fuzzy mod-
eling for Takagi-Sugeno-Kang fuzzy system. Inf. Sci. 180, 2 (January
2010), 241-255.

[12] George E. Tsekouras et al., A hierarchical fuzzy-clustering approach to
fuzzy modeling. Fuzzy Sets and Systems, 2005, 150, 245-266

[13] Jang, J.-S. R. ANFIS: Adaptive-Network-based Fuzzy Inference Systems
IEEE Transactions on Systems, Man and Cybernetics, 1993, 23, 665-685

[14] Joseph Sill, Gabor Takacs, Lester Mackey, David Lin, Feature-Weighted
Linear Stacking. arXiv:0911.0460, 2009

[15] Shamsoddini A., Trinder J.C., Neural Network Fusion for Regression
Problems. International Journal of Machine Learning and Computing,
Vol. 2, No. 4, August 2012

[16] Youzhu Ling; Xiaoguang Xu; Lina Shen; Jingmeng Liu, Multi sensor
data fusion method based on fuzzy neural network. Industrial Informatics,
2008. INDIN 2008. 6th IEEE International Conference on , vol., no.,
pp.153,158, 13-16 July 2008

[17] Cheng-Jian Lin, Shyi-Shiun Kuo, and Chun-Cheng Peng, Multiple Func-
tional Neural Fuzzy Networks Fusion Using Fuzzy Integral. International
Journal of Fuzzy Systems, Vol. 14, No. 3, September 2012

[18] Vogel, J.; Castellini, C.; van der Smagt, P.: EMG-based teleoperation
and manipulation with the DLR LWR-III. Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, 2011

