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Abstract— The problem of how to create NPC AI for
videogames that believably imitates particular human players
is addressed. Previous approaches to learning player behaviour
is found to either not generalize well to new environments and
noisy perceptions, or to not reproduce human behaviour in
sufficient detail. It is proposed that better solutions to this
problem can be built on multiobjective evolutionary algorithms,
with objectives relating both to traditional progress-based
fitness (playing the game well) and similarity to recorded human
behaviour (behaving like the recorded player). This idea is
explored in the context of a modern racing game.

I. INTRODUCTION

This paper concerns the creation of controllers for com-

puter game agents which are able to play a game in a manner

similar to a particular human player. We call this imitation of

player behaviour, or (interchangeably) modelling of playing

style. While research within computational intelligence and

games is often concerned with learning to play a particular

game as well as possible, there are many applications for

imitating player behaviour in computer games, and many

algorithms within computational intelligence that could be

used to such ends.
A good example of player behaviour imitation from com-

mercial computer games is the very successful racing game

Forza Motorsport for the Microsoft XBox, where players

can train “drivatars” that drive like the human playing the

game. To create a drivatar, a player has to drive a sequence

of tracks designed to contain a number of representative

challenges; the game records the path taken on each track

segment, and the behaviour of a drivatar on a new track

consists of the splicing together of the recorded path on

each track segment. This approach posits some rather serious

restrictions on the design of the game, most notably that

each new racing track must be composed of segments that

were present in the test tracks [1]. However, the benefits of

being able to imitate playing styles was so great that this

was deemed acceptable. One of the chief uses of drivatars is

to estimate the performance of a particular playing style on

tracks that the player does not have the time to drive, such as

endurance events, or to get an estimate of the likely difficulty

of a new track given a particular playing style. Another use

for drivatars is to send them over the Internet to friends, so

that they can compare their playing style to a virtual copy

of their friend driving on the same track.
Examples of behaviour imitation can be found in other

genres of games as well. In the critically acclaimed com-

mercial “god-game” Black and White by Lionhead Studios,

the key NPC (non-player character) is a giant monster that

imitates the actions taken by the player. This effectively

amplifies the effects of the player’s actions, as most of the

effects the player has on the game world are interpreted

through this monster. Player imitation can also be used in

order to acquire believable behaviour, as both hard-coded

and adaptive behaviour can come across as “mechanical” or

“unnatural” if the designer is not careful (and sometimes even

if the designer is careful). In [2], example-guided evolution

is used to acquire controllers for agents in a board game-like

strategy game, resulting in more believable agents than those

acquirable through other evolutionary means.

Yet another use for player imitation was recently proposed:

personalized automatic content creation [3], [4]. In a first

realisation of this concept a simple car racing game was

used, where the objective was to complete laps in the shortest

possible time, on tracks of varying complexity. Human

players drove test tracks designed to contain a number of

different challenges, and the actions they took at each part of

the track were recorded and used to construct controllers that

mimicked their behaviour. These controllers were then used

as part of the fitness function for evolving new racing tracks.

The fitness of a particular racing track depended on how the

human-like controller drives on this track: ideally, not too

fast or too slow, with the right amount of variance between

and within trials. (These criteria were inspired by theories of

what makes computer games fun, such as those by Koster [5]

and Malone [6]). Racing tracks were represented as b-splines,

posing track design as a real-valued numerical optimization

problem, and evolutionary algorithms were used to optimize

tracks for being as fun as possible for the modelled player.

The end result was an algorithm that produces novel tracks

that are fun to drive for particular human players.

It is likely that many other uses of player imitation can be

found, in many other game genres, if the requisite methods

are refined and demonstrated (which is the purpose of this

paper); for an example from FPS games see [7].

A. Direct and indirect modelling

With the usefulness of player behaviour imitation es-

tablished, the question shifts to how to use computational

intelligence techniques to imitate players. In [3], [4] a

distinction and comparison was made between direct and

indirect methods for modelling behaviour.

Direct modelling uses supervised learning to associate

observations (sensor data) with actions, and then uses the

trained function approximator directly as a controller. In the

example given in [3], human test subjects were asked to
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drive a number of laps around a track in a simple racing

game, and both the sensor data experienced by the car and

the actions taken by the human were recorded at each time

step. The sensor data consisted of speed and a number of

rangefinder sensors giving the approximate distance to the

edges of the track in various directions; this is the same

sensor representation as is used as input to the controller

when evolving controllers for that racing game.

Backpropagation was used to train standard MLPs to

associate sensor data with the action chosen by the player.

Despite reaching low errors on the training data, networks

thus trained failed to perform very well when used as

controllers in the game. They typically started to drive in the

right direction, but then soon crashed into walls and remained

stuck there, not being able to back away and recover. This

behaviour points to two shortcomings of direct modelling:

the complexity of the function to approximate (the human

player), and the inability of the model to generalize to unseen

situations (e.g. if the human player never crashed into a wall

(the behaviour of backing away from a wall is not in the

dataset) a controller based on direct modelling of the player’s

behaviour will not know how to back away from walls).

Further experiments using a k-nearest neighbour classifier

yielded better initial imitation but worse generalization.

It is instructive to compare these results to two examples

where neural network-based direct modelling was apparently

used successfully in racing games. In the successful commer-

cial game Colin McRae Rally 2.0, all the computer-controlled

cars were controlled partly by feedforward neural networks

that had been trained on data from human driving using the

RProp algorithm [8], [9]. However, not all aspects of the

driving were controlled by the neural network; a number

of human-developed rules switched between different states,

such as overtaking or recovering from crashes.

In another example, neural networks were trained on data

from human driving to control a motorcycle in Motocross The
Force, a game that features a reasonably detailed physical

simulation [10]. In some cases the trained networks per-

formed almost as well as the human driver that they were

modelled on, and also generalized to other tracks. However,

the environments used in this game differ significantly from

the tracks used in the other games due to the absence of

sharp track borders, meaning that deviations from the best

path simply result in longer lap times (not crashing).

Evolutionary algorithms have previously been used to

evolve neural networks that are able to drive cars well on

a large variety of tracks using an incremental distance-based

fitness function [11]. These controllers, however, do not

exhibit very human-like behaviour; to a human observer,

evolved driving styles often appear weird and irrational,

though effective. The idea of indirect modelling is to profit

from evolution’s ability to find good controllers that gener-

alize well, while retaining some apparent human-likeness.

In [3], evolutionary runs were seeded with good general

neural network-based controllers, and then further evolved

using three different fitness measures: the difference between

the controller’s driving and the observed driving in terms of

distance travelled, the variation between laps, and frequency

of steering changes. Results were less than stellar: the con-

trollers reproduced the performance of particular modelled

humans, but did not look qualitatively similar.

The approach to indirect modelling taken in [4] is similar

in that it starts from a good evolved controller, but the

objectives were instead related to reproducing the human

player’s speed and lateral deviation from the centre of the

track at a number of waypoints distributed around a test

track. Though more successful, this approach suffered from

problems with weighting the different objectives.

B. Multiobjective modelling

The problems outlined above boil down to two central

problems. First, direct modelling is too hard (without in-

corporating considerable domain knowledge, as was done

in the successful commercial examples above): it produces

controllers that do not generalize well to new environments,

and sometimes do not even even behave correctly in their

original context. Second, indirect modelling produces con-

trollers that do not resemble the modelled behaviour well

enough to appear believably human, or to act as a proxy for

the modelled human in automatic content generation.

Ideally, we would want to be able to combine the advan-

tages of both methods into a superior modelling method.

If this is not possible, and there is an inherent tradeoff,

we would like to gain extensive insight into this tradeoff.

The ideal tool for both of these tasks would seem to be an

evolutionary multiobjective optimization algorithm (MOEA).

MOEAs evaluate each solution according to a number of

objectives (often two or three) and create a Pareto front of

nondominated solutions. Solution X dominates solution Y if

the fitness values for X are not worse than the fitness values

for Y in all objectives, and for at least one objective the fitness

of X is better than that of Y. A nondominated solution is one

that is not dominated by any solution in the population.

With multiobjective modelling we mean using an MOEA

to construct controllers that both reproduce aspects of human

behaviour or playing styles, and perform well on the given

task. The way this is done is by using one or more objectives

related to performing a task (e.g. playing a game) well, and

additionally one or more objectives related to performing the

task in a way similar to the modelled human. The idea is that

this approach to modelling can combine the generality of in-

direct modelling (through the performance-related objectives)

with the more faithful reproduction of human behaviour of

direct modelling (through the ability to pick solutions from

the pareto front which are maximally similar to the modelled

human while still performing acceptably well).

In this paper, we explore multiobjective modelling for the

first time; the particular task is to model human driving styles

in the TORCS racing game.

C. Research questions

To our best knowledge, this paper represents the first

attempt to use multiobjective optimization to model be-
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haviour, and also the first attempt to model driving behaviour

in TORCS. It is also a contribution to the understudied

area of multiobjective reinforcement learning. The particular

questions we try to answer include:

• How well do the best evolved neural networks drive,

compared to human driving? Will their driving styles

resemble human driving?

• How well will networks trained to approximate human

driving drive? Will their styles resemble human driving?

• When combining objectives related to driving well and

to approximating human driving, will there be a tradeoff

between fulfilling these objectives?

• Can human driving data help evolution create better

driving behaviour?

• How well will the various controllers that are derived

using these techniques generalize to other tracks?

Fig. 1. The TORCS game.

II. METHODS

A. Car racing game

The Open Racing Car Simulator (TORCS) is a modern rac-

ing game, complete with multi-player capacities, advanced

car physics and first-person 3D graphics1 (see figure 1).

Being open source, TORCS has an open API that allows for

the interfacing of custom software for driving the cars in the

game. This capability was used for the simulated car racing

competitions associated with the conferences IEEE CEC and

CIG in 2008. A software framework was developed where

the TORCS game was extended to become a server, where

one or more cars could be controlled by clients connecting

over TCP/IP. Sample clients and learning algorithms in C

and Java were developed and supplied to competitors on a

web page2. The goal of the competitions was to learn or

otherwise develop the best-performing car controller. Results

and a discussion were published as [12].

In the experiments described here, we used the CIG

2008 version of the competition software for interfacing our

controllers to TORCS. As the series of TORCS-based car

1Available at http://torcs.sourceforge.net
2http://cig.dei.polimi.it/

racing competitions is an ongoing project, this version of

the software still has some technical limitations. One of

these is that evolutionary processes cannot simply be set up

to use more than one track simultaneously, precluding the

approach to multi-track generalization demonstrated in [11].

Another limitation is that the behaviour of the simulation

differs slightly between different setups, such as operating

system and visual and non-visual modes, limiting the ability

to judge the human-likeness of evolved driving styles through

ocular inspection.

B. Tracks used

The tracks used are shipped with TORCS by default. They

are picked on difference and difficulty level by hand and

numbered 1 to 4. They are listed below and depicted in

figures 2-5.

• Track 1: CG Speedway number 1 - a fairly easy track,

with long straight pieces and few sharp turns. When

leaving the track, getting on again is pretty easy.

• Track 2: Alpine 1 - a track with a lot of sharps turns,

where there are barriers on the side of the track, so it’s

impossible to get off the track.

• Track 3: E-Track 1 - a pretty difficult track, with a lot

of sharp turns. It’s easy to end up in the grass at the

sides of the track and hard to get back on.

• Track 4: CG track 3 - a difficult track with a bit of

everything: sharp and smooth turns, long straight pieces,

and barriers as well as grass alongside the track.

C. Sensors and controller architecture

The controllers are based on Elman-style recurrent neural

networks with tanh activation functions. The motivation for

this was that in initial experiments, recurrent neural networks

were consistently able to evolve better-performing driving in

fewer generations than simple MLP’s with the same number

of inputs, hidden neurons and outputs. As modelling human

driving is likely to require taking observations gathered at

previous time steps into account, it is a reasonable assump-

tion that a recurrent architecture would work better than a

reactive architecure for modelling as well.

Each network has 23 inputs, 8 hidden neurons and 3
outputs. The inputs consist of a constant bias, the current

speed of the car, the angle between the direction of the

car and the track axis, the lateral distance between the

centre of the car and the centre of the track, and 19 track

edge rangefinder sensors. Each rangefinder sensor returns

the distance between the centre of the car and the edge of

the track in a particular direction, which is relative to the

frame of reference of the car; these sensors are distributed

uniformly around the car.

D. Fitness measures

Three fitness measures were defined, one relating to how

well the car drives on a particular track, and two related to

how well it reproduces human driving behaviour.
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Fig. 2. Track 1: CG Speedway number 1

Fig. 3. Track 2: Alpine 1

Fig. 4. Track 3: E-Track 1

Fig. 5. Track 4: CG track 3

• Distance: Maximize the distance travelled by a car

controlled by that controller on a particular track over

5000 time steps.

• Steering: Minimize the average squared difference be-

tween the steering command issued by a human player

and the steering command issued by the controller when

presented with the same situation as the human player.

This fitness criterion is always defined relative to a

particular log of human driving on one or several track.

Each data point in such a log consists of the sensor

inputs that would have been presented to a presumptive

controller of a car in the same position as the human

controlled, and the steering action taken by the human.

• Acceleration: Minimize the sum of the squared dif-

ference of the acceleration commands and the squared

difference of the braking commands.

E. Multiobjective evolutionary algorithm

All the experiments in this paper were performed using

the NSGA-II algorithm, which can safely be regarded as the

industry standard for evolutionary multiobjective optimiza-

tion [13]. Each experiment used either 2 or 3 objectives (in

the “degenerate” case of only distance fitness both objectives

were identical), and was run for 150 generations with a

population of 100. For generating new offspring we mutate

all the weights by adding a normally distributed value X ,

where X ∼ N(0, 0.05). No crossover was used. Unless

otherwise specified, each experiment was repeated 5 times.

III. RESULTS

Our experiments were structured as follows:

1) We drove the three first test tracks manually a number

of times using a keyboard interface, and saved logs of

sensor inputs and actions at each time step. We selected

two logs, each of one lap’s length, on each track for

further experimentation: one of careful driving (with

longer lap times and less damage taken) and one of

aggressive driving (as fast as possible and reckless).

2) We evolved controllers for two of the four test

tracks using only distance fitness. The controllers thus

evolved were then tested on all four tracks.

3) We evolved controllers using only the two objectives

that relate to replicating human driving behaviour,

steering and acceleration fitness. This was done for

logs of both careful and aggressive driving on three

of the tracks and with data of specific tracks as well

as the combined data of all tracks. These controllers,

which were evolved without being tested on the actual

driving task (just against logged user data), were then

tested on all four tracks. Controllers that were evolved

using data of one track were only tested on that track.

4) We evolved controllers using all three fitness measures

on the first three tracks, and tested them on all tracks.

A. Human driving

The first experiments concerned driving the tracks manu-

ally, and recording logs of sensor data/action tuples for one
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track1 track2 track 3
aggressive 4880.361 5099.944 4321.396

careful 4244.142 4119.491 4004.494

TABLE I

PERFORMANCE OF HUMAN DRIVING ON THREE TEST TRACKS. NUMBER

OF METRES DRIVEN IN THE FIRST 5000 TIME STEPS OF THE RECORDING.

track1 track2 track 3 track4
track1 4706.342 1115.3244 412.62442 832.0062
track4 1565.66344 562.541984 308.04864 2945.494

TABLE II

PERFORMANCE OF CONTROLLERS EVOLVED ON TRACKS 1-4 WHEN

TESTED ON TRACKS 1-4. HORIZONTAL: EVOLVED ON, VERTICAL:

TESTED ON. DISTANCE TRAVELED IN 5000 TIMESTEPS AVERAGED OVER

5 RUNS EACH

whole lap. Table I displays the performance of the driving

attempts we chose to use for further experimentation.

B. Evolving for distance

A number of evolutionary runs were performed with

distance fitness being the sole objective. In table II, the

performance of controllers evolved on track 1 or on track

4 are tested on all four tracks. It is clearly possible to

evolve very well-performing controllers for both tracks. Not

surprisingly, the controllers perform best on the tracks they

were evolved on, much in line with the results in [11].

Table III displays the steering and average fitness of the

same controllers, relative to aggregate user data of aggressive

or careful driving. From the very high squared errors here,

it is plain to see that the driving is very unlike the particular

human driving that was recorded (which does not necessarily

mean that the driving is not human-like).

C. Modelling player behaviour

A number of evolutionary runs were performed with only

the two objectives related to reproducing player behaviour,

steering fitness and acceleration fitness. Table IV lists the

performance of controllers created through this evolutionary

modelling process on all track. The controllers are of four

types: those created through modelling aggressive driving

data on the same track as it was tested, those created through

modelling all the agressive driving data (from all tracks),

those created from careful driving data for one track, and

lastly those created from careful driving data from all tracks.

From this table, it is clear that the controllers created using

agressive careful
steering/acc. steering/acc.

track1 0.576 / 0.3604 0.490 / 0.625
track4 1.105 / 0.3584 1.124 / 0.496

TABLE III

MEAN SQUARED ERROR (AVERAGED OVER 5 RUNS) OF THE OUTPUT OF

NETWORKS EVOLVED FOR DISTANCE FITNESS ON TRACK 1 AND 4 WHEN

PRESENTED WITH THE USERDATA ON ALL TRACKS

agressive with all data careful with all data
track1 1530.762 1395.8452 2018.714 1206.0948
track2 2729.028 2856.918 2557.396 2225.898
track3 380.3576 527.983 694.4642 344.6784
track4 347.1984 399.5694

TABLE IV

DISTANCES REACHED BY CONTROLLERS CREATED THROUGH

MODELLING EITHER AGGRESSIVE OR CAREFUL USER DATA ON EACH

TRACK. SOME RESULTS OF TRACK 4 ARE ABSENT BECAUSE NO HUMAN

DRIVING DATA WAS COLLECTED ON TRACK 4

agressive with all data careful with all data
steering/acc. steering/acc. steering/acc. steering/acc.

track1 0.039 / 0.095 0.043 / 0.130 0.029 / 0.248 0.037 / 0.228
track2 0.103 / 0.086 0.046 / 0.125 0.248 / 0.262 0.080 / 0.234
track3 0.133 / 0.160 0.345 / 0.137 0.086 / 0.185 0.037 / 0.230
track4 0.074 / 0.116 0.050 / 0.237

TABLE V

MEAN SQUARED ERROR OF THE NETWORKS TRAINED ON THE

AGRESSIVE AND CAREFUL USERDATA ON SPECIFIC AND ALL TRACKS

modelling only do not drive the tracks as well as the human

players they were modelled on, nor do they perform as well

as the controllers evolved with distance as the only objective.

In fact, for the harder tracks (3 and 4) they perform very

badly. In general, the controllers that are trained only on the

data for the particular tracks they are driving perform better

than those trained on all tracks, with the notable exception

of controllers trained on careful driving data for track 2.

The question of whether these controllers actually drive

more human-like than the ones evolved only for distance

fitness is partly answered by table V. In general, these

errors are much lower than those found in table III. Thus,

the controllers evolved using only the steering fitness and

acceleration fitness objectives reproduce the recorded driving

behaviour better than those evolved only for fitness - at least

from a mathematical perspective. From a human perspective,

it is hard to tell. The differences between the behaviour of

TORCS in visual and non-visual modes (see section II-A) is

currently hindering us from drawing firm conclusions on this

matter, though initial observations support this hypothesis.

Figures 6 through 9 show scatter plots of the “super-pareto

fronts”: pareto fronts of the nondominated solutions from

multiple combined pareto fronts. In this case, each pareto

front was made up of the nondominated solutions from five

separate runs. From these plots, it is clear that there is a

tradeoff between steering fitness and acceleration fitness.

One should notice that the color of these pareto front is the

evaluated distance of the datapoints in the pareto front. This

means that the pareto front on which the NSGA-II evolved

is two-dimensional, but the graphs shows the performance

of the networks in the third dimension: distance. This is

different from the pareto fronts depicted in Figures 10-13

that show purely three-dimensional pareto fronts.
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Fig. 6. 3D pareto front of the 3 objectives learned on track 1 with agressive
userdata of all tracks, best of all runs

Fig. 7. 3D pareto front of the 3 objectives learned on track 1 with careful
userdata of all tracks, best of all runs

D. Multiobjective evolution for performance and modelling

The final set of experiments concern the multiobjective

modelling, where all three objectives were used. The results

are here split up according to what sort of user data was

used. In table VI results are shown for controllers evolved

with distance fitness defined for each track, but user data for

aggressive driving on all tracks taken together. Comparing

these results with those for evolving with only distance

fitness in table II, it seems that the addition of user data

does not significantly affect either the maximum attainable

distance fitness or the generalization ability of the controllers.

The results in table VI are overall similar, meaning that

the driving style that is being modelled seems to have no

systematic effect on the driving fitness. It is interesting to

note that the distance fitness for controllers evolved on track

1 and 2 are quite similar to the distance traversed by human

Fig. 8. 3D pareto front of the 3 objectives learned on track 4 with agressive
userdata of all tracks, best of all runs

Fig. 9. 3D pareto front of the 3 objectives learned on track 4 with careful
userdata of all tracks, best of all runs

drivers on the same tracks, whereas the evolved controllers

for track 3 has clearly subhuman performance.

Table VII lists the average acceleration and steering fit-

nesses for these controllers. As expected these controllers

do not outperform the controllers of table V in steering

fitness, but they are not significantly higher either. This shows

that adding a third objective (distance) to the multi-objective

evolution does not remove the ability of the networks to

model the userdata.

Figures 6 through 9 show scatter plots of the super-pareto

fronts of these controllers, plotting distance fitness against

steering fitness on the two main axes. Again, we see a

tradeoff: either a controller drives well, or has low error on

reproducing logged human steering. However, the fronts are

very steep, with most solutions having similarly low steering

error and moderate acceleration error. It is therefore possible
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agressive track1 track2 track 3 track4
track1 4697.062 1066.271 727.196 491.0446
track2 503.476 4252.355 250.447 179.671
track3 2142.521 911.939 2436.913 1416.731
track4 2354.070 514.454 1366.115 2685.888
careful track1 track2 track 3 track4
track1 4252.408 930.7194 869.273 353.29252
track2 701.03544 4101.199 315.19009 164.43662
track3 2061.25154 1054.1768 2644.488 460.8872
track4 2127.8258 737.9388 814.658 2522.9

TABLE VI

PERFORMANCE OF CONTROLLERS MULTIOBJECTIVELY EVOLVED ON

TRACKS 1-4 WITH AGRESSIVE AND CAREFUL USERDATA OF ALL

TRACKS, WHEN TESTED ON TRACKS 1-4. HORIZONTAL: EVOLVED ON,

VERTICAL: TESTED ON. DISTANCE TRAVELED IN 5000 TIMESTEPS

AVERAGED OVER 5 RUNS EACH

agressive steering acceleration/braking
track1 0.160 0.165
track2 0.063 0.212
track3 0.092 0.380
track4 0.137 0.280
careful steering acceleration/braking
track1 0.035 0.291
track2 0.026 0.520
track3 0.052 0.294
track4 0.115 0.287

TABLE VII

MEAN SQUARED ERROR (AVERAGED OVER 5 RUNS) OF THE OUTPUT OF

THE MULTIOBJECTIVELY EVOLVED NETWORKS WHEN PRESENTED WITH

THE USERDATA ON ALL TRACKS

to find controllers that have high distance fitness but still

close to the lowest possible steering error for any data set.

Finally, we performed a miniature behavioural Turing
test. New controllers were evolved using a setup where

small amounts of noise were added to all sensor readings,

in order to reduce the differences between and non-visual

modes. A small group of observers would look at the driving

behaviour of some handpicked evolved controllers and give

a rating from 1 to 10 in three categories: careful or agressive

driving, human-likeness and driving quality. Although these

results are far from statistically significant, some interesting

trends were evident. Controllers evolved on aggressive user-

data were consistently rated more agressive than controllers

evolved on careful userdata. Furthermore, controllers evolved

on userdata, especially those trained on careful userdata, were

judged more human-like than controllers trained solely on

distance. The driving quality of the latter controllers was

rated higher than those where training involved userdata.

Although more tests are required to confirm these statements,

they indicate that our approach comes up with the expected

results: controllers that have a lower driving performance,

but seem more human-like.

IV. DISCUSSION

In trying to synthesize the results above, a number of

observations stand out in particular. One is that there is

indeed a tradeoff between being able to drive a track well

Fig. 10. Evaluation on track 1 of Multi-objective learning with aggressive
userdata of all tracks, best of all runs

Fig. 11. Evaluation on track 1 of Multi-objective learning with careful
userdata of all tracks, best of all runs

and being able to accurately model human driving behaviour.

Further, the NSGA-II MOEA is capable of exploring this

tradeoff, as can be seen in the numerous scatterplots above.

The second observation is that while evolving controllers

that drive particular tracks well is easy, modelling human

driving behaviour is very hard, maybe too hard for the

methods employed in this paper. In fact, as this problem can

be seen as a sequence learning problem, it could be argued

that standard methods for training recurrent networks on

sequences should be tried, such as Backpropagation Through
Time (BPTT). As BPTT is not an evolutionary algorithm, it

is not obvious how to combine it with the distance fitness

measure into an evolutionary algorithm. One solution could

be to first train a network on the user data using BPTT, and

use it to seed the multiobjective evolutionary process.

Another way to combine the multiobjective approach with
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Fig. 12. Evaluation on track 4 of Multi-objective learning with agressive
userdata of all tracks, best of all runs

Fig. 13. Evaluation on track 4 of Multi-objective learning with careful
userdata of all tracks, best of all runs

a state-of-the-art sequence learning algorithm could be to

incorporate key elements of the Evolino algorithm, which is

an evolutionary algorithm capable of training recurrent neural

networks for supervised learning tasks [14]. The key idea is

to evolve only the non-output weights, and replace evolving

the weights from the hidden neurons to the output neurons

by using a fast learning procedure such as linear regression

at every network evaluation. This would ensure reasonably

human-like outputs even in the beginning of the evolutionary

search. And since this is an evolutionary method, it can be

satisfactorily incorporated into the multiobjective NSGA-II
framework as the human modelling component.

The three objectives propose here are not the only con-

ceivable ones. A further objective to consider is the amount

of damage taken during a lap, which reflects the carefulness

or recklessness of a driver.

V. CONCLUSIONS

This paper proposed to use multiobjective evolutionary

optimization to produce controllers that are similar to human

players in particular respects, but which also perform well on

a given task: multiobjective modelling. The main motivation

for this was the need for at the same time robust and

believable models of human game players. We explored this

new concept in the context of modelling human driving in a

racing game. Results were mixed. While we found that the

MOEA was capable of finding and clarifying the tradeoff

between similarity to recorded human behaviour and playing

the game, we also found that the particular combination of

sequence approximator and learning algorithm was not pow-

erful enough to model the human behaviour as well as desired

(though it was quite enough for evolving good game-playing

behaviour). We believe that incorporating elements of a more

powerful sequence learning algorithm into the framework

of multiobjective modelling can solve this problem. Further,

unexpected variability of the game platform made it hard to

judge the human-likeness of evolved controllers.
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