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Abstract Robustly detecting keywords in human speech

is an important precondition for cognitive systems, which

aim at intelligently interacting with users. Conventional

techniques for keyword spotting usually show good per-

formance when evaluated on well articulated read speech.

However, modeling natural, spontaneous, and emotionally

colored speech is challenging for today’s speech recogni-

tion systems and thus requires novel approaches with

enhanced robustness. In this article, we propose a new

architecture for vocabulary independent keyword detection

as needed for cognitive virtual agents such as the

SEMAINE system. Our word spotting model is composed

of a Dynamic Bayesian Network (DBN) and a bidirectional

Long Short-Term Memory (BLSTM) recurrent neural net.

The BLSTM network uses a self-learned amount of con-

textual information to provide a discrete phoneme predic-

tion feature for the DBN, which is able to distinguish

between keywords and arbitrary speech. We evaluate our

Tandem BLSTM-DBN technique on both read speech and

spontaneous emotional speech and show that our method

significantly outperforms conventional Hidden Markov

Model-based approaches for both application scenarios.

Keywords Keyword spotting � Long short-term

memory � Dynamic bayesian networks �
Cognitive systems � Virtual agents

Introduction

In recent years, the design of cognitive systems with the

ability to perceive, learn, memorize, decide, act, and

communicate has attracted a lot of attention [1]. For natural

interaction with intelligent systems, human speech has

become one of the most important input modalities [2, 3].

Thus, in this article, we focus on extracting information

from speech as an essential perception capability of cog-

nitive virtual agents. Since full spoken language under-

standing without any restriction of the expected vocabulary

is hardly feasible and not necessarily needed in today’s

human-machine interaction scenarios (e. g. [4]), most

systems apply keyword spotting as an alternative to large

vocabulary continuous speech recognition. The aim of

keyword spotting is to detect a set of predefined keywords

from continuous speech signals [5]. When applied in

human-like cognitive systems, keyword detectors have to

process natural and spontaneous speech, which in contrast

to well articulated read speech (as used in [6], for example)

leads to comparatively low recognition rates [7]. Since

modeling emotion and including linguistic models for

affect recognition [8, 9] plays a major role in the design of

cognitive systems [10, 1], keyword spotters also need to be

robust with respect to emotional coloring of speech.

A typical scenario for a cognitive emotionally sensitive

virtual agent system that requires keyword detection in

emotionally colored speech is the SEMAINE system [4].

Such application areas demand for highly robust speech

modeling and highlight the importance of the exploration

of non-conventional speech processing approaches.

At present, the predominant methodology for keyword

spotting is using Hidden Markov Models (HMM) [11, 12,

13]. However, a major problem with HMM based systems is

that they are forced to model the garbage (i.e. non-keyword)
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parts of the signal as well as the keywords themselves. This

is difficult because a structure flexible enough to model all

possible garbage words is likely to be able to model the

keywords as well. For example, if phoneme level models are

used, then garbage parts can be accurately captured by a

model that connects all possible phonemes [11]; however,

such a model will also fit the keywords. One solution is to

use whole word models for both, garbage and keywords, but

this requires that all the keywords occur many times in the

training corpus, and also means that new keywords cannot

be added without training new models. Consequently, such a

system would be less flexible than a vocabulary independent

system [14].

The keyword detection technique introduced in this

article overcomes these drawbacks by using a phoneme

based recognition system with no explicit garbage model.

The architecture is robust to phoneme recognition errors,

and unlike methods based on large vocabulary speech

recognizers (such as [15], for example), it does not require

a language model: only the keyword phonemizations are

needed.

In our system, the distinction between keywords and

other speech is made by a Dynamic Bayesian Network

(DBN), using a hidden garbage variable and the concept of

switching parents [16]. DBNs (and other graphical models)

offer a flexible statistical framework that is increasingly

applied to speech recognition tasks [16, 17]. Graphical

models (GM) make use of the graph theory in order to

describe the time evolution of speech as a statistical pro-

cess and thereby define conditional independence proper-

ties of the observed and hidden variables that are involved

in the process of speech decoding. Apart from common

HMM approaches, there exist only a small number of

works which try to address the task of keyword spotting

using the graphical model paradigm. In [18] a graphical

model is applied for spoken keyword spotting based on

performing a joint alignment between the phone lattices

generated from a spoken query and a long stored utterance.

This concept, however, is optimized for offline phone

lattice generation and bears no similarity to the technique

proposed herein. The same holds for approaches towards

GM based out-of-vocabulary (OOV) detection [19] where a

graphical model indicates possible OOV regions in con-

tinuous speech.

The graphical model structure presented in this article

can be seen as an extension of the GM for keyword spot-

ting that we introduced in [20]. Unlike the model described

in [20], our Tandem approach is not only based on

Gaussian mixture modeling but additionally applies a

recurrent neural network (RNN) to provide improved

phoneme predictions, which can then be incorporated into

the DBN. The RNN uses the bidirectional Long Short-

Term Memory (BLSTM) architecture [21] to access long-

range context information along both input directions.

BLSTM has been proven to outperform standard methods

of modeling context such as triphone HMMs [21] and was

found to be well suited for spontaneous, emotional speech

[7]. In the area of cognitive systems, BLSTM networks

have been successfully applied for emotion recognition

[22] from low-level framewise audio features, which also

requires the modeling of long-range context.

Tandem or hybrid architectures that combine discrimi-

natively trained neural networks with graphical models

such as HMMs are widely used for speech recognition, and

their popularity has grown in recent years [23–27].

However, BLSTM is a relatively new architecture that has

so far been applied to keyword spotting only in a few

works: in [7] the framewise phoneme predictions of

BLSTM were shown to enhance the performance of a

discriminative keyword spotter [6]; and in [28] a keyword

spotter using BLSTM for whole-word modeling was

introduced. Yet both approaches significantly differ from

the concept introduced in this article and were found to be

unsuited for flexible real time keyword detection in a

cognitive virtual agent framework. Unlike the model pro-

posed herein, the discriminative approach in [7] does not

apply Markov chains to model the temporal evolution of

speech, but maps the acoustic representation of an utter-

ance along with the target keyword into an abstract vector

space, using a set of feature functions that provide confi-

dence scores based on the output of framewise phoneme

classifiers. This strategy, however, is rather suited for off-

line keyword search than for on-line applications since it

does not operate in real-time. The disadvantage of the

method proposed in [28] is that it has a separate output unit

for each keyword, which requires excessive amounts of

training data for large vocabularies, and also means the

network must be retrained when new keywords are added.

The aim of this work is to combine the high-level

flexibility of graphical models with the low-level signal

processing power of BLSTM in order to create a context-

sensitive keyword detector that can cope with spontaneous,

emotional speech and thus can be applied in a cognitive

virtual agent framework. We evaluate our system on read

speech from the TIMIT corpus [29] as well as on natural

and emotionally colored speech from the Sensitive Artifi-

cial Listener (SAL) corpus—a database that was recorded

using a Wizard-of-Oz SAL interface designed to let users

work through a range of emotional states [30]. Thereby, we

compare the keyword spotting accuracy of our Tandem

BLSTM-DBN system to a conventional HMM-based

approach and to a hybrid BLSTM-HMM technique.

Further, we investigate the benefit of incorporating BLSTM

phoneme prediction for context-sensitive speech modeling.

The structure of this article is as follows: Sect. 2 briefly

introduces the virtual agents used in the SEMAINE project
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for which our keyword spotter was developed. In Sect. 3,

the principle of context modeling via Long Short-Term

Memory is explained, while Sect. 4 outlines the graphical

model architecture of our Tandem BLSTM-DBN recog-

nizer. Experimental results are presented in Sect. 5 before

concluding in Sect. 6.

The SEMAINE Characters

The aim of the SEMAINE project1 is to build a Sensitive

Artificial Listener—a multimodal dialogue system with

the social interaction skills needed for a sustained con-

versation with a human user. Thereby the user can speak

to four different virtual characters, each of whom repre-

sents a certain emotional state: ‘Prudence’ is matter-of-

fact, ‘Poppy’ is cheerful, ‘Obadiah’ is pessimistic, and

‘Spike’ is aggressive. During the conversations, all virtual

characters aim to induce an emotion that corresponds to

their typical affective state. All characters encourage the

user to speak naturally about different topics while trying

to recognize and interpret the user’s facial expressions,

emotions, as well as relevant keywords. The recognition

output is used to react, e. g. to the user’s emotion or to

certain keywords.

Important preconditions for a keyword spotter applied

within the SEMAINE system are besides real-time opera-

tion also robustness with respect to emotional coloring of

speech and flexibility as far as changes in the keyword

vocabulary are concerned. Generally, vocabulary inde-

pendent systems are preferable since the keyword vocab-

ulary often changes during the design of the virtual agent

system. A description of the overall architecture of the

SEMAINE system can be found in [4].

Long Short-Term Memory

Since context modeling via Long Short-Term Memory [31]

networks was found to enhance keyword spotting perfor-

mance in natural conversation scenarios [7] as recorded in

the SAL database, our keyword spotter uses framewise

phoneme predictions computed by a bidirectional LSTM

net (see Sect. 4). Thus, this section outlines the basic

principle of the Long Short-Term Memory RNNs.

Framewise phoneme prediction presumes a classifier

that can access and model long-range context, since due to

co-articulation effects in human speech, neighboring pho-

nemes influence the cepstral characteristics of a given

phoneme [32, 33]. Consequently, when attempting to

predict phonemes frame by frame, a number of preceding

(and successive) speech frames have to be taken into

account in order to capture relevant speech characteristics.

The number of speech frames that should be used to obtain

enough context for reliably estimating phonemes is hard to

determine. Thus, a classifier that is able to learn the amount

of context is a promising alternative to manually defining

fixed time windows. Static techniques such as Support

Vector Machines do not explicitly model context but rely

on either capturing contextual information via statistical

functionals of features [34] or aggregating frames using

Multi-Instance Learning techniques [35]. Dynamic classi-

fiers like Hidden Markov Models are often applied for time

warping and flexible context modeling, using e. g. tri-

phones or quinphones. Yet, HMMs have drawbacks such as

the inherent assumption of conditional independence of

successive observations, meaning that an observation is

statistically independent of past ones, provided that the

values of the hidden variables are known. Hidden Condi-

tional Random Fields (HCRF) [36] are one attempt to

overcome this limitation. However, also HCRF offer no

possibility to model a self-learned amount of contextual

information. Other dynamic classifiers such as neural net-

works are able to model a certain amount of context by

using cyclic connections. These so-called recurrent neural

networks can in principle map from the entire history of

previous inputs to each output. Yet the analysis of the error

flow in conventional recurrent neural nets led to the finding

that long-range context is inaccessible to standard RNNs

since the backpropagated error either blows up or decays

over time (vanishing gradient problem [37]). This led to

various attempts to address the problem of vanishing

gradients for RNN, including non-gradient-based training

[38], time-delay networks [39, 40, 41], hierarchical

sequence compression [42], and echo state networks [43].

One of the most effective techniques is the Long Short-

Term Memory architecture [31], which is able to store

information in linear memory cells over a longer period of

time. They are able to overcome the vanishing gradient

problem and can learn the optimal amount of contextual

information relevant for the classification task.

An LSTM layer is composed of recurrently connected

memory blocks, each of which contains one or more

memory cells, along with three multiplicative ‘gate’ units:

the input, output, and forget gates. The gates perform

functions analogous to read, write, and reset operations.

More specifically, the cell input is multiplied by the acti-

vation of the input gate, the cell output by that of the output

gate, and the previous cell values by the forget gate (see

Fig. 1). The overall effect is to allow the network to store

and retrieve information over long periods of time. For

example, as long as the input gate remains closed, the

activation of the cell will not be overwritten by new inputs1 http://www.semaine-project.eu/.
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and can therefore be made available to the net much later in

the sequence by opening the output gate.

Another problem with standard RNNs is that they have

access to past but not to future context. This can be over-

come by using bidirectional RNNs [44], where two separate

recurrent hidden layers scan the input sequences in opposite

directions. The two hidden layers are connected to the same

output layer, which therefore has access to context infor-

mation in both directions. The amount of context informa-

tion that the network actually uses is learned during training,

and does not have to be specified beforehand. Thereby,

forward and backward context are learned independently

from each other. Bidirectional networks can be applied

whenever the sequence processing task is not truly online

(meaning the output is not required after every input) which

makes them popular for speech recognition tasks where the

output has to be present e. g. at the end of a sentence [21].

However, often a small buffer is enough in order to profit

from bidirectional context, so that bidirectional networks

can also be applied for causal systems whenever a short

output latency is tolerable. Figure 2 shows the structure of a

simple bidirectional network.

Combining bidirectional networks with LSTM gives

bidirectional Long Short-Term Memory [21], which has

demonstrated excellent performance in phoneme recogni-

tion [45], keyword spotting [28], handwriting recognition

[46, 47], noise modeling [48], and emotion recognition

from speech [49, 50].

Dynamic Bayesian Network Architecture

for Keyword Detection

Dynamic Bayesian Networks can be interpreted as graph-

ical models G(V, E) that consist of a set of nodes V and

edges E. Nodes represent random variables which can be

either hidden or observed. Edges—or rather missing

edges—encode conditional independence assumptions that

are used to determine valid factorizations of the joint

probability distribution. Conventional Hidden Markov

Model approaches can be interpreted as implicit graph

representations using a single Markov chain together with

an integer state to represent all contextual and control

information determining the allowable sequencing. In this

work, however, we decided for the explicit approach [17],

where information such as the current phoneme, the indi-

cation of a phoneme transition, or the position within a

word is expressed by random variables. As shown in [17],

explicit graph representations are advantageous whenever

the set of hidden variables has factorization constraints or

consist of multiple hierarchies. This section will introduce

the explicit graph representation of our Tandem BLSTM-

DBN keyword spotting system. Thereby, Sect. 4.1 will

focus on the DBN used for decoding speech utterances and

detecting keywords, respectively, while Sect. 4.2 outlines

the graphical model structure we used during training.

Decoding

The Tandem BLSTM-DBN architecture for keyword

spotting is depicted in Fig. 3. The network is composed of

five different layers and hierarchy levels respectively: a

word layer, a phoneme layer, a state layer, the observed

features, and the BLSTM layer (nodes inside the gray

shaded box). As can be seen in Fig. 3, the DBN jointly

processes speech features and BLSTM phoneme predic-

tions. The BLSTM layer consists of an input layer it, two

hidden layers hf
t and hb

t (one for forward and one for

backward processing), and an output layer ot.

The following random variables are defined for every

time step t:qt denotes the phoneme identity, qps
t represents

the position within the phoneme, qtr
t indicates a phoneme

transition, st is the current state with str
t indicating a state

Fig. 1 LSTM memory block consisting of one memory cell: the

input, output, and forget gates collect activations from inside and

outside the block, which control the cell through multiplicative units

(depicted as small circles); input, output, and forget gate scale input,

output, and internal state respectively; ai and ao denote activation

functions; the recurrent connection of fixed weight 1.0 maintains the

internal state

Fig. 2 Structure of a bidirectional network with input i, output o, and

two hidden layers (hf and hb) for forward and backward processing
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transition, and xt denotes the observed acoustic features.

The variables wt; wps
t , and wtr

t are identity, position, and

transition variables for the word layer of the DBN whereas

a hidden garbage variable gt indicates whether the current

word is a keyword or not. A second observed variable bt

contains the phoneme prediction of the BLSTM. Figure 3

displays hidden variables as circles and observed variables

as squares. Deterministic relations are represented by

straight lines, and zig-zagged lines correspond to random

conditional probability functions (CPFs). Dotted lines refer

to so-called switching parents [16], which allow a vari-

able’s parents to change conditioned on the current value of

the switching parent. They can change not only the set of

parents but also the implementation (i.e. the CPF) of a

parent. The bold dashed lines in the BLSTM layer do not

represent statistical relations but simple data streams.

Assuming a speech sequence of length T, the DBN

structure specifies the factorization

pðg1:T ;w1:T ;w
tr
1:T ;w

ps
1:T ; q1:T ; q

tr
1:T ; q

ps
1:T ; s

tr
1:T ; s1:T ; x1:T ; b1:TÞ

¼
YT

t¼1

pðxtjstÞpðbtjstÞf ðstjqps
t ; qtÞpðstr

t jstÞf ðqtr
t jqps

t ; qt; s
tr
t Þ

f ðwtr
t jqtr

t ;w
ps
t ;wtÞ

f ðgtjwtÞf ðqps
1 Þpðq1jwps

1 ;w1; g1Þf ðwps
1 Þpðw1Þ

YT

t¼2

f ðqps
t jstr

t�1; q
ps
t�1; q

tr
t�1Þ

pðwtjwtr
t�1;wt�1Þpðqtjqtr

t�1; qt�1;w
ps
t ;wt; gtÞ

f ðwps
t jqtr

t�1;w
ps
t�1;w

tr
t�1Þ

ð1Þ

with p(�) denoting random conditional probability functions

and f(�) describing deterministic relations. This factoriza-

tion can be easily derived when inspecting the DBN layers

of Fig. 3: in principle we have to build the product of all

time steps and all variables while considering that variables

might be conditioned on other (parent) variables. This

corresponds to arrows in Fig. 3 that point to the corre-

sponding (child) node. In case all parent nodes of a child

node are located in the same time frame as the child node,

we can build the product from t = 1 to t = T. Otherwise, if

a variable is conditioned on variables from the previous

time step, we build the product from t = 2 to t = T and

define initial CPFs for time step t = 1 that are not condi-

tioned on variables from the previous time step (as for

example p(w1)). The factorization property in Eq. 1 can be

exploited to optimally distribute the sums over the hidden

variables into the products, using the junction tree algo-

rithm [51]. Time and space complexity of the DBN is

OðT log TÞ and Oðlog TÞ, respectively [52].

The size of the BLSTM input layer it corresponds to the

dimensionality of the acoustic feature vector xt, whereas

the vector ot contains one probability score for each of the

P different phonemes at each time step. bt is the index of

the most likely phoneme:

bt ¼ max
ot

ðot;1; :::; ot;j; :::; ot;PÞ ð2Þ

The CPFs p(xt|st) are described by Gaussian mixtures as

common in an HMM system. Together with p(bt|st) and

pðstr
t jstÞ, they are learned via EM training. Thereby str

t is a

binary variable, indicating whether a state transition takes

place or not. The deterministic relations for st; qtr
t ; qps

t ; wtr
t ,

and wps
t are the same as in [20]. The hidden variable wt can

take values in the range wt = 0...K with K being the

number of different keywords in the vocabulary. In case

wt = 0, the model is in the garbage state, which means that

Fig. 3 Structure of the Tandem BLSTM-DBN keyword spotter: the

BLSTM network (grey shaded box) provides a discrete phoneme

prediction feature bt which is observed by the DBN, in addition to the

MFCC features xt. The DBN is composed of a state, phoneme, and

word layer, consisting of hidden transition (str
t ;q

tr
t ;w

tr
t ; ), position

(qps
t ;w

ps
t ), and identity (st, qt, wt) variables. Hidden variables (circles)

and observed variables (squares) are connected via random CPFs

(zig-zagged lines) or deterministic relations (straight lines). Switch-

ing parent dependencies are indicated with dotted lines
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no keyword is uttered at that time. The variable gt is then

equal to one.

In our experiments, we simplified the word bigram

pðwtjwtr
t�1 ¼ 1;wt�1Þ to a zerogram which makes each

keyword equally likely. Yet we introduced differing a

priori likelihoods for keywords and garbage phonemes:

pðwt ¼ 1 : Kjwtr
t�1 ¼ 1Þ ¼ K � 10a

K � 10a þ 1
ð3Þ

and

pðwt ¼ 0jwtr
t�1 ¼ 1Þ ¼ 1

K � 10a þ 1
: ð4Þ

The parameter a can be used to adjust the trade-off between

true positives and false positives. Setting a = 0 means that

the a priori probability of a keyword and the probability

that the current phoneme does not belong to a keyword are

equal. Adjusting a [ 0 implies a more aggressive search

for keywords, leading to higher true positive and false

positive rates.

As in [20], we assume that ‘garbage words’ always

consist of only one phoneme. The variable qt has two

switching parents: qtr
t�1 and gt. Similar to the word layer, qt

is equal to qt-1 if qtr
t�1 ¼ 0. Otherwise, the switching parent

gt determines the parents of qt. In case gt = 0—meaning

that the current word is a keyword—qt is a deterministic

function of the current keyword wt and the position within

the keyword wps
t . If the model is in the garbage state, qt

only depends on qt-1 in a way that phoneme transitions

between identical phonemes are forbidden.

Note that the design of the CPF pðqtjqtr
t�1; qt�1;

wps
t ;wt; gtÞ entails that the DBN will strongly tend to

choose gt = 0 (i.e. it will detect a keyword) once a pho-

neme sequence that corresponds to a keyword is observed.

Decoding such an observation while being in the garbage

state gt = 1 would lead to ‘phoneme transition penalties’

since the CPF pðqtjqtr
t�1 ¼ 1; qt�1;w

ps
t ;wt; gt ¼ 1Þ contains

probabilities less than one. By contrast, pðqtjqtr
t�1 ¼

1;wps
t ;wt; gt ¼ 0Þ is deterministic, introducing no likeli-

hood penalties at phoneme borders.

Training

The graphical model applied for learning the random CPFs

pðxtjstÞ; pðstr
t jstÞ, and p(bt|st) is depicted in Fig. 4. Compared

to the GM used for keyword decoding (see Sect. 4.1), the GM

for the training of the keyword spotter is less complex, since

during (vocabulary independent) training, only phonemes

are modeled. Thereby, the training procedure is split up into

two stages: in the first stage phonemes are trained framewise,

whereas during the second stage, the segmentation con-

straints are relaxed using a forced alignment (embedded

training).

The variable qc
t shown in Fig. 4 is a count variable

determining the current position in the phoneme sequence.

Note that the gray-shaded arrow in Fig. 4 pointing from

qtr
t�1 to qc

t is only valid during the second training cycle

when there are no segmentation constraints and will be

ignored in Equation 5.

For a training sequence of length T, the DBN structure

of Figure 4 specifies the factorization

pðqc
1:T ; q1:T ; q

tr
1:T ; q

ps
1:T ; s

tr
1:T ; s1:T ; x1:T ; b1:TÞ

¼
YT

t¼1

pðxtjstÞpðbtjstÞf ðstjqps
t ; qtÞpðstr

t jstÞf ðqtr
t jqps

t ; qt; s
tr
t Þ

f ðqtjqc
t Þf ðq

ps
1 Þf ðqc

1Þ
YT

t¼2

f ðqps
t jstr

t�1; q
ps
t�1; q

tr
t�1Þf ðqc

t jqc
t�1Þ:

ð5Þ

During training, the current phoneme qt is known, given

the position qc
t in the training utterance, which implies a

deterministic mapping f ðqtjqc
t Þ. In the first training cycle,

qc
t is incremented in every time frame, whereas in the

second cycle qc
t is only incremented if qtr

t�1 ¼ 1.

For the training of the DBN we use GMTK [53] which

in turn uses Expectation Maximization (EM) [54] and

generalized EM (GEM) [55] training, depending on the

Fig. 4 DBN structure of the graphical model used to train the

Tandem keyword spotter: a count variable qc
t determines the current

position in the phoneme sequence
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parameter sharing currently in use [53]. A detailed

description of both strategies can be found in [56].

The BLSTM network is trained independently with

standard backpropagation through time (BPTT) [57] using

the exact error gradient as in [21]. All necessary BPTT

equations for LSTM training are detailed in [58].

We used a learning rate of 10-5 and a momentum of 0.9.

To improve generalization, zero mean Gaussian noise with

standard deviation 0.6 is added to the inputs during train-

ing. Prior to training, all weights of the BLSTM network

are randomly initialized in the range from - 0.1 to 0.1.

Experiments

To evaluate our keyword detection system, we used the

TIMIT corpus [29] as well as the SAL database [30],

containing spontaneous, emotionally colored speech. The

SAL corpus is a sub-set of the HUMAINE database2 and

was recorded during natural human-computer conversa-

tions. A Wizard-of-Oz SAL interface imitating the func-

tionality of the SEMAINE system (see Sect. 2) was used

for emotion induction. The users had to speak to the four

different virtual characters introduced in Sect. 2, whereas

each character represents one affective state (matter-of-

fact, happiness, sadness, or anger) and tried to induce the

corresponding emotion in the user. Thus, each utterance

spoken by the user can be characterized by its degree of

activation and valence, using a scale from -1 (weak and

negative, respectively) to 1 (strong and positive, respec-

tively). Histograms showing the distribution of these

‘emotional dimensions’ over the SAL corpus can be seen in

Fig. 5. Thereby, the values for activation and valence

correspond to the turn annotations averaged over four

different labelers.

Both, the database and the recording procedures are

described in more detail in [30]. Training and test sets were

split according to [49].

The acoustic feature vectors consisted of cepstral mean-

normalized MFCC coefficients 1–12, energy, as well as

first and second order delta coefficients. For the training of

the BLSTM, 200 utterances of the TIMIT training split

were used as validation set while the net was trained on the

remaining training sequences. The BLSTM input layer had

a size of 39 (one for each MFCC feature) and the size of

the output layer was also 39 since we used the reduced set

of 39 TIMIT phonemes. Both hidden LSTM layers con-

tained 100 memory blocks of one cell each.

During the first training cycle of the DBN, phonemes were

trained framewisely using the training portion of the TIMIT

corpus. Thereby, all Gaussian mixtures were split once the

change of the overall log likelihood of the training set

became less than 0.02 %. The number of mixtures per state

was increased to 16. In the second training cycle segmenta-

tion constraints were relaxed, whereas no further mixture

splitting was conducted. Phoneme models were composed of

three hidden states each. Prior to evaluation on the SAL

corpus, all means, variances, and weights of the Gaussian

mixture probability distributions p(xt|st), as well as the state

transition probabilities pðstr
t jstÞ were re-estimated using the

training split of the SAL corpus. Again, re-estimation was

stopped once the change of the overall log likelihood of the

SAL training set fell below a threshold of 0.02 %.

For comparison, the performance of a phoneme-based

keyword spotter using conventional HMM modeling was

evaluated. Analogous to the DBN, each phoneme was

represented by three states (left-to-right HMMs) with 16

Gaussian mixtures. Thereby, we used cross-word triphone

models in order to account for contextual information. The

HMMs were trained using HTK [59]. Thereby the initial

monophone models consisted of one Gaussian mixture per

state. All initial means and variances were set to the global

means and variances of all feature vector components (flat

start initialization). The monophone models were then

trained using four iterations of embedded Baum-Welch

re-estimation [60]. After that, the monophones were map-

ped to tied-state cross-word triphone models with shared

state transition probabilities. Two Baum-Welch iterations

were performed for re-estimation of the triphone models.

Finally, the number of mixture components of the triphone

models was increased to 16 in four successive rounds of

mixture doubling and re-estimation (four iterations in every

round). In each round, the newly created mixture compo-

nents are copied from the existing ones, mixture weights

are divided by two, and the means are shifted by plus and

minus 0.2 times the standard deviation.

Fig. 5 Histogram of the turn annotations for activation and valence

in the SAL corpus

2 http://www.emotion-research.net/download/pilot-db/.
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For HMM-based keyword detection, we defined a set of

keyword models and a garbage model. The keyword models

estimate the likelihood of a feature vector sequence, given

that it corresponds to the keyword phoneme sequence. The

garbage model is composed of phoneme HMMs that are

fully connected to each others, meaning that it can model

any phoneme sequence. Via Viterbi decoding the best path

through all models is found, and a keyword is detected as

soon as the path passes through the corresponding keyword

HMM. In order to be able to adjust the operating point on

the Receiver Operating Characteristic (ROC) curve, we

introduced different a priori likelihoods for keyword and

garbage HMMs, identical to the word zerogram used for the

DBN. Apart from the transition probabilities implied by the

zerogram, the HMM system uses no additional likelihood

penalties at the phoneme borders.

As a second baseline model, we evaluated the keyword

spotting performance of a hybrid BLSTM-HMM system,

since this approach was shown to prevail over the standard

HMM approach [61]. Unlike the proposed Tandem model,

the hybrid approach exclusively uses BLSTM phoneme

predictions for keyword detection. Thus, it does not use

Gaussian mixture modeling since the MFCC features are

not observed by the HMM but only by the BLSTM network.

The BLSTM network of the hybrid model is furthermore

equipped with a Connectionist Temporal Classification

(CTC) output layer [62] which allows the network to be

trained on unsegmented data. Typical phoneme prediction

errors made by the CTC network are modeled by the HMM

layer of the hybrid system (similar to the trained CPFs

p(bt|st) for the Tandem model). For further details on the

hybrid approach, the reader is referred to [61].

In order to evaluate our keyword spotting system on the

TIMIT corpus, we randomly chose 60 keywords (as in

[20]). The used dictionary allowed for multiple pronunci-

ations. The trade-off parameter a (see Eq. 3) was varied

between zero and seven.

Figure 6 c ROC curves displaying the true positive rate

(tpr) as a function of the false positive rate (fpr) for the

baseline HMM and the hybrid BLSTM-HMM, as well as

for the DBN with and without an additional BLSTM layer.

Note that due to the design of the recognizer, the full ROC

curve—ending at an operating point tpr = 1 and fpr = 1—

cannot be determined, since the model does not include a

confidence threshold that can be set to an arbitrarily low

value. The most significant performance gain of context

modeling via BLSTM predictions occurs at an operating

point with a false positive rate of 0.1 %: there, the Tandem

approach can increase the true positive rate by 13.5 %,

when compared to the DBN without BLSTM layer.

Conducting the McNemar’s test revealed that the perfor-

mance difference between the BLSTM-DBN and the DBN

is statistically significant at a common significance level of

0.01 (for details about the McNemar’s test, see [63]). For

higher values of the trade-off parameter a, implying a more

aggressive search for keywords, the performance gap

between the DBN and the Tandem keyword spotter

becomes smaller, as more phoneme confusions are toler-

ated when seeking for keywords. Furthermore, both DBN

architectures significantly outperform the baseline HMM

approach. At low false positive rates, the hybrid BLSTM-

HMM prevails over the DBN approach, however; as soon

as more false positives are tolerated, the performance of the

hybrid model approaches the baseline HMM performance

and is inferior to the DBN.

As mentioned earlier, our keyword spotting techniques

are vocabulary independent, meaning that new keywords

can be added without having to re-train the system. In order

to illustrate that adding new keywords does not downgrade

recognition performance, we added 20 randomly selected

keywords to the vocabulary (so that we had a total number

of 80 keywords) and repeated all experiments. Note that we

used the same BLSTM network and the same CPFs p(xt|st),

pðstr
t jstÞ, and p(bt|st) as for the original experiments with 60

keywords. As can be seen in Fig. 7, the changes in ROC

performance are marginal. The DBN performance at low

false positive rates is even slightly better than in the pre-

vious experiment. Still, the Tandem BLSTM-DBN signif-

icantly outperforms all other investigated approaches.

For performance evaluation on the SAL corpus, we

randomly selected 24 keywords (the same as in [7]). The

resulting ROC performance can be seen in Fig. 8.

Obviously the task of keyword detection in emotional

speech is considerably harder, implying lower true positive

rates and higher false positive rates, respectively. As for the

TIMIT experiment, our Tandem BLSTM-DBN approach

Fig. 6 Evaluation on the TIMIT corpus (60 keywords): Part of the

ROC curve for the baseline HMM system, the hybrid BLSTM-HMM,

the DBN keyword spotter (without BLSTM phoneme predictions) and

the Tandem BLSTM-DBN approach. The operating points correspond

to a = 0, 1, 2, 3, etc
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prevails over the DBN, the hybrid BLSTM-HMM, and the

HMM baseline system with a performance gain of up to 8

% when compared to the DBN.

Conclusion

In this article, we proposed a novel vocabulary independent

Dynamic Bayesian Network architecture for robustly

detecting keywords in continuous speech. Our keyword

spotting system is tailored for usage within cognitive

virtual agents such as the SEMAINE system for Sensitive

Artificial Listening which demand for robustness, e. g. with

respect to emotional coloring of speech.

Apart from conventional MFCC features, our keyword

spotting system also takes into account the phoneme pre-

dictions of a bidirectional Long Short-Term Memory RNN.

Thus, it can model a self-learned amount of contextual

information in order to improve the discrimination between

keywords and arbitrary speech within the DBN. Since our

concept is based on a Tandem phoneme recognizer and

does not consider specific keywords during the training

phase, new keywords can be added without having to re-

train the network. A further advantage of our approach is

that it does not require the training of an explicit garbage

model.

We showed that incorporating BLSTM phoneme pre-

dictions into our DBN architecture can enhance keyword

detection performance on the TIMIT corpus, but also on

the SAL corpus which contains spontaneous emotional

speech as it is to be expected in an emotionally sensitive

virtual agent scenario.

By using the same BLSTM recurrent neural network

architecture as successfully applied for emotion recogni-

tion within the SEMAINE framework [22], our Tandem

BLSTM-DBN keyword spotter offers the possibility to

create a unified system for jointly modeling phonemes and

emotion using a multi-task learning strategy.

Future possibilities also include the investigation of

alternative BLSTM network topologies and the combina-

tion of triphone and BLSTM modeling. A further interesting

approach towards better recognition performance through

combined BLSTM and DBN modeling would be to jointly

decode speech with LSTM networks and DBNs by using

techniques for data fusion of potentially asynchronous

sequences such as multidimensional dynamic time warping

[64] or asynchronous Hidden Markov Models [65].
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et al. (2009) Being bored? recognising natural interest by

extensive audiovisual integration for real-life application. Image

Vis Comput J (IMAVIS), Special Issue on Visual and Multimodal

Analysis of Human Spontaneous Behavior 27(12):1760–1774

35. Schuller B, Rigoll G (2009) Recognising interest in conversa-

tional speech—comparing bag of frames and supra-segmental

features. In: Proceedings of interspeech. Brighton. pp 1999–2002

36. Quattoni A, Wang S, Morency LP, Collins M, Darrell T (2007)

hidden conditional random fields. IEEE Trans Pattern Anal Mach

Intell 29:1848–1853

37. Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J (2001)

Gradient flow in recurrent nets: the difficulty of learning long-

term dependencies. In: Kremer SC, Kolen JF (eds) A field guide

to dynamical recurrent neural networks. IEEE Press, . pp 1–15

38. Bengio Y, Simard P, Frasconi P (1994) Learning long-term

dependencies with gradient descent is difficult. IEEE Trans

Neural Netw 5(2):157–166

39. Schaefer AM, Udluft S, Zimmermann HG (2008) Learning long-

term dependencies with recurrent neural networks. Neurocom-

puting 71(13-15):2481–2488

40. Lin T, Horne BG, Tino P, Giles CL (1996) Learning long-term

dependencies in NARX recurrent neural networks. IEEE Trans

Neural Netw 7(6):1329–1338

41. Lang KJ, Waibel AH, Hinton GE (1990) A time-delay neural

network architecture for isolated word recognition. Neural Netw

3(1):23–43

42. Schmidhuber J (1992) Learning complex extended sequences

using the principle of history compression. Neural Comput 4(2):

234–242

43. Jaeger H (2001) The echo state approach to analyzing and

training recurrent neural networks. Bremen: German national

research center for information technology. (Tech. Rep. No. 148)

44. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural

networks. IEEE Trans Signal Process 45:2673–2681

45. Graves A, Schmidhuber J (2005) Framewise phoneme classifi-

cation with bidirectional LSTM and other neural network archi-

tectures. Neural Netw 18(5-6):602–610

46. Graves A, Fernandez S, Liwicki M, Bunke H, Schmidhuber J

(2008) Unconstrained online handwriting recognition with

recurrent neural networks. Adv Neural Inf Process Syst. 20:1–8

47. Liwicki M, Graves A, Fernandez S, Bunke H, Schmidhuber J

(2007) A novel approach to on-line handwriting recognition

based on bidirectional long short-term memory networks. In:

Proceedings of ICDAR. Curitiba. pp 367–371

Cogn Comput (2010) 2:180–190 189

123

 Author's personal copy 
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