

1

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Lane Detection and Tracking for Advanced

Driver Assistant System

Multiple regions of interest and performance evaluation for the lane detection and

tracking in a heterogeneous platform

Alibi Rakhmatulin

2

3

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Multiple regions of interest and performance evaluation

for the lane detection and tracking in a heterogeneous

platform

Multi ROI und Leistungsbewertung für die Fahrspur

Erkennung und -verfolgung in einer heterogenen

Plattform

Author: Alibi Rakhmatulin

Supervisor: Prof. Dr.-Ing. habil. Alois Knoll

Advisors: Dr. Kai Huang, Ph.D

 Biao Hu, M.Sc

Date: May 15, 2016

4

5

I hereby declare that the thesis submitted is my own unaided work. All direct or

indirect sources used are acknowledged as references.

Munich, Germany Alibi Rakhmatulin

6

7

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my

supervisor Dr. Kai Huang for giving me an opportunity to write the thesis at the

chair of Robotics and Embedded Systems. I thank him for all the support and

guidance that he has given me in the course HW-SW Co-design and this thesis.

I would also sincerely thank my advisor, Mr. Biao Hu, without his support the

thesis would not have been successful. He has guided me through each step of the

entire thesis and his valuable suggestions and insights into the topic made the work

easier than it would have been. Our discussions were as enjoyable as they were

productive and I was always able to have a meeting at any time without prior

appointments, he was always available, even during holidays.

http://www6.in.tum.de/Main/Huangk
http://www6.in.tum.de/Main/Hub

8

9

Abstract

Previous Lane detection and Tracking algorithm suffers from low performance due

to partial execution on high performance heterogeneous hardware. Significant

amount of image processing tasks meant to be computed by hardware accelerators

are assigned to CPUs.

In this thesis maximum workload related to image processing was delegated to

hardware accelerators by developing Open CL kernel. This allowed to harvest

parallel processing capabilities of GPUs and FPGAs thus moving away from ECUs

and improving the performance. For instance, pre-processing of an image was

completely transferred to hardware accelerators. Besides algorithm supporting

independent multiple self-adjustable regions of interest was developed,

programming bottlenecks were eliminated, lane inclination angle across all the

regions of interest is calculated and performance evaluation is performed on

independent recorded videos and benchmarking datasets.

Lane Detection and tracking algorithm is based on Particle Filter. In Lane detection

phase pre-processed image is populated with thousands of randomly placed sample

lines, weights of those lines are calculated by hardware accelerators and fittest line

is selected to represent the actual road lane marking. Lane tracking is based on

Particle Filter and weighing obtained from Lane Detection phase.

Algorithm was developed and tested on the following hardware GPU: Nvidia

GeForce GTX 660 TI, Altera Cyclone V and RAM 32 GB, Intel Core i8 and a set

of pre-recorded videos. Testing showed decrease in execution time, more robust

and accurate lane detection and tracking for every region of interest, workload

balancing according to the area of expertise where CPUs are performing utility

tasks and hardware accelerators mostly work on image processing.

10

11

Contents

Acknowledgements ... 7

Abbreviations ... 13

Introduction ... 17

1.1 Motivation ... 17

1.2 Problem Statement .. 19

1.3 Contributions... 19

1.4 Evaluation of the performance .. 20

1.5 Thesis Outline ... 20

Background .. 21

2.1 Related Work .. 21

2.1.1 Lane Detection and Lane Tracking ... 21

2.2 FPGA, Altera's Cyclone
®
 V, Stratix

®
 V FPGA .. 25

2.2.1 FPGA .. 25

2.2.2 Benefits ... 26

2.2.3 Altera's Cyclone
®
 V FPGA.. 26

2.2.4 Altera's Stratix
®
 V FPGA.. 27

2.3 NVIDIA GeForce GTX 660 TI .. 28

2.4 Heterogeneous Platforms .. 29

2.5 Gaussian function smoothing .. 29

2.5.1 Image Convolution .. 30

2.6 Intel® Threading Building Blocks library ... 31

2.7 OpenCL .. 32

2.8 OpenCL – Runtime API .. 33

2.8.1 Create Buffer Objects ... 33

2.8.2 Read, Write Buffer Objects... 34

2.8.3 Kernel Arguments and Queries... 36

2.8.4 Kernel Execution on a Device.. 37

2.9 Particle Filter .. 38

Implementation .. 41

3.1 Overview of the Method .. 41

3.2 Details of the implementation .. 43

3.2.1 Pre-Processing .. 43

3.2.2 Elimination of unnecessary objects by Botsch 2015 ... 43

12

3.2.3 Elimination of unnecessary objects in current work.. 45

3.2.3.1 Using parallel execution on the host ... 45

3.2.3.2 Using OpenCL kernel... 45

3.2.4 Grayscaling ... 47

3.2.5 Edge detection... 48

3.2.6 Thresholding ... 49

3.2.7 Summary of the Pre-processing .. 50

3.3 Lane Detection .. 52

3.4 Lane Tracking ... 53

3.4.1 The Lane Tracking Algorithm .. 54

3.5 Redetection cases... 58

3.6 Angle calculation ... 59

3.7 Further contributions .. 61

3.7.1 Multiple regions of interests .. 61

3.7.2 Adaptive regions of interest... 62

3.8 Summary... 63

Results .. 65

4.1 Chapter outline ... 65

4.2 Composition of the computation time. ... 66

4.2.1 Initial Performance ... 66

4.2.2 Parallel processing by host .. 67

4.2.3 Parallel processing by kernel... 68

4.3 Testing the algorithm on datasets .. 69

4.3.1 Lane Detection .. 70

4.3.2 Lane tracking ... 71

4.3.3 Threshold ... 73

4.3.4 Adaptive ROIs ... 74

4.3.5 Computation Speed .. 75

4.4 Known problems ... 78

4.5 Summary .. 79

Conclusion and Future Work ... 80

5.1 Conclusion... 80

5.2 Future Work ... 82

Bibliography ... 84

13

Abbreviations

ADAS Advanced Driver Assistance System

API Application Programming Interface

CUDA Compute Unified Device Architecture

DSP Digital Signal Processor

LKWS Lane-keeping and warning systems

LDAS Lane Departure Warning System

DAS Driver Assistance System

ECU Electronic Control Unit

FLOPS Floating Point Operations per Second

FPGA Field Programmable Gate Array

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HHPC Heterogeneous High Performance Computing

HPC High Performance Computing

LDS Lane Detection System

LDTS Lane Detection and Tracking System

OpenCL Open Computing Language

ROI Region of Interest

PF Particle Filter

Chapter 1. Introduction 14

List of Figures

2.1 From left to right: original image, morphological gradient of original

image ... 16

2.2 Watershed of gradient image. Noise and inhomogeneity causes

appearance of many catchment basins (not possible to detect the lanes) .. 16

2.3 Watershed of the gradient of the filtered image .. 17

2.4 Examples of likelihood detecting lines .. 17

2.5 Lane detection on a straight road .. 18

2.6 The road or lane boundaries can be extracted from the input image

through a gradient Thresholding operation .. 18

2.7 The road region is a patch of shadow or sunlight.. 18

2.8 B-Snake based lane model. Left: using 3 control points. Right: using 4

control points ... 19

2.9 2D Gaussian curve... 24

2.10 From left to right: the kernel (Gaussian), original image (matrix), and

result values (matrix) .. 25

2.11 Lane Tracking... 33

3.1 Structure of the Method .. 34

3.2 Image before and after preprocessing... 35

3.3 Region of Interest .. 36

3.4 Distribution of the computation time in Botsch 2015 37

3.5 Input and output of the Grayscaling phase ... 40

3.6 Edge Detection .. 41

3.7 Before and after Edge detection .. 41

3.8 Thresholding ... 41

3.9 Before and after Thresholding is applied ... 42

3.10 Summary of preprocessing phase .. 43

3.11 The general flow of the algorithm ... 44

3.12 Lane Sampling 45

3.14 Phases of Lane Detection ... 46

3.15 The result of lane tracking phase are exact x and y coordinates of lane

markings.. 47

3.16 Lane tracking is performed in three phases.. 47

3.17 Redetection cases .. 51

3.18 Best lines across all ROIs approximately form one line 52

3.20 Scheme of Connection detection between ROIs ... 52

3.21 Scheme of calculation of inclination angle .. 53

Chapter 1. Introduction 15

3.23 Lane Detection/tracking on corrupt frames ... 54

3.22 The process of processing ROIs .. 54

3.24 Adaptive ROIs ... 55

4.1 Distribution of workload and computation time in Botsch 2015………… 59

4.2 Distribution of the computation time in Botsch 2015……………………. 60

4.3 ROI selections on the host with parallel loops…………………………… 61

4.4 Distribution of computation time with parallel loops……………………. 61
4.5 ROI selections on kernel…………………………………………………. 62

4.6 Distribution of computation time within Preprocessing………………… 62

4.7 Lane Detection…………………….. 64

4.8 Lane Tracking……………………………………………………………. 65

4.9 Testing performed on TUM_DLR dataset with various threshold values. 67

4.10 Algorithm with adaptive ROIs…………………………………………… 68

4.11 Performances on GPU…………………………………………………… 70

4.12 Performances on GPU of Botsch, 2015………………………………….. 70

4.13 Known issues…….. 71

Chapter 1. Introduction 16

List of Tables

4.1 Testing settings... 63

4.2 Distribution of computing time for frame with three non-adaptive ROIs. 68

4.3 Distribution of computation time for a frame with three adaptive ROIs.... 68

List of Algorithms

2.1 Algorithms of Particle filter.. 33

3.1 ROI selection on KERNEL... 40

3.2 For performing Thresholding.. 43

3.3 Preprocessing stage... 44

3.4 Particle Filter for Lane Tracking... 48

3.5 Resampling algorithm... 51

List of Formulas

3.1 Horizontal and vertical image convolution.. 42

3.2 Mathematical representation of Particle Filter.. 49

Chapter 1. Introduction 17

Chapter 1

Introduction

1.1 Motivation

Advanced Driver Assist Systems (ADAS) - research labs are currently developing

sensor-based solutions to increase vehicle safety at lower speeds (when the driver is

stuck in traffic), or at higher speeds (on a long highways). These systems, are

known as Advanced Driver Assist Systems (ADAS). They combine stereo cameras,

long- and short-range RADAR along with actuators, ECUs, and embedded

software, to facilitate drivers to respond to changes in the environment quickly.

Lane Detection and Tracking systems as well as many other solutions are part of

ADAS.

There is a need in such systems because: according to the report of Federal police

published in 2015 road accidents occurred two million times and is the main cause

of deaths in Germany. Leading to 9,659 traffic deaths every year and most of these

accidents are due to "human error"(75 %). This has a huge impact on wellbeing of

society, family budget and lives of people since more than a million adult drivers or

passengers are treated in hospitals due to card accident related injuries. According

to the annual report car accident related expenses cost billions of Euro annually.

This pursues car manufacturers like BMW, to invest into research focused on

vehicle safety. The ultimate goal is to start manufacturing “crashless” cars with

build it Advanced Driver Assistant System which would provide comfort and

security to drivers.

Chapter 1. Introduction 18

On the other hand, further research in this direction will allow taking automotive

industry to the next level, where Germany will be able to hold a leading role in

automotive industry. The vision of car manufacturers is to start producing semi-

autonomous, fully autonomous cars.

This is important because Germany is known as one of world’s top car exporter,

major car manufacturers like Audi, Mercedes, Daimler, BMW, and Volkswagen are

from Germany, the economy of the country is dependent heavily on export of

automobiles therefore to be able to sustain leading positions it is absolutely vital to

poses cutting edge technology.

The technology which would allow an average commuter spending at least 150

hours a year behind the wheel of a car to spend that time more efficiently, and

invest it into something more meaningful, the least efficient use of that time would

be to have a breakfast on the way to office, get enough rest on the way home, and

work on report during a traffic jam.

All these poses more responsibility upon ADAS. Such systems are expected to be

reliable and fast enough to be able to meet hard real time requirements. There is a

huge work done in the field of Lane-keeping and warning systems, such systems

exist in many variations showing very promising results. Most of them are based on

image processing - processing streams of frames taken from a camera mounted on a

vehicle and electronic control units (ECUs) - performing mainly image processing

computations. However the recent trend is to replace ECUs with more efficient

heterogeneous platforms combining advantages of hardware accelerators and

conventional ECUs.

Porting of a legacy code into heterogeneous platforms is not an easy task and leads

to bottlenecks and inefficiencies in the software, which was primarily designed for

conventional ECUs and is being, used on heterogeneous hardware accelerators.

LDTS system is not an exception and thus has to be “adjusted” or in most cases

redeveloped to fit into new computing hardware and perform at its peak.

Existing algorithm done by Madduri 2014 and Botsch 2015 were not completely

adapted to heterogeneous systems and therefore suffer from bottlenecks and other

performance degradation factors. Target of this work is to continue adapting LDTS

algorithm for the use on heterogeneous hardware accelerators, eliminate

programming bottlenecks and introduce new features like angle calculation, view

from quadcopter, multiple adaptable regions of interest and etc.

Chapter 1. Introduction 19

1.2 Problem Statement

This thesis serves as an extension to a previous work done by Madduri, 2014 and

Botsch 2015. In this thesis further improvements on Lane Detection and Tracking

algorithm were done, taking into consideration Future Work section proposed by

Botsch 2015 and new requirements from BMW research lab. Though many

important milestones have been achieved by previous developers, the discussion

among lab’s representatives and members of Chair of Robotics and Embedded

Systems revealed new areas requiring further research and experiment.

In addition, due to time constraints or lack of expertise work by Botsch 2015 did

not provide much room for flexibility (ex. number of regions of interest or their

size) and did not replace all major segments of code, programming bottlenecks

degrading performance by OpenCL kernels.

Hence, it was decided to invest more effort and time into the Botsch 2015 work and

take it to the next level, where new algorithm would tackle challenges offered by

above mentioned organizations and would deliver best possible execution time.

The algorithm is based on computer vision, does not require any special settings for

a camera, except that it should be installed on top of the vehicle and provides a long

range detection and tracking of the road lane markings.

1.3 Contributions

The major contributions of the current thesis are:

1. Elimination of programming bottlenecks, segments of code hampering

execution time.

2. Enabling support for multiple and independent regions of interests for each

frame.

3. Calculation of angle of a lane detected on multiple regions of interest, thus

enabling DAS to deal with road bending and sharp turns in advance.

4. Develop an algorithm supporting adaptable regions of interest, thus

significantly reducing computation effort.

Chapter 1. Introduction 20

1.4 Evaluation of the performance

The following hardware was used for developing and testing the algorithm:

- GPU: NVidia GeForce GTX 660 TI

- FPGA: Altera Cyclone V

- WORKSTATION: RAM 32 GB, Intel Core i8

- QUADCOPTER Parrot Bebop Drone, 1920x1080p, 30 Frames per/s

Video recorded from quad copter and independent datasets were used to test the

performance of the algorithm thoroughly.

1.5 Thesis Outline

Chapter two provides a theoretical background on technology used in this thesis to

improve lane detection and tracking algorithm. It also provides an explanation of

why Particle Filter has been used, why Lane Detection and Tracking algorithm

works better with OpenCL kernels on hardware accelerators, what is the role of

Gaussian function in this algorithm, why there is a trend towards heterogeneous

hardware platforms and etc.

Chapter three introduces changes done to algorithm written by Botsch 2015,

explains the reasoning behind new lane detection and lane tracking algorithm. It

explains how placement of multiple regions of interest on a single frame was

achieved. Gives insight into road angle calculation, elimination of programming

bottlenecks, support of adaptive regions of interest

Chapter four shows results of comprehensive testing done on different datasets and

pre-recorded videos using Quadcopter Parrot Bebop Drone, draws results and

compares them to the results obtained in previous work.

And finally chapter five provides a summary of the project and concludes with

suggestions on what could be the next step for Lane Detection and Tracking

algorithm and Driver Assistant Systems in general.

21

Chapter 2

Background

2.1 Related Work

2.1.1 Lane Detection and Lane Tracking

In order to keep the position of the vehicle within boundaries of road lanes, it is

necessary to measure location of the vehicle along the lines. Many kinds of methods

have been proposed and tested for this purpose, such as:

- on-board vision systems for detection of the painted lane markings;

- continuous magnetic wires integrated into the center of the lane mark;

- measurement of the distance to sidewalls using radar or ultrasonic waves;

- detection of reflective markers by means of laser technologies and etc.;

Most of above mentioned methods require necessary highway infrastructure to be

built, except the on-board vision systems which are more complicated in

development but have an advantage in capability of autonomous operation.

Many different vision-based lane detection algorithms developed to date depend on

different road models (2D or 3D, straight or curve) and different techniques (Hough

transform, template matching, neural networks, machine learning and etc.).

In most cases these vision-based lane detection systems follow next steps:

1. Capturing the frame from camera,

2. Separation of the image into necessary amount of region of interests,

3. Lane detection process,

4. Defining the lane markings.

The process for detection of the lane has a significant number of solutions in several

works published in the literature.

Chapter 2. Background 22

The solution shown in papers [2] [3] describes the method which uses principal of

morphological filtering. In this techniques in order to locate the lane edges in the

intensity gradient magnitude image the “watershed” transformation is being used.

The idea of the “watershed” transformation can be described as a landscape sunk in

a lake, with holes located in local minima. Starting from this points (local minima),

catchment basins are filled with water. After that the dams are being built at the

boundary points where water comes from different catchment areas. This process

continues until the level of water will reach the highest peak in the landscape. As a

result obtained landscape is separated into regions by dams which are called

watershed lines or “watersheds”. The strength of this technique is the fact that there

is no need in any thresholding of the gradient magnitudes but at the same time it has

a significant lack in not establishing any global constraints on the shape of the lane

edge.

Figure 2.1: From left to right: original image, morphological gradient of original

image

Figure 2.2: Watershed of gradient image. Noise and inhomogeneity causes

appearance of many catchment basins (not possible to detect the lanes).

Chapter 2. Background 23

Figure 2.3: Watershed of the gradient of the filtered image

The approaches in [4] [5], proposes that parabolic curve could be the way in which

the lane borders can be described on smooth ground. Even though this method can

approximate conventional road schemes, it will not be able to recreate such an

example of road schemes as a T -shaped intersection. Based on this model and on

the improvement of the likelihood function deformable template method was

proposed.

However this technique does not provide high accuracy and global optimum

without huge computational power.

Figure 2.4 shows examples of deformable template method based on likelihood

(LOIS) lane detection function under a variety of road and environmental

conditions.

Figure 2.4: Examples of likelihood detecting lines

Chapter 2. Background 24

Recognition algorithm based on road edges is considered in articles [6][7][8][9]. In

spite of the conditions associated with the shadows on the road this method deals

with the problem quite well in well painted road marks, but for roads with not

painted road markings (Figure 2.7), where side of the road will have to be

determined by the boundaries of the road, this algorithm is not suitable.

Figure 2.5: Lane detection on a straight road: (a) input image; (b) image obtained

by thresholding the gradient image.

Figure 2.6: The road or lane boundaries can be extracted from the input image

through a gradient thresholding operation

Figure 2.7: The road region is a patch of shadow or sunlight

The method of combining the Hough transform and Line-Snake model is

considered in the article [11]. The method is based on the separation of the image

into several regions in the vertical direction. In order to get the initial position

estimation of the lane boundaries on the surface of the road the Hough

transformation should be applied for each region. Further, the model of Line-Snake

is being used, the purpose of which was improvement of the initial approximation

to a better configuration of the lane boundaries. However, this technique has two

major problems. In the first case the mark-up line is with breaks, it is likely that it

will not continue to the bottom of the picture. In the second case, the contrast of the

line edges at the distance close to the bottom of the image may not be sufficient for

correct detection.

Chapter 2. Background 25

The figure 2.8 represents the description of the road shapes using different number

of control point in the B-Snake based lane model

Figure 2.8: B-Snake based lane model. Left: using 3 control points. Right: using 4

control points.

Lane boundary recognition method based on artificial vision is presented in papers

[12] [13]. This method is used for country roads. In order to detect the difference

between road and non-road area the method uses statistical criteria like energy,

contrast and homogeneity. However, while applying the same road model used in

[4] [5], the same problems are being faced.

2.2 FPGA, Altera's Cyclone
®
 V, Stratix

®
 V FPGA

2.2.1 FPGA

In older times only engineers with deep knowledge in the digital hardware design

were able to cope with the application of FPGA technology. New technologies

make it possible to convert graphical diagrams and C code into digital hardware

circuitry, thus making FPGA a reprogrammable silicon chip. Another distinctive

feature of FPGAs is that they are not limited by the availability of the number of

processing cores. FPGAs are parallel in nature, which distinguishes it from other

processors. This means that the various tasks being processed are not performed

using the same resources. Each task is processed independently of each other,

individually assigned to certain part of the chip and can be operated without any

interference from other logic blocks. Ultimately, regardless of adding more tasks

being processed, the performance of one part will not have any influence on others

[15].

Chapter 2. Background 26

2.2.2 Benefits

1. Performance— FPGA has an advantage of parallel execution on hardware

level that allows it to break the rule of sequential execution and handle more

processes per cycle.

2. Reliability—Systems based on processors mainly resort to the method of

resource sharing between different processes. Such systems have layers

between parts of the system. In order to control the hardware resources

driver layer is being used. Only one task can be executed at one time for each

processor core, and therefore the system based on processors have the risk of

collision with the offloaded tasks and loading another. FPGA does not use

the OS so the risks with reliability is minimized due to parallel execution of

tasks and a separate dedicated hardware for each task

3. Long-term maintenance—FPGA chips do not require much time and

manufacturing costs, because FPGAs are fully upgradable, and it is possible

to change the configuration at any time [15], thus making them suitable for

on board ADA systems.

However, as with all systems, in case of FPGA, there are a number of shortcomings

that need to be noted:

1. The cost is much higher than custom silicon

2. Higher power consumption in comparison with ASIC.

3. Compared with general-purpose processor, FPGAs require longer

configuration and compilation time

2.2.3 Altera's Cyclone
®
 V FPGA

Intelligent video analysis in real time is an integral part of systems like, advanced

driver assistant systems, industrial computer vision, robot motion planning and so

on. These systems require complex algorithms for executing motion detection,

object recognition, image processing tasks. Using Altera SoCs (System on a Chip),

developers get a great tool, where only one chip contains power of the FPGA and

dual-core ARM® Cortex®-A9 HPS (Hard Processor System). Developers are able

to optimize complex algorithms by transferring intensive computing functions of

HPS in FPGA, thus increasing system performance [14]

Chapter 2. Background 27

The Cyclone® V devices meet the requirements of reducing energy costs, time to

market and a growing range of applications sensitive to costs. With the presence of

built-in memory controllers and transceivers, the Cyclone V development kits is

ideal for use in areas such as industry, wireless and wireline, military, automotive

control systems and driver assistant systems.

Main Advantages of Cyclone V Devices:

Advantage Feature

Reduced energy

consumption

• Built on TSMC's(Taiwan Semiconductor Manufacturing

Company)28 nm low-power (28LP) process technology

and includes an abundance of hard intellectual property

(IP) blocks

• In comparison with previous generation, in this one

power consumption decreased up to 40%

Improved logic

integration and

differentiation

capabilities

• Adaptive Logic Module (ALM): 8-input

• Embedded memory: ≈ 13.59 megabits (Mb)

• Variable-precision digital signal processing (DSP)

blocks

Increased

bandwidth capacity

• 3.125 gigabits per second (Gbps) and 6.144 Gbps

transceivers

• Hard memory controllers

Hard processor

system (HPS) with

integrated ARM®

Cortex™-A9

MPCore processor

• Integration in a single Cyclone V SoC (system-on-a-

chip) of an FPGA, dual-core ARM Cortex-A9 MPCore

processor and hard IP

• Supports over 128 Gbps peak bandwidth with integrated

data coherency between the processor and the FPGA

fabric

Lower system

expenses

• For operation needs only two core voltages

• Low-cost wirebond packaging is supported

• Includes innovative features such as Configuration via

Protocol (CvP) and partial reconfiguration[16]

2.2.4 Altera's Stratix
®
 V FPGA

One of the main features of the Altera’s 28-nm Stratix® V FPGA is enhanced core

architecture, built in transceivers with the working speed up to 28.05 gigabits per

second and integrated hard intellectual property (IP) blocks in the form of unique

array.

Chapter 2. Background 28

This kind of improvements gives a new class of Stratix V FPGA, which is

optimized for application targeted devices:

- Bandwidth-centric applications and protocols, including PCI Express®

(PCIe®) Gen3

- 40G/100G data-intensive applications

- Application for high-performance and high-precision digital signal

processing (DSP).

Stratix V devices has a four variants (GT, GX, GS, and E), and each of them are

targeted for different (specific) set of applications. In general Stratix V FPGA is

being used for higher quality production, and for low risk, low cost production

mainly HardCopy® V ASICs is used.

Like in all Stratix V family variants there are a rich set of high-performance

building blocks which has a redesigned ALM (adaptive logic module), embedded

memory blocks for 20 Kbit, DSP (Digital Signal Processing) blocks, fractional

PLLs (Phase-Locked Loops). Altera’s architecture based on multi-track routing

concept interconnects all above mentioned building blocks. Also one of the main

features of Stratix V devices is the new built in HardCopy Block, which achieves

Altera’s unique HardCopy ASIC abilities as it has customizable hard IP bock.

2.3 NVIDIA GeForce GTX 660 TI

NVIDIA GeForce GTX 660 TI has dozens of cores and these cores are different

from cores in CPU. NVIDIA GeForce GTX 660 TI cores are designed for intensive

graphics related computations and can do image processing work faster than CPU.

Also, it is possible to apply parallel execution due to the number of GPUs in current

graphic cards.

GPUs are able to have much higher number of transistors compared to CPUs and do

not have to deal with cache and control logic, but are mainly focused on graphics

processing tasks [18] [17]. Some tasks in Lane Detection and Tracking algorithm

(example: selection of ROI, resampling, thresholding) are executed on NVIDIA

GeForce GTX 660 TI because pixels in the original image are independent and

computations require no or very little synchronization in between, thus can be

proceed in parallel [19]. This is the reason behind significant increase in

computational speed after delegating image processing tasks to hardware

accelerators (more about it in Chapter 3).

Chapter 2. Background 29

The drawback of GPUs is that they require special programming models. For

instance, NVIDIA GeForce GTX 660 TI cards used in this thesis should be

programmed either with CUDA or OpenCL.

2.4 Heterogeneous Platforms

Heterogeneous Platforms - are the workstations with a mix of different types of

cores or processors (often CPUs and GPUs) where GPUs and FPGAs are normally

used as additional processors to a CPU. The reason for combining different types of

processors under one platform is that CPUs are best suited for sequential tasks [37]

or OS related peripheral tasks and computationally intensive graphics processing

operations are for hardware accelerators.

An average CPU has four, eight, sixteen cores, has about a billion transistors

and can achieve about 0.5 TFlop for floating point calculations. An average GPU

has 64 cores, is 64x-threaded, and has on average twice as many transistors. GPU

can achieve 6 TFlop — 120 times of CPUs processing speed.

By combining both under one platform it is possible to delegate computationally

intensive tasks to NVIDIA GeForce GTX 660 TI, ALTERA Stratix V or ALTERA

Cyclone V SOC, while CPU can run the OS and handle other peripheral tasks.

Heterogeneous systems are typically used in computer vision, robot motion

planning or simulation tasks. For example, Lane Detection and Tracking algorithm

developed at TU Munich is based on heterogeneous platform where GPU and

FPGAs took a role of hardware accelerators connected to a host CPU system. Host

system runs the main application with all the peripheral tasks and delegates’

graphics processing tasks to hardware accelerators. The probable drawback of this

architecture is in certain delay for host to kernel communication but execution time

profiling revealed that overheads are insignificant, unless performed too often.

2.5 Gaussian function smoothing

Image like as in the case of one-dimensional signal can be obtained with some noise

and for eliminating it before the main processing of the image starts, pre-processing

filters are normally applied.

Normally, the noise is regarded as an arbitrary combination of the colour and

brightness information, which should not be present in the original image. The

process of the emergence of noise can be due to sensor and chips errors in digital

Chapter 2. Background 30

cameras. The idea of using low-pass filter kernels is in smoothing the image. The

high-frequency part of the image such as edges and noise are removed by the low-

pass filter, and some image processing techniques are applied to prevent blurred

edges.

The Gaussian function is based on the usage of averaging filter except for the fact

that instead of using the single weight for each pixel, a two-dimensional Gauss

function applied for the kernel that provides the highest weight to the pixel located

in the centre.

Figure 2.9 2D Gaussian curve

One of the forms of mathematical convolution is 2D Kernel Convolution. The

resulting image is calculated by iterating over each pixel of the original image and

applying kernel to it, which ultimately gives us a new pixel for each operation. For

example, if the kernel operator is 3 x 3 matrixes, the final pixel will be an average

value of 9 adjacent pixels for each pixel of the input image, resulting in an averaged

output image.

2.5.1 Image Convolution

The main part of the majority of filtering operations is based on image convolution.

The basic idea of image convolution is the application of image transformation

technics based on neighbouring pixels to each pixel of the original image. For this

transformation matrix which is simple 2D matrix is used, and for the sake of

simplicity, this matrix is called a Kernel. The new value of the resulting image is

being calculated as the sum of the products for each pixel of the original image. To

compute these products, the multiplication of the kernels with the appropriate pixel

of the image should be done, and also the central element of the kernel must be

multiplied with the actual image pixel.

Chapter 2. Background 31

Practical implementation of convolution can be shown on most popular filter which

uses the Gaussian kernel. The practical application of the Gaussian filter (Gaussian

blur) is very wide and can be used for image smoothing, noise removing and edge

detection. The edge detection algorithm in most cases is very sensitive to noise.

Therefore Gaussian filter is applied for eliminating unnecessary noise before the

actual edge detection is performed.

The next figure shows the convolution example using the Gaussian kernel:

1 2 1 0 1 3 1

2 4 2 2 1 2 5 2

1 2 1 4 3 5 0

 1 1 2 1

Figure 2.10: From left to right: the kernel (Gaussian), original image (matrix), and

result values (matrix).

For the computation of the value in the position (2, 2) of the resulting matrix, the

following process is applied:

(1*0 + 2*1 + 1*3 + 2*2 + 4*1 + 2*2 + 1*4 + 2*3 + 1*5) / 16 = 2

2.6 Intel® Threading Building Blocks library

For experimentation purposes it was decided to try to re write sequential code using

parallel programming techniques offered by Intel threading building blocks library.

If computational results are satisfactory, there will be no further need in developing

OpenCL kernels. Thus segments of code occupying bulk of computation time due

to sequential execution on host could still remain on host but instead would be

executed in parallel. This would help to save time, as writing kernel code, handling

memory issues, integrating kernels into the main application and recompiling

executables is not an easy task.

Intel threading building blocks library enables developers to write parallel

applications in C++. The well-known advantage of the Intel TBB library is that it

Chapter 2. Background 32

makes parallel performance and scalability accessible to developers, especially for

those, writing loop based applications (ROI selection consumes bulk of

computational resources and is performed by two nested loops iterating through

rows and columns of the original image and processing image pixels one by one in

a sequential manner) [35].

In TBB it is possible to select ROI by wrapping the serial loops into one

parallel_for. parallel_for divides index space into sections based on the grain size,

which is passed as argument. TBB creates and schedules threads to run above

mentioned sections of work on its own, it promises to improve efficiency by

assigning available worker threads to work items, by making sure that no thread

stays idle.

No thread stays idle because TBB implements work stealing to divide workload

across available cores. This approach helps to increase core utilization and scaling.

In TBB work stealing model, the workload is evenly divided among the available

cores. If one core completes its work while other cores still have big amount of

work in their queue, it reassigns some of the work from busy cores to idle ones [36].

2.7 OpenCL

OpenCL - is a framework for programming on heterogeneous high performance

devices (ex. GPGPU, FPGA connected to CPU) which allows the developer to

write C++ functions, called kernels. The framework provides a high level of

abstraction to write low level hardware instructions.

Hardware accelerator consists of compute units and processing elements. Compute

unit consists of compute kernels written in OpenCL C. Kernels contain sequence of

instructions, which are called work item. Work group consists of several work

items, which are executed concurrently.

OpenCL kernel is alternative to Intel® Threading Building Blocks library, with one

major difference: it runs on hardware accelerators. Benefits of re writing some

segments of code in Open CL kernels is that it will allow to process each pixel

independently and in parallel to others on GPGPU/FPGAs.

Kernels obtain information from main application via the following memory

regions:

- Global memory - all work items in all work groups have enough privileges

to write to and read from this memory region

https://en.wikipedia.org/wiki/Work_stealing

Chapter 2. Background 33

- Constant memory - a fraction of global memory, is only accessible by a host

system and is not volatile.

- Work Group’s local memory - work items belonging to work group are only

able to access this part of memory

- Work item’s private memory - accessible by work item only

Thread block on a current GPU contains up to 1024 threads. One kernel can be

executed by several thread blocks therefore the total number of threads working on

a single kernel (such as. ROI selection, Line sampling) is equal to number of

threads in a single block multiplied by number of blocks. Thread blocks are not

dependent on each other, can be executed in any order on any of the available cores

thus enabling scalability tied to number of available cores.

2.8 OpenCL – Runtime API

2.8.1 Create Buffer Objects

The memory objects located in the main memory of the host or the global memory

installed at the accelerator require careful treatment in OpenCL. One of the reasons

of such condition is the slowness of these memories. Another reason is that the

constant copying between these two memories takes a decent amount of time [23].

In programs written using OpenCL the buffer objects are applied to represent

generic data. OpenCL provides the ability to transfer data without converting to

OpenCL compatible device using buffer objects and then manipulate data using the

familiar properties of the C similar languages. This approach eliminates the need to

convert the data to a specific hardware format.

Since the data transfer consumes some time, the best option would be to minimize

the reading and writing sessions as much as possible. It is possible reduce the

amount of data traffic needed for processing data using the method of packaging of

all host data in a buffer object that may remain on the device [24].

Chapter 2. Background 34

cl_mem clCreateBuffer (cl_context context,

cl_mem_flags flags,

size_t size,

void *host_ptr,

cl_int *errcode_ret)

flags: CL_MEM_READ_WRITE,

CL_MEM_{WRITE, READ}_ONLY,

CL_MEM_HOST_NO_ACCESS,

CL_MEM_HOST_{READ, WRITE}_ONLY,

CL_MEM_{USE, ALLOC, COPY}_HOST_PTR [25].

The function clCreateBuffer is based on the creation of OpenCL-specific object

that is passed as an argument to the kernel.

The parameters can be described as:

size

The buffer memory object has to be allocated using size in bytes.

host_ptr

Is a pointer to the buffer data which is allocated by the application.

errcode_ret

Returns an appropriate error code. If it is NULL, no error code is returned.

2.8.2 Read, Write Buffer Objects

With the event mechanism in OpenCL it is extremely easy to manage different parts

of algorithm. For example, memory objects can be transferred from the host

memory to the memory of the devices and back using data transfer APIs

clEnqueueReadBuffer and clEnqueueWriteBuffer.

With the application of API clEnqueueWriteBuffer it is possible to write to the

device memory immediately before the launch of Kernel. In order to get back the

buffer data from the device memory to the host upon completion of the processing

of the kernel clEnqueueReadBuffer function is used [27].

Chapter 2. Background 35

cl_int clEnqueueWriteBuffer (

cl_command_queue command_queue,

cl_mem buffer,

cl_bool blocking_write,

size_t offset,

size_t size,

const void *ptr,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event) [28].

The function clEnqueueReadBuffer reads data from the device to the host

memory:

cl_int clEnqueueReadBuffer (

cl_command_queue command_queue,

cl_mem buffer,

cl_bool blocking_read,

size_t offset,

size_t size,

void *ptr,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event) [29].

The parameters can be described as:

command_queue

Refers to the command-queue in which the read (write) command will be

queued.

buffer

Refers to a current buffer object.

blocking_read

Indicates if the read operations are blocking or non-blocking.

If operation blocking_read is true i.e. the read command is blocking,

clEnqueueReadBuffer does not return until the buffer data has been read

and copied into memory pointed to by ptr.

If operation blocking_read is false i.e. the read command is non-

blocking, clEnqueueReadBuffer queues a non-blocking read command and

returns. The contents of the buffer that ptr points to cannot be used until the

read command has completed.

Chapter 2. Background 36

blocking_write

Indicates if the write operations are blocking or nonblocking.

If operation blocking_write is true, the OpenCL implementation copies the

data referred to by ptr and enqueues the write operation in the command-

queue. The memory pointed to by ptr can be reused by the application after

the clEnqueueWriteBuffer call returns.

If operation blocking_write is false, the OpenCL implementation will

use ptr to perform a nonblocking write. As the write is non-blocking the

implementation can return immediately. The memory pointed to

by ptr cannot be reused by the application after the call returns.

offset

The offset in the buffer object to read/write from (in bytes).

cb

The size of data being read/written (in bytes).

ptr

The pointer to buffer in host memory where data is to be read into.

event_wait_list , num_events_in_wait_list

event_wait_list and num_events_in_wait_list specify events that need to

complete before this particular command can be executed.

event

Returns an event object that identifies this particular read command and can

be used to query or queue a wait for this particular command to complete.

2.8.3 Kernel Arguments and Queries

It is not possible to invoke a kernel with a certain list of arguments, in contrast to a

function call in the C++ programs. In order to start the kernel the scheduling

through the initialization function of the queue should be applied. Each argument of

the kernel must be specified separately with clSetKernelArg () function (the syntax

of C++ language allows it). It should also be noted that kernel arguments are

persistent.

 The inputs for this function are the object of the kernel, the argument number

with an index, size of the argument and the pointer to the argument. Then, in order

to make a correct extraction of the data according to the type, the information on the

type should be applied from the list of kernel parameters [30].Arguments of the

Kernel must be set prior to execution using the function clSetKernelArg [31] as

follows:

Chapter 2. Background 37

cl_int clSetKernelArg (

 cl_kernel kernel ,

 cl_uint arg_index,

size_t arg_size,

const void *arg_value) [32].

The parameters can be described as:

kernel

A current kernel object.

arg_index

The argument index. Arguments to the kernel are referred by indices that go

from 0 for the leftmost argument to n - 1, where n is the total number of

arguments declared by a kernel.

arg_value

A pointer to data that should be used as the argument value for argument

specified by arg_index.

arg_size

Specifies the size of the argument value [32].

2.8.4 Kernel Execution on a Device

Kernel is started with clEnqueueNDRangeKernel() function. The command-queue

will be triggered successfully if the target device is already set. Object of the kernel

in the main class identifies the executable code. In order to create a work item four

fields are being used. The parameter which defines the number of dimensions on

the basis of which work item is being created is called - work_dim.

global_work_size describes the number of work items for each dimension in

NDRange and local_work_size specifies the number of work items for each

dimension of the working groups. Another parameter named global_work_offset

can be applied to ensure the balance so that global identifiers (ID) of the working

items do not start from zero [30].

cl_int clEnqueueNDRangeKernel (

cl_command_queue command_queue,

cl_kernel kernel ,

cl_uint work_dim,

const size_t *global_work_offset,

const size_t *global_work_size,

const size_t *local_work_size,

Chapter 2. Background 38

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event) [34].

2.9 Particle Filter

Particle filter [20] is a numerical approximation to the nonlinear Bayesian filtering

problem and it’s used during Lane tracking phase. It helps to decrease overall

computational time of the lane detection algorithm by using the previously

calculated information such as best_lines and good_lines for predicting the

measurements for the next frame, thus to avoid allocating hundreds of sampling

lines and weighting them again.

Particles in the particle set are the samples of posterior distribution and are

represented by:

Xt:= xt
[1]

 , xt
[2]

 ,....., xt
[M]

 ;

1<= m <= M

Each particle 𝑥𝑡

[𝑚]
 represents a possible true state at time 𝑡. M - Represents the

number of particles and Xt is a particle set. The trick of PF is to approximate belief

bel (𝑋𝑡) - measurements obtained during lane detection phase, by user defined

number M of particles. Bigger the M is, the more likely it is to track the lane

accurately. Similar to other filters from the family of Bayes filter algorithms, PF

obtains the right measurements for current frame bel (𝑋𝑡) recursively using the

measurements obtained one time step earlier bel(𝑥𝑡−1). Belief is nothing but a set

of particles, thus PF performs lane tracking by obtaining the set of particles

𝑋𝑡 recursively from the previous set at an earlier time t𝑥𝑡−1. In this algorithm the

previous set at time t 𝑥𝑡−1 can be obtained by an empirical set of particles, such as

good lines and best lines, kept from a previous frame.

Chapter 2. Background 39

2.1 Algorithm Particle_filter (Xt -1, ut, zt)

1: 𝑋𝑡 = 𝑋𝑡 = Ø

2: for m = 1 to M do

3: Sample 𝑥𝑡
[𝑚]

~𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1

[𝑚]
)

4: 𝜔𝑡
[𝑚]

= 𝑝(𝑧𝑡|𝑥𝑡
[𝑚]

)

5: 𝑋𝑡 = 𝑋𝑡 + 〈𝜔𝑡

[𝑚]
, 𝜔𝑡

[𝑚] 〉

6: Endfor

7:

for m = 1 to M do

8: draw i with probability ∞𝜔𝑡
[𝑖]

9: add 𝑥𝑡

[𝑖]
 to 𝑋𝑡

10: end for

11: retrun 𝑋𝑡

𝑥𝑡−1 - Particle set, ut - the recent control, zt - are the latest measurements [20]

In the beginning the algorithm constructs a temporary particle set X, which is

similar to the belief bel (𝑋𝑡) by processing each particle 𝑥𝑡−1

[𝑚]
 from the particle set.

LANE TRACKING

Motion

Update

Measurement

Update
Resampling

Figure 2.11 Lane Tracking

1. Line 3 assigns a probable state 𝑥𝑡

[𝑚]
 for time t based on the particle 𝑥𝑡−1

[𝑚]
 of

the previous frame. The resulting sample is labeled by m, to show that it is

obtained from the m-th particle in 𝑥𝑡−1 - of the previous measurement. The

set of particles obtained in step 3 is the filter’s representation of bel(𝑥𝑡) and

corresponds to motion update on Figure 2.11

2. Line 4 calculates weight of a particle. Weights of a particle are used to

include the latest measurements into the particle set. The set of weighted

particles represents posterior bel (𝑥𝑡), and corresponds to measurement

Chapter 2. Background 40

update step of Figure 2.11. The weights will vary based on how likely the

particles represent the true lane.

3. Lines 8 through 11 implement resampling or importance resampling by

drawing each particle by its importance weight. Resampling transforms a

particle set of M particles into another particle set. By incorporating the

importance weights into the resampling process, the distribution of the

particles changes: whereas before the resampling step, they were distribution

according to bel (𝑥𝑡), after the resampling they are distributed

(approximately) according to the posterior bel (𝑥𝑡). Resampling step

ensures survival of the fittest.

41

Chapter 3

Implementation

3.1 Overview of the Method

Frame from

Quadrocopter

Pre- Processing

Lane Tracking

Elimination of unnecessary

objects(ROI)

Region of interest is

grayscaled

Edge detection using Sobel

operator

Noise removal by

thresholding

X and Y

coordinates

of the lanes

Lane Detection

Figure 3.1: Structure of the Method

As shown on Figure 3.1 algorithm works with stream of frames coming from a

camera installed on top of a vehicle or quadcopter hovering over the car. It consists

of three main stages: preprocessing, lane detection and lane tracking.

Preprocessing stage comprises of several phases. In Elimination of

unnecessary objects phase color image is cleared of objects of least interest, such as

sky, trees, buildings and etc. by selecting the region of image where lane markings

are most likely to be found.

Chapter 3. Implementation 42

In the next step selected region is Grayscaled, mainly for practicality reasons. After

obtaining black and white image edge detection and Thresholding operations are

performed. The final output of preprocessing stage is shown in Figure 3.2b.

Execution time profiling revealed that programming bottlenecks within

preprocessing phase occupied bulk of execution time therefore this phase has been

completely re-written two times, first using parallel programming techniques in

C++, to run on host machine, which later proved to be not sufficient, and eventually

in OpenCL kernel, which allowed executing this stage completely in parallel on

hardware accelerators. Thus sections of code hampering execution time of this stage

were completely eliminated.

a) Original frame b) Preprocessed frame

Figure 3.2: Image before and after preprocessing

As can be seen from Figure 3.1, following the preprocessing phase, depending on

availability of previous weighing, either lane detection or lane tracking is

performed. In case of lane detection - a random sampling is executed to sample

probable road lane markings, lines are weighted according to their distance to the

lane and line with the highest weight is selected to represent the real lane.

In case of lane tracking - the weighing from a previous frame along with a

Particle Filter are used to detect the road lane markings in the current frame. Lanes

are not evaluated again but are tracked, thus the name Lane Tracking.

Lane detection/ tracking are performed by OpenCL kernels, in parallel [because

lines are completely independent] and computations are delivered by hardware

accelerators.

Subsequent sections will provide a detailed explanation of above mentioned stages ,

along with illustrations and achieved results.

Chapter 3. Implementation 43

3.2 Details of the implementation

3.2.1 Pre-Processing

Objects of least interest such as sky, trees and buildings are discarded by selecting

regions where road lane markings are most likely to be located. As can be seen on

Figure 3.3 this area is surrounded by a green rectangle and called a region of

interest. Further stages of algorithm work with ROIs only and discard everything

outside of the green rectangle.

Figure 3.3: Region of Interest

3.2.2 Elimination of unnecessary objects by Botsch 2015

In Botsch, 2015 ROI was selected in a sequential manner and was performed by

host machine. Image was first processed by rows and then by columns. In each

iteration of the loop calculations on color channels were performed, bit shifting was

done and the values of three channels were combined. This worked pretty well for a

single ROI but proved to be unacceptable for multiple ROIs.

As can be seen on the Figure 3.4b, with one ROI where ROI.WIDTH =

original_image.width, pre-processing phase alone occupied more than 83% of

computation time and the remaining phases like Lane Detection and Lane Tracking

took only 1.6% and 15% respectively. The reason for preprocessing stage

consuming considerable computational time is that ROI selection was done in

sequential manner on host.

Execution time profiling revealed that within preprocessing stage 80% of the

computational time was occupied by selection of ROI, and the rest of the operations

like Grayscaling, Edge detection and Thresholding took only 20% of the time.

Exact distribution of computational time is shown on Figure 3.4.

Chapter 3. Implementation 44

97.40%

2.60%
Distribution of the computation t ime

Host: Cortex A9
processor, 800 MHz,
1GB DDR3 SDRAM

NVIDIA GeForce GTX
660 TI

Figure 3.4 Distribution of the computation time in Botsch 2015

Besides that, as shown on Figure 3.4a distribution of the workload between host

and kernel is 97.40% and 2.60% respectively. The distribution is strongly uneven,

host performs bulk of image processing task though hardware accelerator would

have done it more efficiently. One of the factors contributing heavily to such

uneven workload distribution is the same - ROI selection was performed by host, in

a sequential manner.

Above mentioned issues had to be eliminated, otherwise allocation of multiple

ROIs for each frame would increase computation time many folds, and the whole

algorithm would not be able to meet hard real time requirements. The following

sections will explain the work done and resolved issues.

83.40%

1.60%

15.00%

Composition of the average computation
t ime for one ROI

Preprocessing(1'414'8
80)
Lane
Detection(28'744)

80.10%

3.20%

11.80%

4.90%

Composition of the average computation time within Pre
processing stage

ROI selection

Grayscaling

Edge Detection

Thresholding

a) Distribution of the computation time between

host and device on NVIDIA GeForce GTX 660 TI

b) Distribution of the computation time between

Pre-processing, Lane Detection and Lane
tracking in Microseconds, WIDTH of ROI is

equivalent to the WIDTH of the image

c) Distribution of computational time, one ROI

Chapter 3. Implementation 45

3.2.3 Elimination of unnecessary objects in current work

Elimination of unnecessary objects phase has been completely re-written two times,

first using parallel programming on host and second time on OpenCL kernel.

3.2.3.1 Using parallel execution on the host

Two loops iterating through the columns and rows of the image were replaced by

code which divided this iteration into chunks, and run each chunk on a separate

thread thus breaking computation down into tasks that can run in parallel.

New algorithm used work stealing to balance a workload among available cores

with the aim of increasing core utilization. If one of the cores completed its task and

the other core has a long queue, work stealing would reassign tasks waiting in a

queue to an idle core.

This approach allowed to distribute image processing task among all available cores

but did not reduced overall computation time. The probable reason for that is that

work stealing is not efficient for large numbers of processor cores. It causes

significant amount of computation time to be spent in scheduling and workload

balancing when running certain tasks on a multi core system. Therefore, it was

decided to continue research and experimentation with other execution models.

Detailed execution time profiling after implementing parallel execution by host are

presented in Chapter4.

3.2.3.2 Using OpenCL kernel

As can be seen from Algorithm 3.1 new algorithm uses OpenCL write buffers to

allocate image processing task to hardware accelerator.

Algorithm 3.1 ROI selection on KERNEL:

1: for each image : do

2: unsigned char image.data=OBTAIN_IMAGE_DATA(image);

3: CL_ENQUE_WRITE_BUFFER(image.data);

4: int row = GET_GLOBAL_ID_ROW(0);

5: int column = GET_GLOBAL_ID_COLUMN(1);

6: int x = ROI_X(ROI_START_X+col+ROI_START_Xtemp);

7: int y = ROI_Y(ROI_START_Y+row);

8: int ind = RGB_COLOR_CHANNELS(x,y);

https://en.wikipedia.org/wiki/Task_parallelism

Chapter 3. Implementation 46

9: unsigned char B = image.data[ind];

10: unsigned char G = image.data[ind+1];

11: unsigned char R = image.data[ind+2];

12: FINAL_OUTPUT[INDEX] = RGB_PROCESSING(R,G,B);

13: end for

Line 2 processes a raw image and assigns it to a data structure of type unsigned

char.

Line 3 resulting data structure is transferred to kernel using OPENCL Write Buffers

Line 4 KERNEL accesses global memory region to obtain a starting point w.r.t X

axis

Line 5 KERNEL accesses global memory region to obtain a starting point w.r.t Y

axis

Line 6 and 7 obtains X and Y coordinates of needed pixels

Line 8 obtains the actual index of required pixel

Line 9, 10 and 11 obtain actual values of R, G, B colors.

Line 12 Calculation is performed on RGB color channels (bit shifting, summation

and etc.), the values of three channels are combined to yield the actual color of the

pixel and the result is stored in a new data structure. New matrix is forwarded for

further processing (grayscaling, edge detection and etc.) using OPENCL WRITE,

READ and COPY Buffers.

Summary

In Botsch, 2015 this phase was executed in sequential fashion on CPU using double

nested loops which was a programming bottleneck and did not allow to have

multiple regions of interest due to doubling computation time with every additional

ROI.

The new algorithm obtains raw image on the host and writes it to kernel. Due to

ability of hardware accelerators to allocate large amount of highly parallel hardware

resources, due to pipelining ability and because of the large amount of data

parallelism this approach reduced computation time, contributed to more even

distribution of tasks between host and kernel. Detailed execution time profiling

after delegating this phase to hardware accelerators are presented in Chapter4.

Chapter 3. Implementation 47

3.2.4 Grayscaling

The remainder of the image (ROI) is in RGB color format. In this format each pixel

contains three color channels, RED, GREEN and BLUE. In color images the values

of the three channels are combined to yield the actual color of the pixel. The

drawback of RGB format is that it’s harder and computationally more expensive to

extract lanes from the road because three color channels would have to be

compared.

On contrary, grayscale image is simply one in which the only colors are shades of

gray. The reason for grayscaling region of interest is that verses to colored version

it needs less information to be provided for each pixel. In `grayscaled' format red,

green and blue components all have equal intensity in RGB space, and therefore it

is sufficient to assign a single intensity value for each pixel, as opposed to the three

intensities needed to specify each pixel in a full color image [38]. There is no need

to use more complicated and harder-to-process color images, grayscale images are

sufficient for detecting road lane markings. Each frame is transformed to grayscale

format by summing up weights of all three channels; the resulting value denotes the

intensity of a pixel.

After performing grayscaling of an image road lanes could be identified based on a

property that lane markings are substantially brighter than the road they are printed

on, this can be seen on Figure 3.5.

Figure 3.5 Input and output of the Grayscaling phase

On Figure 3.5 each pixel reflects the intensity of the pixel in the original image and

therefore dark pixel representing the asphalt will receive low intensity values and

bright pixels representing white lane markings on the road will receive higher

weights.

During grayscaling tens of thousands of pixels are processed independently and in

parallel by hardware accelerators which provided additional performance gains. To

expedite computations no floating point values were used.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm

Chapter 3. Implementation 48

Frame from

Quadrocopter
Region of interest is grayscaled

Edge detection using Sobel

operator
Noise removal by thresholding

Elimination of unnecessary

objects(ROI)

Pre-Processed

Image

Pre-Processing step

Figure 3.6: Edge Detection

3.2.5 Edge detection

Edges in an image are being detected using Sobel filter. It calculates the change in

the gradient of an image and identifies regions where the frequency of color

transition is higher. These regions denote sharp changes in the gradient and

therefore correspond to edges in the original frame [39]

The following two 3x3 masks are used for approximating intensity gradient of

every pixel. One mask is used to calculate the edge gradient w.r.t y axis, the other

w.r.t x axis. Each neighboring pixel found around that point is given a value. The

values are then added together and assigned to 𝐺𝑥 andGy.

Formula 3.1 Horizontal and vertical image convolution

1.

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑙𝑦 (𝐺𝑥) = [
−1 0 +1

−2 0 +2
−1 0 +1

] × [𝑑𝑎𝑟𝑘 𝑖𝑚𝑎𝑔𝑒]

2.

Vertically (Gy) = [
−1 −2 −1
0 0 0

+1 +2 +1

] ×[𝑑𝑎𝑟𝑘 𝑖𝑚𝑎𝑔𝑒]

3. |G| = |Gx|+|Gy|

Figure 3.7 Before and after Edge detection

Line 1 - absolute value of the intensity gradient is calculated – horizontally (image

convolution for horizontal direction)

Line 2 - absolute value of the intensity gradient is calculated – vertically (image

convolution for vertical direction)

Chapter 3. Implementation 49

Line 3 - the edges are calculated using less expensive summation method: |G| =

|Gx|+|Gy|

Frame from

Quadrocopter
Region of interest is grayscaled

Edge detection using Sobel

operator
Noise removal by thresholding

Elimination of unnecessary

objects(ROI)

Pre-Processed

Image

Pre-Processing step

Figure 3.8: Thresholding

3.2.6 Thresholding

Thresholding is the last phase of Pre-processing. It is a method of eliminating noise

from an image. In this phase value of each pixel is compared to a user defined

threshold value and based on the results, the original value of the pixel gets updated

by a maximum value or set to NULL.

Normally the outcome of the Thresholding phase is that regions containing lanes on

a road obtain a maximum value, thus get brighter. Other disturbances such as

shadows, light reflections, roadside markings and etc. are cleared off the image by

assigning gradient intensity value to NULL. The algorithm is executed completely

on hardware accelerators.

Algorithm 3.2 For performing Thresholding

1:
I = INTENSITY(pixel);

2: If (I < THRESHOLD_VALUE) then I = 0;

3: ELSE

4: I = MAX_VALUE;

Figure 3.9: Before and after Thresholding is applied

Chapter 3. Implementation 50

3.2.7 Summary of the Pre-processing

Algorithm 3.3 Preprocessing stage

1:

SELECT_ROI (full_original_image);

2: Load required PIXELS

3: for all PIXELS P do

4: P=GRAYSCALING (P);

5: G = CONVOL_X (P);

6: Gx= Gx + G;

7: G= CONVOL_Y (P);

8: Gy= Gy + G;

9:

10: end loop

11: SUM= |Gx|+|Gy|

12: If SUM < THRESHOLDING_VALUE

13: Then SUM = 0

14: Else if SUM ≥ THRESHOLDING_VALUE

15: Then SUM = MAX.

16: End if

Line 1 – Obtains a section of the image where lanes are most likely to be located

Line 4 - Applies grayscaling

Line 5 - Obtains intensity gradient w.r.t X axis (image convolution for horizontal

direction)

Line 6 – Sum of horizontal intensity gradients

Line 7 - Obtains intensity gradient w.r.t Y axis (by applying image conv. for

vertical direction)

Line 8 - Sum vertical intensity gradients

Line 11- Sum of intensity gradients SUM= |Gx|+|Gy|

Line 12-16 - Clears off minor disturbances

a) Original image b) The final outcome of preprocessing

phase.

Figure 3.10 Summary of preprocessing phase

Chapter 3. Implementation 51

In preprocessing phase: first all unnecessary objects were eliminated by selecting

portion of image where road lane markings are most likely to be found. Since even

small sections of image may contain thousands of pixels eliminating some parts of

the original image reduces computational effort significantly.

In the next stage the remainder of image was converted from color to grayscale.

The reason for that is that verses to colored version grayscaled one needs less

information to be provided for each pixel, thus reducing computational time as well.

In the third step edges were detected by applying Sobel operator.

And finally a noise is eliminated by applying Thresholding. It assigned a maximum

value to pixels containing high intensity values, which most of the time correspond

to lanes and NULL value to pixels containing low intensity values, thus eliminating

minor disturbances from the image.

100% of the preprocessing stage is executed on hardware accelerators. Outcome of

preprocessing stage is an image with lane markings of the road only. The image

shown on Figure 3.10 b) is used in further phases of the algorithm for identifying

the exact X and Y coordinates of lanes.

Continuous video

stream from camera

Extract Region

of Interest

Sobel Edge

Detection

Tresholding

Frame L = 0?

Lane

Detection
Lane Tracking

Display

YesNo

Grayscale the

image

Figure 3.11: The general flow of the algorithm

Chapter 3. Implementation 52

3.3 Lane Detection

Detection of lane markings in image is not an easy task. That is mainly due to the

poor quality of lane markings, different sorts of occlusions, presence of traffic or

complex geometry of lanes. But there are few properties which make it easier to

detect lanes:

 Lanes do not cross

 Each lane is located in its own region

 Regions corresponding to real lanes on average contain up to 10 pixels in

width

As shown on Figure 3.11 lane detection is performed only when there is no any

information available from a previous frame or lane tracking cannot proceed. As

shown on Figure 3.12 Lane Detection is done by placing candidate lines randomly

on preprocessed frame and calculating their weights. Weight of a line is nothing but

a sum of all intensities of all pixels in the line. Thus some candidate lines

correspond to real lanes, thus have a higher weight but some do not and therefore

their weight is less. After candidate lines are weighted, the line with the highest

weight is selected. Selected line is considered as the most accurate representation of

a real line.

a) Sampling on preprocessed frame b) Sampling on color image

Figure 3.12: a) Line sampling, b) Lane Detection allocates thousands of line samples

and evaluates weights of each of them

During Lane Detection step tens of thousands of sampling lines are created and

weighted independently. Placing a bigger number of candidate lines produces more

accurate results, but increases computational effort, especially if line sampling is

done by host. In this case nested for loops would evaluate each line in a sequential

manner, thus creating a programming bottleneck. But because the lines are

independent from each other, this phase is executed on device.

Chapter 3. Implementation 53

Once sampling is completed host only performs sorting. It selects the line with the

highest score, which is the most accurate representation of a real line and stores

dozens of candidate lines with the weight above average inside of a data structure

named good_lines which are used for lane tracking.

LANE DETECTION

Line

Sampling

Line

Weighting

Sort

Weighting

Select Highest

Weights

Figure 3.14: Phases of Lane Detection

As shown on Figure 3.14 Lane Detection consists of four phases and is the second

most resource consuming task. On average it is triggered once for 300 frames but

the amount of resources it consumes is ten times of lane tracking.

3.4 Lane Tracking

The vehicle moving at a speed of 80km/h will produce an enormous amount of data

at a high speed for processing real time and it is extremely important to be able to

process incoming frames on time, otherwise casualties are unavoidable. This places

the algorithm into the category of hard real time systems.

As mentioned before, lane detection step is computationally expensive because it

clears all the calculations done for the last image and re-processes frames afresh by

allocating thousands of sample lines and calculating weight of every line, therefore,

if it is performed too often, it might jeopardize the execution time, especially for

frames with several regions of interests.

Benefits of Lane Tracking is that it uses pre-processed frame, good lines and best

lines measurements obtained at earlier time t-1 as an input to track the lanes in

subsequent frames. Lane tracking does not detect lanes but keeps information about

line markings from the previous frame, makes some adjustments to retained

information based on measurements obtained real time and applies it to the current

frame. It is based on Particle Filter and consists of Motion Update, Measurement

Update and Resampling phases.

Chapter 3. Implementation 54

Figure 3.15: The result of lane tracking phase are exact x and y coordinates of lane

markings

LANE TRACKING

Motion

Update

Measurement

Update
Resampling

Figure 3.16: Lane tracking is performed in three phases

3.4.1 The Lane Tracking Algorithm

Algorithm 3.4 Particle Filter for Lane Tracking[40]

1: for i = 1 : num_good_lines do

2: MOTION_UPDATE (good_lines(i), Δρ, Δθ, motion_noise)

3: MEASUREMENT_UPDATE (good_lines(i), measurement_noise)

4: end for

5: *good_lines_new ← RESAMPLE (*good_lines)

6: *good_lines ← *good_lines_new

Where i - identifies the line with the weight above average, good_lines

Δθ - is orientation of a line

Δρ – distance

Chapter 3. Implementation 55

Line 2 - MOTION_UPDATE - shifts each line by Δρ and rotates by Δθ depending

on the slope and lane direction

Line 3 - MEASUREMENT_UPDATE - compares x intercept and orientation of

good lines with the nearest best line and assigns a weight along the Gaussian

probability distribution based on how close a good lines is to best line.

Line 5, 6 - RESAMPLING - forms a new set of particles by selecting the highest

weights.

Motion Update

Motion update provides rough probability distribution of the new states 𝑋𝑡 by using

the measurements obtained one time step earlier thus the main input for motion

update step are the particle sets at 𝑋𝑡−1.[20] Algorithm first constructs a temporary

particle set which is very similar to the previous set but not the same. It does this by

systematically processing each particle in the input set of particles 𝑋𝑡−1. The

mathematical representation of the algorithm for processing particles in the input

set from a previous state is based on the following formula:

Motion Update MOTION_UPDATE subroutine in Algorithm 3.4 is constructed

based on Equation 3.1

𝑃𝑟(𝑋𝑡 |𝑌𝑡−1) = ∑ 𝑃𝑟(𝑋𝑡
𝑖 |𝑋𝑡−1

𝑖 , 𝑌𝑡−1
𝑖) × 𝑃𝑟(𝑋𝑡

𝑖 |𝑌𝑡−1
𝑖) × 𝛥𝑋𝑡−1

𝑖

 (3.1)

Where 𝑖 -is a particle

𝑋𝑡 − Is a new state

𝑋𝑡−1 – represents an old state

𝑃𝑟(𝑋𝑡|𝑌𝑡−1) − Posterior probability distribution at an earlier state

In this algorithm the state at time 𝑡 is expressed as position of a lane marking with
coordinates of x_top and x_bottom.

Chapter 3. Implementation 56

Measurement Update

Measurement update is performed after motion update to obtain more accurate

probability distributions.

Mathematical representation of this stage is shown on Formula 3.2:

𝑃𝑟(𝑋𝑡 |𝑌𝑡) =
𝑃𝑟(𝑌𝑡 |𝑋𝑡

) × 𝑃𝑟(𝑋𝑡
)

𝑃𝑟(𝑌𝑡)
 (3.2)

Where 𝑃𝑟(𝑋𝑡 |𝑌𝑡
) represents posterior probability distribution

𝑃𝑟(𝑌𝑡|𝑋𝑡) – Likelihood

𝑃𝑟(𝑋𝑡) − Prior probability distribution

𝑃𝑟(𝑌𝑡) − Evidence

Numerator of the equation (prior x likelihood) - 𝑃𝑟(𝑌𝑡 |𝑋𝑡) × 𝑃𝑟(𝑋𝑡) is obtained by

calculating the weight of each particle and is based on the following formula:

𝜔𝑖 =
1

√2𝜋 𝜎2
𝑒

−
1
2(

𝑋𝑡
𝑖 −µ
𝜎)

2

 (3.3)

Denominator of the equation, 𝑃𝑟(𝑌𝑡) is an evidence and is obtained by summing up

the weights for all the particles

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 = ∑ 𝜔𝑖

𝑁𝑝

𝑖=1

 (3.4)

Every iteration of measurement update will filter out probability distribution of the

particle states and will produce more accurate values. As a result particles located

closer to actual road lane markings will be assigned a higher values compared to

those far away from actual lane [20]

Chapter 3. Implementation 57

Resampling

Resampling or importance resampling is performed by selecting each particle by its

importance weight. Resampling transforms a particle set of M particles into a new

particle set by incorporating the importance weights, obtained during measurement

update, into the resampling process and changes the distribution of the particles. For

instance, before the resampling was performed, particles were distribution

according to an earlier belief 𝑏𝑒𝑙(𝑋𝑡), after the resampling particles in a new

particle set are distributed (approximately) according to the posterior 𝑏𝑒𝑙(𝑋𝑡) which

ensures survival of the fittest by sorting out probability distribution and selecting

the particles with the highest weights as shown on Algorithm 3.5. [20] The

Resampling algorithm used in this paper is identical to (Madduri, 2014, p. 55-60).

Algorithm 3.5 Resample - ensures that particles re assigned to a new set have a

weight less than the value of β

1:

idx = rand()%Np

2: β = 0.0

3: for i = 1 : Np do

4: β + = rand()%(2*ωmax)

5: while β > ωidx do

6: β - = ωidx

7: idx = (idx + 1)%Np

8: end while

9: particle(i) = particle(idx)

10: end for

idx - is a random index drawn from a particle indexes.

ωmax - maximum weight in the particle set

β - Variable β is assigned a random value which must be less than the double of

maximum weight

ωidx – weight of a particle

M – Number of particles in the particle set

Chapter 3. Implementation 58

3.5 Redetection cases

Redetection algorithm contains set of checks to ensure that lane tracking is able to

proceed. It is triggered in cases where lane markings are no longer visible, vehicle

moves from one lane to the other or there is significant amount of noise in the

frame. Code performing the checks contains the following criteria:

 Lanes should not intersect

 The minimum distance between lines is observed

 The minimum length of lane is present in pre-processed frame– this criteria

is especially important for scenarios where vehicles switch between lanes

 Lanes are not out of frame, still visible

If all the criteria are met algorithm proceeds with lane tracking, if not lane detec tion

is triggered. Figure 3.17 illustrates scenarios where redetection criteria fail

a) Lanes are no longer in the frame

b) Redetection is triggered immediately

 c) Vehicle switches between lanes,

thus only part of lane is in the frame

d) Initialization of the algorithm

Figure 3.17 Redetection cases

Lane detections are mostly triggered during lane changes, for first frames, presence

of significant amount of noise in the frame or when line is no longer visible.

Chapter 3. Implementation 59

3.6 Angle calculation

For the calculation of the inclination angle, the connection between two or more

regions of interests (ROIs) is necessary. Weather two or more ROIs are connected

is computed in the following way:

 Right and left side (Xstart, Xend) coordinates for each ROI are stored

 If Xend coordinate of ROI one is in the range of

Xstart_ROI_0 –predefined_offset < Xend_ROI_1 < Xstart_ROI_0 + predefined_offset

it is assumed that these two ROIs are connected

 after connection is defined next ROI’s connection should be detected in the

same way

 If all ROIs are connected, the flag value will change to true. This indicates

that all ROIs for the current frame form one line, as shown on Figure 3.18

 Calculation of inclination angle is performed

 The same procedure is applied to the right side of the ROI

ROI 0

ROI 1

ROI 2

Frame N

ROI_Height

Lane

Good lines

Figure 3.18 Best lines across all ROIs approximately form one line

Chapter 3. Implementation 60

ROI 1

ROI 0

Xstart_ROI_0, Ystart_ROI_0

Xend_ROI_0, Yend_ROI_0

Xend_ROI_1, Yend_ROI_1
Xstart_ROI_0 -10 < Xend_ROI_1 < Xstart_ROI_0 +10

ROI_Height

ROI_Height

Xstart_ROI_1, Ystart_ROI_1

Figure 3.20: Scheme of Connection detection between ROIs

The following formula is used for calculating the inclination angle:

tan−1 (
a

b
) (3.5)

where a, b - cathects of the rectangle shown on Figure 3.21

a is height of one ROI multiplied to the number of all ROIs

b is equal to difference of Xstart coordinate of the last ROI and Xend

coordinate of the first ROI.

Xend_ROI_0, Yend_ROI_0

ROI 0

ROI 1

ROI 2

Left side of frame N

ROI_Height

Xstart_ROI_last, Ystart_ROI_last

tan (α)

b = Xstart_ROI_last - Xend_ROI_0

a = ROI_Height * ROI number

Lane

Figure 3.21: Scheme of calculation of inclination angle

As can be seen from Figure 3.18 after computing inclination angle, the value is

printed on a frame.

Chapter 3. Implementation 61

3.7 Further contributions

3.7.1 Multiple regions of interests

In order to provide a long distance sensing of lane markings it was suggested by

Botsch, 2015 to populate frame with multiple, independent ROIs. To be able to

achieve that, some sections of code in pre-processing phase had to be replaced.

Figure 3.22: The process of processing ROIs

For instance, in order to draw multiple ROIs on the frame, it had to pass through

preprocessing phase several times, but with different image_width, 𝑋 and 𝑌

coordinates thus processing different sections of image. It was not possible with the

previous algorithm because previous algorithm was designed to receive image,

detect/track lanes and dispose the image. Therefore when the frame did not get

disposed but went through preprocessing phase multiple times the algorithm wrote

one frame on top of the other, creating several layers of information as shown on

Figure 3.23. For example, ROI_0 from Figure 3.20 was preprocessed and its values

were stored inside of image_raw data structure. In the next iteration when the same

frame was passed through preprocessing phase again but with different ROI

coordinates, algorithm wrote new values on top of previous image_raw. As a result

final preprocessed frame had several layers of information thus was corrupted and

the rest of the algorithm did not function any more, Figure 3.23a.

Chapter 3. Implementation 62

a) Lane Tracking

b)Previous algorithm with multiple

ROIs

Figure 3.23 a) Lane Detection/tracking on corrupt frames b) Preprocessed frame

with several layers of information

The problem was solved by “cleaning” the specific memory regions inside of

image_raw data structure before using it in preprocessing phase again. In a new

approach image_raw stores values of ROI_0 first, than on the second iteration left

and right edges of image_raw are set to 0 and values in the middle are replaced by

new measurements obtained from ROI_1. The values which are set to 0 are filtered

out by thresholding phase, therefore do not affect the results of Lane

Detection/Tracking.

3.7.2 Adaptive regions of interest

One of the aims of this work is to achieve an accurate and fast lane

detection/tracking for multiple regions of interest for views from top and front

Since, “The size of the ROI is a driving parameter that determines computational

speed and effort of the lane detection/tracking. The smaller the ROI is chosen, the

faster the lane detection performs” - Botsch 2015. Therefore straightforward

allocation of ROIs on a frame would linearly increase computation time, and

algorithm would not be able to meet hard real time requirements. Adaptive

(meaning that the WIDTH, 𝑋 and 𝑌 coordinates of ROI’s are not hardcoded but

keep adjusting w.r.t. lanes) ROIs guarantees that the image to be processed is as

small as possible and mainly focused on road lane markings.

ROI 0

ROI 1

ROI 2

Figure 3.24 Adaptive ROIs

Chapter 3. Implementation 63

“Adaptivity” was achieved by dynamically defining ROI WIDTH based on 𝑋 and

𝑌 coordinates of lanes detected in a previous ROI. As shown on Figure 3.20 width

of ROI_1 is smaller than X_END_ROI_0 thus maximum width limit set for ROI_1

can be calculated based on coordinates of lanes detected on ROI_0 and so on.

Execution time profiling presented in subsequent chapters illustrates that this

feature slightly reduced computation time.

3.8 Summary

Programming Bottlenecks: There were several code segments across the project

where computations were performed neither on device nor in parallel. As shown on

Figure 3.4 Distribution of computation time between host and device, bulk of the

computations were performed by host, while hardware accelerator was idle most of

the time. This was one of the areas which required careful analysis. After several

weeks of research more even distribution of the workload across hardware

accelerators and the host was achieved and had a positive impact on overall

performance. It was accomplished by eliminating selection of ROIs in a sequential

manner by host and delegating this task to kernel. This allowed breaking

computation down into tasks that can run in parallel by hardware accelerators which

gave shorter computation time and more even distribution of workload between

host and kernels, more about it in Chapter 4. Currently 100% of pre-processing is

done by kernel. This allowed achieving maximal computation speed. It was also

calculated that communication overheads for transferring original image to kernel

and back to host are insignificant.

The next contribution is developing an algorithm for multiple ROIs and lane

inclination angle calculation: There was a suggestion to develop an algorithm which

would be able to compute inclination angle of the lane . Which would allow DAS to

deal with road bending and sharp turns in advance. The developed algorithm detects

connection between all best lines on multiple regions of interest, computes the

length of all sides of an imaginary triangle and calculates the degree of inclination.

Allocation of multiple ROIs was achieved by passing frame through replaced

preprocessing, updated lane detection and updated lane tracking phases multiple

times.

Chapter 3. Implementation 64

And finally adaptivity for ROIs was achieved by dynamically changing ROI width

and x_start values based on lanes detected in other ROIs. The computational time

gains after implementing adaptivity feature are presented in the following chapter.

All above mentioned changes contributed towards more feature reach lane

detection/tracking algorithm, resulted in more even distribution of workload

between host and kernel and allowed to shorten computation time.

Chapter 4

Results

4.1 Chapter outline

Testing of the algorithm was conducted to ensure that planned goals have been

achieved and defects or sections of code degrading performance were found and

fixed.

This chapter is structured the following way, in section 4.2 computation time and

distribution of workload between host and device in Botsch 2015 and in current

work is shown. Section 4.3 presents testing of the algorithm on TUM_DLR dataset

and compares execution time obtained with adaptive ROIs to measurements

obtained with fixed sized ROI. The testing in section 4.3 was conducted via

allocating different number of particles and defining different value for a threshold

parameter. In the last section some know issues were presents.

For evaluation of the performance of the algorithm testing was performed on

TUM_DLR dataset which was recorded during day time in the surroundings of

German Aerospace Centre, Munich and TUM_DAY dataset, recorded in the

surroundings of Garching.

Chapter 4. Results and Evaluation 66

97.40%

2.60%

Distribution of the computation t ime on the
N VIDIA GeForce GTX 660 TI

Host: Cortex A9
processor, 800
MHz, 1GB DDR3
SDRAM

Altera Cyclone V SX

83.40%

1.60%

15.00%

Composition of the average computation time

Preprocessing

Lane Detection

Lane Tracking

4.2 Composition of the computation time.

4.2.1 Initial Performance

Initially the algorithm of Botsch 2015 was evaluated against TUM_DLR dataset by

allocating one ROI. Profiling revealed that pre-processing phase alone occupied

more than 80% of execution time and the remaining phases like Lane Detection and

Lane Tracking took only 1.6% and 15%. This is shown on Figure 4.1b)

Also on Figure 4.2 it is shown that within preprocessing stage 80% of the

computation time is spent for selection of ROI and 20% of time is spent for

Grayscaling, edge detection and Thresholding. Besides that as shown on Figure

4.1a) distribution of the workload between host and kernel is 97.40% and 2.60%

respectively. The distribution is uneven with host performing bulk of computations.

Figure 4.1 Distribution of workload and computation time in Botsch 2015

Figure 4.2 Distribution of the computation time in Botsch 2015

80.10%

3.20%

11.80%

4.90%

Composition of the average computation time
within Pre processing stage

ROI selection

Grayscaling

Edge Detection

Thresholding

a) Distribution of the computation time
between host and device on the NVIDIA

GeForce GTX 660 TI

b) Distribution of the computation time between

Pre-processing, Lane Detection and Lane

Tracking in Microseconds

Chapter 4. Results and Evaluation 67

98.10%

1.90%

Distribution of the computation t ime on the
N VIDIA GeForce GTX 660 TI

Host: Cortex A9
processor, 800
MHz, 1GB DDR3
SDRAM

Altera Cyclone V SX

4.2.2 Parallel processing by host

As mentioned in Chapter 3, initial attempt to improve computation time was done

by introducing parallel for, in hope that it would break computation down into tasks

that can run in parallel. If computational results are satisfactory, there will be no

further need in developing OpenCL kernels. Thus segments of code occupying bulk

of computation time due to sequential execution on host could still remain on host

but instead would be executed in parallel. This would shorten development time, as

writing kernel code, managing memory problems and integrating kernels into the

main application is a time consuming task. The outcome of this attempt is

presented below.

Parallel for allowed to distribute image processing task among cores but did not

reduced overall computation time. The measurements obtained after implementing

parallel execution on the host are shown on Figure 4.3 and Figure 4.4. From Figure

4.3b) it can be seen that pre-processing phase occupied 85% of execution time and

the remaining phases took 1.6% and 13.4%. Also on Figure 4.4 it is shown that

within preprocessing stage more than 81% of the time is still spent for ROI

selection, distribution of the workload between host and kernel is even more

skewed towards host showing 98.10% and 1.90% respectively where host still

performs bulk of computations

 Figure 4.3 ROI selections on the host with parallel loops

85.00%

1.60%

13.40%

Composition of the average computation time

Preprocessing

Lane Detection

Lane Tracking

a) Distribution of the computation time
between host and device with parallel

execution on host

b) Distribution of the computation time between
Pre-processing, Lane Detection and Lane

Tracking

https://en.wikipedia.org/wiki/Task_parallelism

Chapter 4. Results and Evaluation 68

Figure 4.4 Distribution of computation time with parallel loops

As can be seen on Figure 4.3b and Figure 4.4 Pre-processing took a bit more time

than the previous approach.

4.2.3 Parallel processing by kernel

In this approach the idea was to delegate most resource consuming tasks to

hardware accelerators. After allocating ROI selection task to the kernel the

following measurements were obtained.

Figure 4.5 ROI selections on kernel

81.90%

2.90%

10.80%

4.40%

Composition of the average computation time within Pre
processing stage

ROI selection

Grayscaling

Edge Detection

Thresholding

81.10%

18.90%

Distribution of the computation t ime on the
N VIDIA GeForce GTX 660 TI

Host: Cortex A9
processor, 800
MHz, 1GB DDR3
SDRAM

Altera Cyclone V
SX

68.00%
3.60%

28.40%

Composition of the average computation
t ime

Preprocessing

Lane Detection

Lane Tracking

a) Distribution of the computation time

between host and device on the NVIDIA

GeForce GTX 660 TI

b) Distribution of the computation time between
Pre-processing, Lane Detection and Lane

Tracking in Microseconds

Chapter 4. Results and Evaluation 69

Figure 4.6 Distribution of computation time within Pre processing

The new algorithm obtained raw image on the host, and delegates it to the kernel,

where all computations are performed. This approach reduced computation time

and contributed to more even distribution of tasks between host and kernel.

Communication overheads incurred during write and read operations are negligible.

As can be seen from Figure 4.5b) hardware accelerators handle image processing

tasks more efficiently, pre-processing phase occupies less than 70% of execution

time. Also on Figure 4.6 it is shown that within preprocessing stage less time is

spent for ROI selection. Distribution of the workload between host and kernel is

more balanced, with 81.10% and 18.90% respectively.

The host still consumes significant amount of computational time (more than 81%)

due to ARM Cortex-A9 processor running on the host and not by the programming

bottlenecks in the algorithm or the Altera FPGA board and also execution time

profiling revealed that significant amount of computation time is spent for loading

images and writing them back to the disk.

4.3 Testing the algorithm on datasets

Following computation time profiling the algorithm was tested on pre-recorded

video which was captured during daytime in the surroundings of German Space

Operations Centre. The dataset mostly contains the suburban roads with less traffic

and is suitable for testing the algorithm with multiple ROIs.The video was recorded

by Parrot Bebop Drone quad copter.

61.90% 12.90%

15.80%

9.40%

Composition of the average computation time within Pre
processing stage

ROI selection

Grayscaling

Edge Detection

Thresholding

Chapter 4. Results and Evaluation 70

Recorded Video

TUM_DLR

Name of the dataset

ROI1

1280

Size of the first ROI

ROI2

800

Size of the second ROI

ROI3

680

Size of the third ROI

NUM_FRAMES

686

Total number of frames in the

dataset

THRESHOLD_VALUE

100,150,200,250,300

Only weights above threshold

value is considered

GOOD_LINES

16,32,64,128,256

Number of particles used for

Lane Tracking

Table 4.1 Testing settings - the algorithm was tested with different parameters for threshold and

sampling lines.

4.3.1 Lane Detection

On Figure 4.7a) an image with clearly identifiable lane markings is shown. Lane

detection algorithm uses the same frame to allocate multiple ROIs and detected the

lanes using 128 sampling lines, the outcome is shown on Figure 4.7c).

From Figure 4.7b), it can be noticed that the lane markings occupy the entire ROI

and have different orientations. This was done to handle the cases where lanes are

not straight but have complicated road lane geometry.

Following lane sampling the algorithm selects the two best lines, to represent the

real lanes. As can be seen from Figure 4.7c) d) selected two best lines are the

perfect match to the real lane. These experiments were conducted to prove that the

algorithm is able to detect/track lanes for images taken from cameras installed on

top of the vehicle across multiple ROI.

Chapter 4. Results and Evaluation 71

a) Full original image

b) Allocation of hundreds of sampling lines

c) Multiple ROIs are allocated

d)Detected best lines match the real lanes

Figure 4.7 b) Orientation of sampling lanes are in all directions and cover the whole ROI.

c) Lane detection/tracking is performed separately for each ROI and is not influenced by

neighbouring ROIs across all frames in the dataset. d) The accuracy of detecting the lanes

in the algorithm is high for 256,128 or 64 sampling lines but degrades if number falls

below 64.

4.3.2 Lane tracking

As mentioned in previous sections lane detection is triggered on average once for

300 frames (depending on the quality of the recording and lane geometry). It is

triggered mostly during lane switches, intersection of detected lanes or if minimum

distance between lanes is not observed. The rest of the time lane tracking operation

is performed. Therefore performance of the algorithm is heavily dependent on the

performance of lane tracking phase.

Performance of Lane tracking phase is dependent on the number of allocated

particles and ROI size. Higher are the numbers more time it takes for the algorithm

to compute the results.

Chapter 4. Results and Evaluation 72

Sections below presents testing conducted on the dataset with different number of

particles. The purpose of this testing was to find the minimum number of particles

required for obtaining accurate results.

a) Original image

b)Number of particles is set to 16

c) 32 particles

d) 64 particles

e) 128 particles

f) 256 particles

Figure 4.8 Lane tracking/detection performs well for 256, 128, 64 sample lines but

allocating a number less than 64 degrades the accuracy of the algorithm .

Figure 4.8, presents the results obtained for different number of particles. Figure

4.8a) shows the original image and images 4.8b) to 4.8f) show different outputs

using 32, 64,128,256 particles. The outcome of the testing is that the algorithm is

able to track lanes with 32 particles, but not across all ROIs. If second or third ROIs

Chapter 4. Results and Evaluation 73

will have complicated lane geometry or weights of lanes will be less then weights

of white buildings in the vicinity the Particle Filter might not be able to perform

tracking any more. This will trigger lane detection more often and will result in

increase of overall computation time. Defining the number of particles to a bigger

value (64, 128, and 256) generally improves the accuracy of the algorithm but

requires additional computation time.

In summary: The robustness of the lane tracking algorithm was evaluated across all

ROIs for all frames in the dataset. For 98% of the frames algorithm was able to

track lanes accurately when 64 particles were allocated, this can be seen from

Figure 4.8d).

4.3.3 Threshold

As mentioned before the TUM_DLR dataset was tested with different threshold

values. The testing was conducted to find out the minimum required value for this

parameter.

a) Full original image

b)Threshold value is equal to 100

c)For 96.2% of the frames the algorithm
produced accurate results when threshold value

is set to 150

d)Threshold value is equal to 200

Chapter 4. Results and Evaluation 74

e) Threshold value is equal to 250

f)Threshold value is equal to 300

Figure 4.9 testing performed on TUM_DLR dataset with various threshold values

Testing revealed that the algorithm produces optimal results across all ROIs when

the threshold value is set to 150.

4.3.4 Adaptive ROIs

Experiment was performed on a TUM_DLR dataset with three ROIs to measure

computation time of the algorithm with adaptive ROIs. Following the experiment

the results were compared to measurements obtained when “adaptivity” feature is

disabled.

Figure 4.10 Algorithm with adaptive ROIs is computationally faster

The size of the ROI has a great influence on computational speed of the algorithm.

The smaller the size of the ROIs, the shorter is the computation time. Adjusting

ROI size dynamically for a frame with three ROIs reduces computational time for

preprocessing phase for 30%, lane detection/tracking phases for 35%.

0

500,000

1,000,000

1,500,000

2,000,000

Preprocessing Lane detection Lane tracking

Distribution of computation time for a frame with
three ROIs on NVidia GeForce GTX 660 TI GPU

M
ic

ro
se

c
o
n
d
s

Time spent for processing Time spent with adaptive
ROIs

Chapter 4. Results and Evaluation 75

Table 4.2

a) Distribution of computation time for a frame with three non-adaptive ROIs

Operation Time in microseconds Frames per second

Preprocessing 1.844.640, 00

Lane detection 86.232,00

Lane tracking 767.286,00

Total 2’ 698 ‘158 114

b) Number of processed frames per second for a frame with three non-adaptive ROIs

Number of particles Frames per second

64 114

128 123

256 123

512 117

1024 105

2048 88

Table 4.3

a) Distribution of computation time for a frame with three adaptive ROIs

Operation Time in microseconds Frames per second

Preprocessing 1.148.880

Lane detection 53.969,00

Lane tracking 475.994

Total 1’ 678 ‘843 194

b) Number of processed frames per second for a frame with three adaptive ROIs

Number of particles Frames per second

64 194

128 190

256 151

512 111

1024 64

2048 41

Chapter 4. Results and Evaluation 76

0

50

100

150

200

250

64 128 256 512 1024 2048

Performance for a frame with three ROIs on NVidia GeForce
GTX 660 TI

F
ram

e
s p

e
r se

c
o

n
d

Adaptivity eanbled Fixed ROI size

Number of particles

4.3.5 Computation Speed

As mentioned earlier the algorithm developed in this thesis falls under a category of

hard real time systems, and thus should detect/track lanes as fast as possible,

therefore computation speed and accuracy are the most important characteristics of

the algorithm.

Number of processed frames and computation time are dependent on few factors

like, the size of the ROI, the number of ROIs and number of particles. Figure 4.11a)

and b) demonstrates the influence of those factors.

a) Diagram above depicts measurements obtained. Y axis represents number of
frames per second processed on GPU, X axis shows allocated number of

particles. During the experiment three ROIs were allocated for each frame. As
can be seen from diagram above performance is higher for 64, 128 and 256
particles when “adaptivity” feature is enabled. But if more particles are

allocated algorithm performs better when ROI size is fixed.

Chapter 4. Results and Evaluation 77

b) During the experiment one ROI was allocated for each frame. The results are
different, the performance is higher for 64, 128, 256, 512, 1024 and 2048

particles when adaptivity feature is enabled, and algorithm performs better
when ROI size is fixed if less particles are allocated.

Figure 4.11 Performances on GPU

Figure 4.12 Performances on GPU of Botsch, 2015

Number of particles has major influence on the processing speed. On GPU the

average frames per second decrease by less than 80 % if the number of particles is

raised from 64 to 2048 for three ROIs and decreased by less than 25% for frames

with one ROI.

Current algorithm produces accurate results with 64 particles. With 64 particles on

average 258 frames per second are processed for one adaptive ROI, and on average

0
50

100
150
200
250
300

64 128 256 512 1024 2048

Performance for a frame with one ROI on NVidia GeForce GTX
660 TI

F
ram

e
s p

e
r

Adaptivity eanbled Fixed ROI size

Number of particles

0
50

100
150
200
250
300

64 128 256 512 1024 2048

Performance for a frame with one ROI on NVidia GeForce GTX
660 TI

F
ram

e
s p

e
r se

c
o

n
d

 Fixed ROI size

Number of particles

Chapter 4. Results and Evaluation 78

194 fps are processed for frames with three adaptive ROIs. The results show the

slight increase in performance compared to a previous work.

In Botsch 2015, on average 245 fps are processed with 64 particles (excluding

inclination angle calculation) versus to 258 fps with the same number of particles in

current work (including angle calculation)

4.4 Known problems

Testing revealed that algorithms working for one scenario may not work well in

others. Examples are the datasets like TUM_DAY where camera is installed in

front of the vehicle and has a view directed towards the horizon. In this case

detection/tracking of lanes will be accurate for the first ROI but will fail for the rest

because other ROIs are not visible. But for cases where frames are captured from

quad copter or from a camera installed on top of the vehicle, ex. TUM_DLR

dataset, the algorithm is able to detect/track lanes across all ROIs.

a) Algorithm works with one ROI

b) Lanes on a second ROI are still

visible

c) Lanes on third ROI are no longer
visible

d) Tracking/detection for two ROIs

Chapter 4. Results and Evaluation 79

e) Tracking/detection for three ROIs

Figure 4.13 a), b) For frames taken by a camera installed in front of the vehicle the
algorithm will detect/track lanes accurately only on two ROIs. c) Within the third ROI

lanes no longer exist, d), e) the camera should be installed on top of the vehicle in order to
detect/track lanes for higher number of ROIs.

4.5 Summary

Initial section presented issues of the previous work and different approaches taken

to solve them. The most efficient strategy to reduce computation time was to

delegate image processing task to hardware accelerator and read results back to the

host using Open CL read, write and copy buffers. This approach allowed to

decrease ROI selection time by 20%.

In subsequent sections the testing of the algorithm against different datasets was

presented along with sample outputs and obtained computation times. The

algorithm was tested against TUM_DLR and TUM_DAY datasets with the help of

shell script. The script triggered the program several times and on every fifth

execution increased number of particles [64, 128, 256, 512, 1024, and 2048]. The

final measurements representing computation time, processed frames per second,

distribution of the workload between host and device were calculated by summing

up the intermediary results and obtaining an average value. Obtained measurements

were compared to the initial results and conclusion was drawn. In the last section of

the chapter some known issues were presented.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The algorithm consists of three main phases:

 preprocessing

 lane detection/lane tracking

During preprocessing phase original image is first cleared of all unnecessary objects

(ex. Sky, trees and buildings) by selecting the region of image, ROI – where lane

markings are most likely to be located. Selected region is grayscaled, mainly for

practicality reasons, applied Sobel filter and cleared from minor disturbances.

Execution time profiling showed that significant amount of computation time was

spent on preprocessing stage therefore this phase has been replaced by kernel and

delegated to hardware accelerators. As a result 100% of preprocessing is now

performed by kernels. This allowed accomplishing more even distribution of the

workload between device and the host. Communication overheads for transferring

image data between host and device are insignificant.

Conclusion and Future Work 81

81

Following the preprocessing phase, either lane detection or lane tracking is

performed. In case of lane detection – region of interest is populated with hundreds

of random sampling lines to sample probable road lane markings, lines are

weighted according to their distance to the lane and line with the highest weight is

selected to represent the real lane.

In case of lane tracking – the weightings from a previous frame, motion noise and

measurement noise are used to track the road lane markings in the current frame.

Lanes are not evaluated again but are tracked. 100% of lane detection and lane

tracking are also computed by hardware accelerators.

Previous algorithms were designed for one ROI: ROI was extracted, preprocessed,

passed through lane detection/tracking and disposed. New algorithm is able to

support multiple, independent, adaptive ROIs. Adaptivity was accomplished by

dynamically changing ROI width and x_start coordinates.

The inclination angle of detected lane is calculated and printed on an original

image. Thus, enabling on board system to deal with road bending and sharp turns in

advance. Calculation of inclination angle was done by detecting connection

between all best lines across all ROIs, and applying trigonometric functions to

obtain the degree of inclination.

The algorithm was tested on datasets with varying conditions, lane types and

camera inclination angles. The results showed that overall computation time was

reduced by 15% and more even distribution of workload between host and kernel

was achieved. The current computation time (t > 85%) consumed by ARM Cortex-

A9 processor is justified due to peripheral tasks, read/writes performed by host and

not by the programming bottlenecks or design faults in the algorithm.

Testing revealed that the computation time differed with the selection of the ROI

size, number of ROIs and number of particles. The algorithm was tested on Nvidia

GeForce GTX 660 TI GPU and compared to preceding work. The results showed a

slight increase in accuracy and robustness, approximately 15% faster execution on

the GeForce GTX 660 TI, due to elimination of programming bottlenecks and

implementation of parallel execution on kernels.

All above mentioned changes contributed towards feature reach, accurate and

robust lane detection/tracking algorithm.

Conclusion and Future Work 82

82

5.2 Future Work

The proposal for future work is drive repetitive routes autonomously. Repetitive

routes are the routes taken by drivers often; ex. Is the road from home to office and

back driven at least five times a week (~20 hours a month).

During the supervised learning phase the algorithm uses training sets (recorded

stereo images from on board cameras), to identify lane markings, objects, patterns

and match them to actions taken by the driver. Obtained information is used as an

input to learning algorithm. Next time the algorithm is used it can output the same

steering action for a similar occurrences. Initially accuracy may be low, but as

algorithm learns the driver can rely on the vehicle to drive autonomously from

home to office and back at least five times a week. Technology developed in this

thesis can serve as a good starting point.

In order to achieve semi-autonomous driving it is suggested to:

1) First, model a set of virtual routes of different complexity, including a straight

road, a circular route, a route with multiple turns, etc. Given certain amount of

manually designed road types, it is possible to utilize them as building blocks

for generating a comprehensive set of routes that could be encountered in real

world.

2) Draw virtual lanes across these roads, thus obtain ground truth.

3) Model a virtual car equipped with a set of several cameras and possibly some

other sensors such as LIDAR.

4) Drive the car along these routes and record the videos from the cameras. With

recent advancements in rendering technologies, it is possible to obtain very realistic

videos.

5) Using the ground truth of the lane, supervised learning (e.g. a convolutional

neural network) to train a model to recognize the lane from video records and match

it to actions taken by driver.

6) After achieving this task it will be necessary to include traffic movement,

cyclists, and pedestrians. Afterwards, the model needs to be adapted to dynamic and

stochastic environments. The final goal of applying supervised learning is to

achieve an automated driving experience for one single route. Due to threat

imposed on lives of people the reliability of the recognition is of particularly high

concern for such systems. A reinforcement learning method that supports successful

driving experiences (e.g. identifying and following the lane without accidents) and

very strongly penalizes unsuccessful ones, (e.g. hitting other traffic participants),

can be used to train a reliable recognition and driving model [42]

Conclusion and Future Work 83

83

7) And finally, real world driving experience should be used to update the model.

The reason I suggest to involve simulated environment is that it allows for

generating a dataset with ground truth, which may open the possibility for a deep

learning based approach that learns the mapping between the raw video, the lane,

the environment and driver’s response. Among other advantages is the possibility to

train and evaluate the solution on very unusual and risky environments –

experiences which are not always viable or even possible to obtain in real world.

The final outcome of the next thesis is to arrive to a point where algorithm is able

learn to drive autonomously the routes taken by drivers frequently.

Bibliography

C++ AMP: Accelerated Massive Parallelism with Microsoft® Visual C++®, By: Kate

Gregory and Ade Miller, Publisher: Microsoft Press

K. Kluge, “Extracting Road Curvature and Orientation from Image Edge Points

without Perceptual Grouping into Features,” in Proceedings Intelligent

Vehicles Symposium, pp. 109-114, 1994.

B. Serge and B. Michel, “Road Segmentation and Obstacle Detection by a Fast

Watershed Transform,” in Proceedings of the Intelligent Vehicles ’94

Symposium, pp 296-301, October 1994.

Y. Xuan, B. Serge and B. Michel, “Road Tracking, Lane Segentation and Obstacle

Recognition by Mathematical Morphology,” in Proceedings of the Intelligent

Vehicles ’92 Symposium, pp166-170, 1992.

K. Kluge and S. Lakshmanan, “A Deformable Template Approach to Lane

Detection,” in I. Masaky, editor, Proceedings IEEE Intelligent Vehicle’95,

pp54-59, Detroit, September 25-26 1995.

S. Lakshmanan and K. Kluge, “Lane Detection for Automotive Sensor,” in ICASSP,

pp. 2955-2958, May 1995.

A. Broggi, “Robust Real-Time Lane and Road Detection in Critical Shadow

Conditions,” in Proceedings IEEE International Symposium on Computer

Vision, Coral Gables, Florida, November 19-21 1995. IEEE Computer

Society.

A. Broggi and S. Berte, “Vision-Based Road Detection in Automotive Systems: a

Real-Time Expectation-Driven Approach,” Journal of Artificial Intelligence

Research, 3:325-348, December 1995.

A. Broggi, “A Massively Parallel Approach to Real-Time Vision-Based Road

Markings Detection,” in Masaky, I. (Ed.), Proceeding IEEE Intelligent

Vehicles’95, pp.84-89, 1995.

M. Bertozzi and A. Broggi, “GOLD: a Parallel Real-Time Stereo Vision System for

Generic Obstacle and Lane Detection,” IEEE Trans. Image Processing, pp62-

81, Jan 1998.

D. Grimmer and S. Lakshmanan, “A Deformable Template Approach to Detecting

Straight Edges in Radar Images,” IE EE Trans. Pattern Analysis and Machine

Intelligence, vol.18, pp.438-443, 1996.

D. Jung Kang, J. Won Choi and In So Kweon, “Finding and Tracking Road Lanes

using LineSnakes,” in Proceedings of Conference on Intelligent Vehicle, pp.

189-194, 1996, Japan.

Bibliography 85

85

Axel KASKE, Didier WOLF and Rene HUSSON, “Lane Boundary Detection Using

Statistical Criteria,” in International Conference on Quality by Artificial

Vision, QCAV’97, pp. 28-30, 1997, Le Creusot, France.

Axel KASKE, Rene HUSSON and Didier WOLF, “Chi-Square Fitting of Deformable

Templates for Lane Boundary Detection,” in IAR Annual Meeting’95,

November 1995, Grenoble France.

Intelligent Vision & Video, accessed on January 20, 2016 from

https://www.altera.com/solutions/technology/intelligent-vision-and-

video/overview.tablet.html

Introduction to FPGA Technology: Top 5 Benefits, retrieved March 10, 2016 from

http://www.ni.com/white-paper/6984/en/#

Cyclone V Device Overview accessed on January 10, 2016 from

https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_51001.pdf

CUDA C Programming Guide https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html

GeForce GTX 660 Ti overview, accessed on January 2, 2016 from

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-660ti

Direct GPU-FPGA Communication, Alexander Gillert, April 15, 2015

Probabilistic Robotics, by Sebastian Thrun, Dieter Fox, Wolfram Burgard, 1999-2000

http://people.ufpr.br/~danielsantos/ProbabilisticRobotics.pdf

Parallel Mandelbrot in Julia, C++, and OpenCL retrieved on April 2016 from

http://distrustsimplicity.net/articles/mandelbrot-speed-comparison/

Computer Vision for the Web, by: Foat Akhmadeev retrieved on April 2016 rom

http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programmin

g/javascript/9781785886171/what-is-filtering-and-how-to-use-

it/ch02lvl2sec13_html?query=((image+convolution))#snippet

OpenCL Basics: Flags for the creating memory objects, retrieved March 10, 2016,

https://streamcomputing.eu/blog/2013-02-03/opencl-basics-flags-for-the-

creating-memory-objects/

Creating and Managing Buffer Objects In OpenCL, retrieved March 15, 2016, from

https://developer.apple.com/library/mac/documentation/Performance/Concept

ual/OpenCL_MacProgGuide/CreatingandManagingBufferObjectsInOpenCL/

CreatingandManagingBufferObjectsInOpenCL.html

The Khronos Group Inc., clCreateBuffer, retrieved October 15, 2015 from

https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clCreateBuffer.h

tml

OpenCL Basics: Flags for the creating memory objects, retrieved October 25, 2015

from https://streamcomputing.eu/blog/2013-02-03/opencl-basics-flags-for-

the-creating-memory-objects/

https://www.altera.com/solutions/technology/intelligent-vision-and-video/overview.tablet.html
https://www.altera.com/solutions/technology/intelligent-vision-and-video/overview.tablet.html
http://www.ni.com/white-paper/6984/en/
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-660ti
http://people.ufpr.br/~danielsantos/ProbabilisticRobotics.pdf
http://distrustsimplicity.net/articles/mandelbrot-speed-comparison/
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/javascript/9781785886171/what-is-filtering-and-how-to-use-it/ch02lvl2sec13_html?query=((image+convolution))#snippet
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/javascript/9781785886171/what-is-filtering-and-how-to-use-it/ch02lvl2sec13_html?query=((image+convolution))#snippet
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/javascript/9781785886171/what-is-filtering-and-how-to-use-it/ch02lvl2sec13_html?query=((image+convolution))#snippet
https://streamcomputing.eu/blog/2013-02-03/opencl-basics-flags-for-the-creating-memory-objects/
https://streamcomputing.eu/blog/2013-02-03/opencl-basics-flags-for-the-creating-memory-objects/
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/CreatingandManagingBufferObjectsInOpenCL/CreatingandManagingBufferObjectsInOpenCL.html
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/CreatingandManagingBufferObjectsInOpenCL/CreatingandManagingBufferObjectsInOpenCL.html
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/CreatingandManagingBufferObjectsInOpenCL/CreatingandManagingBufferObjectsInOpenCL.html
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clCreateBuffer.html
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clCreateBuffer.html
https://streamcomputing.eu/blog/2013-02-03/opencl-basics-flags-for-the-creating-memory-objects/
https://streamcomputing.eu/blog/2013-02-03/opencl-basics-flags-for-the-creating-memory-objects/

Bibliography 86

86

OpenCL Programming by Example, by: Ravishekhar Banger; Koushik Bhattacharyya

http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programmin

g/9781849692342/3dot-opencl-buffer-

objects/ch03s04_html?query=((clEnqueueReadBuffer))#snippet

The Khronos Group Inc., clEnqueueWriteBuffer, retrieved on January 2016 from

https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueWrite

Buffer.html

The Khronos Group Inc., clEnqueueReadBuffer retrieved on January 2016 from

https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueRead

Buffer.html

Heterogeneous Computing with OpenCL, by: David R. Kaeli; Perhaad Mistry; Dana

Schaa; Dong Ping Zhang2.0, accessed on January 10, 2016 from

http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programmin

g/9780128016497/chapter-3-introduction-to-

opencl/s0060_html_3?query=((clSetKernelArg))#snippet

OpenCL Programming by Example, By: Ravishekhar Banger; Koushik Bhattacharyya

http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programmin

g/9781849692342/5dot-opencl-program-and-kernel-

objects/ch05s02_html?query=((clSetKernelArg))#snippet

The Khronos Group Inc., clSetKernelArg , retrieved on January 2016 from

https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clSetKernelArg.

html

The Khronos Group Inc., clEnqueueNDRangeKernel retrieved on January 2016 from

https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueNDRa

ngeKernel.html

Threading Building Blocks (Intel® TBB), accessed on November 20, 2015 from

https://www.threadingbuildingblocks.org/intel-tbb-tutorial

Direct GPU-FPGA Communication, Alexander Gillert, April 15, 2015

The Benefits to Working in RGB from http://bigpicture.net/node/2391

Grapics Recognition, Algorithms and Applications, Dorothea Blostein, Young Bin

Kwon, 2001, Kingston, Ontario

Real-time lane detection and tracking on high performance computing devices

(Botsch, 2015).

Recent Progress in Road and Lane Detection – A survey Aharon Bar Hillel Ronen

Lerner Dan Levi Guy Raz

Hardware Accelerated Particle Filter for Lane Detection and Tracking and OpenCL,

Nikhil Madduri, 2014

http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/9781849692342/3dot-opencl-buffer-objects/ch03s04_html?query=((clEnqueueReadBuffer))#snippet
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/9781849692342/3dot-opencl-buffer-objects/ch03s04_html?query=((clEnqueueReadBuffer))#snippet
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/9781849692342/3dot-opencl-buffer-objects/ch03s04_html?query=((clEnqueueReadBuffer))#snippet
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueWriteBuffer.html
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueWriteBuffer.html
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueReadBuffer.html
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueReadBuffer.html
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/9780128016497/chapter-3-introduction-to-opencl/s0060_html_3?query=((clSetKernelArg))#snippet
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/9780128016497/chapter-3-introduction-to-opencl/s0060_html_3?query=((clSetKernelArg))#snippet
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/9780128016497/chapter-3-introduction-to-opencl/s0060_html_3?query=((clSetKernelArg))#snippet
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/9781849692342/5dot-opencl-program-and-kernel-objects/ch05s02_html?query=((clSetKernelArg))#snippet
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/9781849692342/5dot-opencl-program-and-kernel-objects/ch05s02_html?query=((clSetKernelArg))#snippet
http://proquest.tech.safaribooksonline.de.eaccess.ub.tum.de/book/programming/9781849692342/5dot-opencl-program-and-kernel-objects/ch05s02_html?query=((clSetKernelArg))#snippet
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clSetKernelArg.html
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clSetKernelArg.html
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueNDRangeKernel.html
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueNDRangeKernel.html
https://www.threadingbuildingblocks.org/intel-tbb-tutorial
http://bigpicture.net/node/2391

