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Abstract 

 

 

Previous Lane detection and Tracking algorithm suffers from low performance due 

to partial execution on high performance heterogeneous hardware. Significant 

amount of image processing tasks meant to be computed by hardware accelerators 

are assigned to CPUs. 

 

In this thesis maximum workload related to image processing was delegated to 

hardware accelerators by developing Open CL kernel. This allowed to harvest 

parallel processing capabilities of GPUs and FPGAs thus moving away from ECUs 

and improving the performance. For instance, pre-processing of an image was 

completely transferred to hardware accelerators. Besides algorithm supporting 

independent multiple self-adjustable regions of interest was developed, 

programming bottlenecks were eliminated, lane inclination angle across all the 

regions of interest is calculated and performance evaluation is performed on 

independent recorded videos and benchmarking datasets. 

 

Lane Detection and tracking algorithm is based on Particle Filter. In Lane detection 

phase pre-processed image is populated with thousands of randomly placed sample 

lines, weights of those lines are calculated by hardware accelerators and fittest line 

is selected to represent the actual road lane marking. Lane tracking is based on 

Particle Filter and weighing obtained from Lane Detection phase. 

 

Algorithm was developed and tested on the following hardware GPU: Nvidia 

GeForce GTX 660 TI, Altera Cyclone V and RAM 32 GB, Intel Core i8 and a set 

of pre-recorded videos. Testing showed decrease in execution time, more robust 

and accurate lane detection and tracking for every region of interest, workload 

balancing according to the area of expertise where CPUs are performing utility 

tasks and hardware accelerators mostly work on image processing. 
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Chapter 1 
 

Introduction 

 

 

1.1 Motivation 

 

Advanced Driver Assist Systems (ADAS) - research labs are currently developing 

sensor-based solutions to increase vehicle safety at lower speeds (when the driver is 

stuck in traffic), or at higher speeds (on a long highways). These systems, are 

known as Advanced Driver Assist Systems (ADAS). They combine stereo cameras, 

long- and short-range RADAR along with actuators, ECUs, and embedded 

software, to facilitate drivers to respond to changes in the environment quickly. 

Lane Detection and Tracking systems as well as many other solutions are part of 

ADAS.  

 

There is a need in such systems because: according to the report of Federal police 

published in 2015 road accidents occurred two million times and is the main cause 

of deaths in Germany. Leading to 9,659 traffic deaths every year and most of these 

accidents are due to "human error"(75 %). This has a huge impact on wellbeing of 

society, family budget and lives of people since more than a million adult drivers or 

passengers are treated in hospitals due to card accident related injuries. According 

to the annual report car accident related expenses cost billions of Euro annually.  

 

This pursues car manufacturers like BMW, to invest into research focused on 

vehicle safety. The ultimate goal is to start manufacturing “crashless” cars with 

build it Advanced Driver Assistant System which would provide comfort and 

security to drivers.  
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On the other hand, further research in this direction will allow taking automotive 

industry to the next level, where Germany will be able to hold a leading role in 

automotive industry.  The vision of car manufacturers is to start producing semi-

autonomous, fully autonomous cars.  

This is important because Germany is known as one of world’s top car exporter, 

major car manufacturers like Audi, Mercedes, Daimler, BMW, and Volkswagen are 

from Germany, the economy of the country is dependent heavily on export of 

automobiles therefore to be able to sustain leading positions it is absolutely vital to 

poses cutting edge technology.  

 

The technology which would allow an average commuter spending at least 150 

hours a year behind the wheel of a car to spend that time more efficiently, and 

invest it into something more meaningful, the least efficient use of that time would 

be to have a breakfast on the way to office, get enough rest on the way home, and 

work on report during a traffic jam. 

 

All these poses more responsibility upon ADAS. Such systems are expected to be 

reliable and fast enough to be able to meet hard real time requirements. There is a 

huge work done in the field of Lane-keeping and warning systems, such systems 

exist in many variations showing very promising results. Most of them are based on 

image processing - processing streams of frames taken from a camera mounted on a 

vehicle and electronic control units (ECUs) - performing mainly image processing 

computations. However the recent trend is to replace ECUs with more efficient 

heterogeneous platforms combining advantages of hardware accelerators and 

conventional ECUs.  

 

Porting of a legacy code into heterogeneous platforms is not an easy task and leads 

to bottlenecks and inefficiencies in the software, which was primarily designed for 

conventional ECUs and is being, used on heterogeneous hardware accelerators. 

LDTS system is not an exception and thus has to be “adjusted” or in most cases 

redeveloped to fit into new computing hardware and perform at its peak.  

 

Existing algorithm done by Madduri 2014 and Botsch 2015 were not completely 

adapted to heterogeneous systems and therefore suffer from bottlenecks and other 

performance degradation factors. Target of this work is to continue adapting LDTS 

algorithm for the use on heterogeneous hardware accelerators, eliminate 

programming bottlenecks and introduce new features like angle calculation, view 

from quadcopter, multiple adaptable regions of interest and etc. 
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1.2 Problem Statement 

 

This thesis serves as an extension to a previous work done by Madduri, 2014 and 

Botsch 2015. In this thesis further improvements on Lane Detection and Tracking 

algorithm were done, taking into consideration Future Work section proposed by 

Botsch 2015 and new requirements from BMW research lab. Though many 

important milestones have been achieved by previous developers, the discussion 

among lab’s representatives and members of Chair of Robotics and Embedded 

Systems revealed new areas requiring further research and experiment. 

 

In addition, due to time constraints or lack of expertise work by Botsch 2015 did 

not provide much room for flexibility (ex. number of regions of interest or their 

size) and did not replace all major segments of code, programming bottlenecks 

degrading performance by OpenCL kernels.   

Hence, it was decided to invest more effort and time into the Botsch 2015 work and 

take it to the next level, where new algorithm would tackle challenges offered by 

above mentioned organizations and would deliver best possible execution time.  

 

The algorithm is based on computer vision, does not require any special settings for  

a camera, except that it should be installed on top of the vehicle and provides a long 

range detection and tracking of the road lane markings.  

 

 

1.3 Contributions 

 

The major contributions of the current thesis are: 

1. Elimination of programming bottlenecks, segments of code hampering 

execution time. 

2. Enabling support for multiple and independent regions of interests for each 

frame. 

3. Calculation of angle of a lane detected on multiple regions of interest, thus 

enabling DAS to deal with road bending and sharp turns in advance. 

4. Develop an algorithm supporting adaptable regions of interest, thus 

significantly reducing computation effort.  
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1.4 Evaluation of the performance 

 

The following hardware was used for developing and testing the algorithm: 

- GPU: NVidia GeForce GTX 660 TI  

- FPGA: Altera Cyclone V  

- WORKSTATION: RAM 32 GB, Intel Core i8 

- QUADCOPTER Parrot Bebop Drone, 1920x1080p, 30 Frames per/s 

 

Video recorded from quad copter and independent datasets were used to test the 

performance of the algorithm thoroughly.  

1.5 Thesis Outline 

 

Chapter two provides a theoretical background on technology used in this thesis to 

improve lane detection and tracking algorithm. It also provides an explanation of 

why Particle Filter has been used, why Lane Detection and Tracking algorithm 

works better with OpenCL kernels on hardware accelerators, what is the role of 

Gaussian function in this algorithm, why there is a trend towards heterogeneous 

hardware platforms and etc.  

 

Chapter three introduces changes done to algorithm written by Botsch 2015, 

explains the reasoning behind new lane detection and lane tracking algorithm. It 

explains how placement of multiple regions of interest on a single frame was 

achieved. Gives insight into road angle calculation, elimination of programming 

bottlenecks, support of adaptive regions of interest 

 

Chapter four shows results of comprehensive testing done on different datasets and 

pre-recorded videos using Quadcopter Parrot Bebop Drone, draws results and 

compares them to the results obtained in previous work. 

 

And finally chapter five provides a summary of the project and concludes with 

suggestions on what could be the next step for Lane Detection and Tracking 

algorithm and Driver Assistant Systems in general.  
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Chapter 2 

Background 
 

2.1 Related Work 

2.1.1 Lane Detection and Lane Tracking 

 

In order to keep the position of the vehicle within boundaries of road lanes, it is 

necessary to measure location of the vehicle along the lines. Many kinds of methods 

have been proposed and tested for this purpose, such as: 

 

- on-board vision systems for detection of the painted lane markings; 

- continuous magnetic wires integrated into the center of the lane mark; 

- measurement of the distance to sidewalls using radar or ultrasonic waves; 

- detection of reflective markers by means of laser technologies and etc.; 

 

Most of above mentioned methods require necessary highway infrastructure to be 

built, except the on-board vision systems which are more complicated in 

development but have an advantage in capability of autonomous operation.  

 

Many different vision-based lane detection algorithms developed to date depend on 

different road models (2D or 3D, straight or curve) and different techniques (Hough 

transform, template matching, neural networks, machine learning and etc.). 

 

In most cases these vision-based lane detection systems follow next steps: 

1. Capturing the frame from camera, 

2. Separation of the image into necessary amount of region of interests, 

3. Lane detection process, 

4. Defining the lane markings. 

 

The process for detection of the lane has a significant number of solutions in several 

works published in the literature.  
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The solution shown in papers [2] [3] describes the method which uses principal of 

morphological filtering. In this techniques in order to locate the lane edges in the 

intensity gradient magnitude image the “watershed” transformation is being used. 

The idea of the “watershed” transformation can be described as a landscape sunk in 

a lake, with holes located in local minima. Starting from this points (local minima), 

catchment basins are filled with water. After that the dams are being built at the 

boundary points where water comes from different catchment areas. This process 

continues until the level of water will reach the highest peak in the landscape. As a 

result obtained landscape is separated into regions by dams which are called 

watershed lines or “watersheds”. The strength of this technique is the fact that there 

is no need in any thresholding of the gradient magnitudes but at the same time it has 

a significant lack in not establishing any global constraints on the shape of the lane 

edge.  

 

    
Figure 2.1: From left to right: original image, morphological gradient of original 

image 

 

   
Figure 2.2: Watershed of gradient image. Noise and inhomogeneity causes 

appearance of many catchment basins (not possible to detect the lanes). 
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Figure 2.3: Watershed of the gradient of the filtered image 

 

The approaches in [4] [5], proposes that parabolic curve could be the way in which 

the lane borders can be described on smooth ground. Even though this method can 

approximate conventional road schemes, it will not be able to recreate such an 

example of road schemes as a T -shaped intersection. Based on this model and on 

the improvement of the likelihood function deformable template method was 

proposed. 

However this technique does not provide high accuracy and global optimum 

without huge computational power. 

 

Figure 2.4 shows examples of deformable template method based on likelihood 

(LOIS) lane detection function under a variety of road and environmental 

conditions. 

 

   
 

   
 

   
Figure 2.4: Examples of likelihood detecting lines 
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Recognition algorithm based on road edges is considered in articles [6][7][8][9]. In 

spite of the conditions associated with the shadows on the road this method deals 

with the problem quite well in well painted road marks, but for roads with not 

painted road markings (Figure 2.7), where side of the road will have to be 

determined by the boundaries of the road, this algorithm is not suitable. 

 

 
Figure 2.5: Lane detection on a straight road: (a) input image; (b) image obtained 

by thresholding the gradient image. 

 

 
Figure 2.6: The road or lane boundaries can be extracted from the input image  

through a gradient thresholding operation 

 

 
Figure 2.7: The road region is a patch of shadow or sunlight  

 

The method of combining the Hough transform and Line-Snake model is 

considered in the article [11]. The method is based on the separation of the image 

into several regions in the vertical direction. In order to get the initial position 

estimation of the lane boundaries on the surface of the road the Hough 

transformation should be applied for each region. Further, the model of Line-Snake 

is being used, the purpose of which was improvement of the initial approximation 

to a better configuration of the lane boundaries. However, this technique has two 

major problems. In the first case the mark-up line is with breaks, it is likely that it 

will not continue to the bottom of the picture. In the second case, the contrast of the 

line edges at the distance close to the bottom of the image may not be sufficient for 

correct detection.  
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The figure 2.8 represents the description of the road shapes using different number 

of control point in the B-Snake based lane model 

 

 
Figure 2.8: B-Snake based lane model. Left: using 3 control points. Right: using 4 

control points. 

 

Lane boundary recognition method based on artificial vision is presented in papers 

[12] [13]. This method is used for country roads. In order to detect the difference 

between road and non-road area the method uses statistical criteria like energy, 

contrast and homogeneity. However, while applying the same road model used in 

[4] [5], the same problems are being faced. 

 

2.2 FPGA, Altera's Cyclone
®
 V, Stratix

®
 V FPGA 

2.2.1 FPGA 

 

In older times only engineers with deep knowledge in the digital hardware design 

were able to cope with the application of FPGA technology. New technologies 

make it possible to convert graphical diagrams and C code into digital hardware 

circuitry, thus making FPGA a reprogrammable silicon chip.  Another distinctive 

feature of FPGAs is that they are not limited by the availability of the number of 

processing cores. FPGAs are parallel in nature, which distinguishes it from other 

processors. This means that the various tasks being processed are not performed 

using the same resources. Each task is processed independently of each other, 

individually assigned to certain part of the chip and can be operated without any 

interference from other logic blocks. Ultimately, regardless of adding more tasks 

being processed, the performance of one part will not have any influence on others  

[15]. 
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2.2.2 Benefits 

 

1. Performance— FPGA has an advantage of parallel execution on hardware 

level that allows it to break the rule of sequential execution and handle more 

processes per cycle.  

2. Reliability—Systems based on processors mainly resort to the method of 

resource sharing between different processes. Such systems have layers 

between parts of the system. In order to control the hardware resources 

driver layer is being used. Only one task can be executed at one time for each 

processor core, and therefore the system based on processors have the risk of 

collision with the offloaded tasks and loading another. FPGA does not use 

the OS so the risks with reliability is minimized due to parallel execution of 

tasks and a separate dedicated hardware for each task 

3. Long-term maintenance—FPGA chips do not require much time and 

manufacturing costs, because FPGAs are fully upgradable, and it is possible 

to change the configuration at any time [15], thus making them suitable for 

on board ADA systems.   

 

However, as with all systems, in case of FPGA, there are a number of shortcomings 

that need to be noted: 

 

1.  The cost is much higher than custom silicon 

2.  Higher power consumption in comparison with ASIC. 

3.  Compared with general-purpose processor, FPGAs require longer 

configuration and compilation time 

 

2.2.3 Altera's Cyclone
®
 V FPGA 

 

Intelligent video analysis in real time is an integral part of systems like, advanced 

driver assistant systems, industrial computer vision, robot motion planning and so 

on. These systems require complex algorithms for executing motion detection, 

object recognition, image processing tasks. Using Altera SoCs (System on a Chip), 

developers get a great tool, where only one chip contains power of the FPGA and 

dual-core ARM® Cortex®-A9 HPS (Hard Processor System). Developers are able 

to optimize complex algorithms by transferring intensive computing functions of 

HPS in FPGA, thus increasing system performance [14] 
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The Cyclone® V devices meet the requirements of reducing energy costs, time to 

market and a growing range of applications sensitive to costs. With the presence of 

built-in memory controllers and transceivers, the Cyclone V development kits is 

ideal for use in areas such as industry, wireless and wireline, military, automotive 

control systems and driver assistant systems. 

 

Main Advantages of Cyclone V Devices: 

Advantage Feature 

Reduced energy 

consumption 

• Built on TSMC's(Taiwan Semiconductor Manufacturing 

Company)28 nm low-power (28LP) process technology 

and includes an abundance of hard intellectual property 

(IP) blocks  

• In comparison with previous generation, in this one 

power consumption decreased up to 40% 

Improved logic 

integration and 

differentiation 

capabilities 

• Adaptive Logic Module (ALM): 8-input  

• Embedded memory: ≈ 13.59 megabits (Mb) 

• Variable-precision digital signal processing (DSP) 

blocks 

 

Increased 

bandwidth capacity 

• 3.125 gigabits per second (Gbps) and 6.144 Gbps 

transceivers  

• Hard memory controllers 

Hard processor 

system (HPS) with 

integrated ARM® 

Cortex™-A9 

MPCore processor 

• Integration in a single Cyclone V SoC (system-on-a-

chip) of an FPGA, dual-core ARM Cortex-A9 MPCore 

processor and hard IP  

• Supports over 128 Gbps peak bandwidth with integrated 

data coherency between the processor and the FPGA 

fabric 

Lower system 

expenses  

 

• For operation needs only two core voltages  

• Low-cost wirebond packaging is supported  

• Includes innovative features such as Configuration via 

Protocol (CvP) and partial reconfiguration[16] 

 

2.2.4 Altera's Stratix
®
 V FPGA 

 

One of the main features of the Altera’s 28-nm Stratix® V FPGA is enhanced core 

architecture, built in transceivers with the working speed up to 28.05 gigabits per 

second and integrated hard intellectual property (IP) blocks in the form of unique 

array. 
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This kind of improvements gives a new class of Stratix V FPGA, which is 

optimized for application targeted devices: 

- Bandwidth-centric applications and protocols, including PCI Express® 

(PCIe® ) Gen3  

- 40G/100G data-intensive applications  

- Application for high-performance and high-precision digital signal 

processing (DSP). 

 

Stratix V devices has a four variants (GT, GX, GS, and E), and each of them are 

targeted for different (specific) set of applications. In general Stratix V FPGA is 

being used for higher quality production, and for low risk, low cost production 

mainly HardCopy® V ASICs is used.  

 

Like in all Stratix V family variants there are a rich set of high-performance 

building blocks which has a redesigned ALM (adaptive logic module), embedded 

memory blocks for 20 Kbit, DSP (Digital Signal Processing) blocks, fractional 

PLLs (Phase-Locked Loops). Altera’s architecture based on multi-track routing 

concept interconnects all above mentioned building blocks. Also one of the main 

features of Stratix V devices is the new built in HardCopy Block, which achieves 

Altera’s unique HardCopy ASIC abilities as it has customizable hard IP bock.  

 

2.3 NVIDIA GeForce GTX 660 TI  

 

NVIDIA GeForce GTX 660 TI has dozens of cores and these cores are different 

from cores in CPU. NVIDIA GeForce GTX 660 TI cores are designed for intensive 

graphics related computations and can do image processing work faster than CPU. 

Also, it is possible to apply parallel execution due to the number of GPUs in current 

graphic cards.  

GPUs are able to have much higher number of transistors compared to CPUs and do 

not have to deal with cache and control logic, but are mainly focused on graphics 

processing tasks [18] [17]. Some tasks in Lane Detection and Tracking algorithm 

(example: selection of ROI, resampling, thresholding) are executed on NVIDIA 

GeForce GTX 660 TI because pixels in the original image are independent and 

computations require no or very little synchronization in between, thus can be 

proceed in parallel [19]. This is the reason behind significant increase in 

computational speed after delegating image processing tasks to hardware 

accelerators (more about it in Chapter 3).  
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The drawback of GPUs is that they require special programming models. For 

instance, NVIDIA GeForce GTX 660 TI cards used in this thesis should be 

programmed either with CUDA or OpenCL. 

 

2.4 Heterogeneous Platforms 

 

Heterogeneous Platforms - are the workstations with a mix of different types of 

cores or processors (often CPUs and GPUs) where GPUs and FPGAs are normally 

used as additional processors to a CPU. The reason for combining different types of 

processors under one platform is that CPUs are best suited for sequential tasks [37] 

or OS related peripheral tasks and computationally intensive graphics processing 

operations are for hardware accelerators.  

An average CPU has four, eight, sixteen cores, has about a billion transistors 

and can achieve about 0.5 TFlop for floating point calculations. An average GPU 

has 64 cores, is 64x-threaded, and has on average twice as many transistors. GPU 

can achieve 6 TFlop — 120 times of CPUs processing speed.  

By combining both under one platform it is possible to delegate computationally 

intensive tasks to NVIDIA GeForce GTX 660 TI, ALTERA Stratix V or ALTERA 

Cyclone V SOC, while CPU can run the OS and handle other peripheral tasks.  

Heterogeneous systems are typically used in computer vision, robot motion 

planning or simulation tasks. For example, Lane Detection and Tracking algorithm 

developed at TU Munich is based on heterogeneous platform where GPU and 

FPGAs took a role of hardware accelerators connected to a host CPU system. Host 

system runs the main application with all the peripheral tasks and delegates’ 

graphics processing tasks to hardware accelerators. The probable drawback of this 

architecture is in certain delay for host to kernel communication but execution time 

profiling revealed that overheads are insignificant, unless performed too often. 

 

2.5 Gaussian function smoothing 

 

Image like as in the case of one-dimensional signal can be obtained with some noise 

and for eliminating it before the main processing of the image starts, pre-processing 

filters are normally applied. 

 

Normally, the noise is regarded as an arbitrary combination of the colour and 

brightness information, which should not be present in the original image. The 

process of the emergence of noise can be due to sensor and chips errors in digital 
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cameras. The idea of using low-pass filter kernels is in smoothing the image. The 

high-frequency part of the image such as edges and noise are removed by the low-

pass filter, and some image processing techniques are applied to prevent blurred 

edges. 

 

The Gaussian function is based on the usage of averaging filter except for the fact 

that instead of using the single weight for each pixel, a two-dimensional Gauss 

function applied for the kernel that provides the highest weight to the pixel located 

in the centre. 

 

 
Figure 2.9 2D Gaussian curve 

 

One of the forms of mathematical convolution is 2D Kernel Convolution. The 

resulting image is calculated by iterating over each pixel of the original image and 

applying kernel to it, which ultimately gives us a new pixel for each operation. For 

example, if the kernel operator is 3 x 3 matrixes, the final pixel will be an average 

value of 9 adjacent pixels for each pixel of the input image, resulting in an averaged 

output image.  

 

2.5.1 Image Convolution 

 

The main part of the majority of filtering operations is based on image convolution. 

The basic idea of image convolution is the application of image transformation 

technics based on neighbouring pixels to each pixel of the original image. For this 

transformation matrix which is simple 2D matrix is used, and for the sake of 

simplicity, this matrix is called a Kernel. The new value of the resulting image is 

being calculated as the sum of the products for each pixel of the original image. To 

compute these products, the multiplication of the kernels with the appropriate pixel 

of the image should be done, and also the central element of the kernel must be 

multiplied with the actual image pixel. 
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Practical implementation of convolution can be shown on most popular filter which 

uses the Gaussian kernel. The practical application of the Gaussian filter (Gaussian 

blur) is very wide and can be used for image smoothing, noise removing and edge 

detection. The edge detection algorithm in most cases is very sensitive to noise. 

Therefore Gaussian filter is applied for eliminating unnecessary noise before the 

actual edge detection is performed. 

 

The next figure shows the convolution example using the Gaussian kernel: 

 

 

1 2 1  0 1 3 1      

2 4 2  2 1 2 5   2   

1 2 1  4 3 5 0      

    1 1 2 1      

 

Figure 2.10: From left to right: the kernel (Gaussian), original image (matrix), and 

result values (matrix). 

For the computation of the value in the position (2, 2) of the resulting matrix, the 

following process is applied: 

 

(1*0 + 2*1 + 1*3 + 2*2 + 4*1 + 2*2 + 1*4 + 2*3 + 1*5) / 16 = 2  

 

2.6 Intel® Threading Building Blocks library 

 

For experimentation purposes it was decided to try to re write sequential code using 

parallel programming techniques offered by Intel threading building blocks library. 

If computational results are satisfactory, there will be no further need in developing 

OpenCL kernels. Thus segments of code occupying bulk of computation time due 

to sequential execution on host could still remain on host but instead would be 

executed in parallel. This would help to save time, as writing kernel code, handling 

memory issues, integrating kernels into the main application and recompiling 

executables is not an easy task.   

 

Intel threading building blocks library enables developers to write parallel 

applications in C++. The well-known advantage of the Intel TBB library is that it 
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makes parallel performance and scalability accessible to developers, especially for 

those, writing loop based applications (ROI selection consumes bulk of 

computational resources and is performed by two nested loops iterating through 

rows and columns of the original image and processing image pixels one by one in 

a sequential manner) [35]. 

 

In TBB it is possible to select ROI by wrapping the serial loops into one 

parallel_for. parallel_for divides index space into sections based on the grain size, 

which is passed as argument. TBB creates and schedules threads to run above 

mentioned sections of work on its own, it promises to improve efficiency by 

assigning available worker threads to work items, by making sure that no thread 

stays idle. 

 

No thread stays idle because TBB implements work stealing to divide workload 

across available cores. This approach helps to increase core utilization and scaling. 

In TBB work stealing model, the workload is evenly divided among the available 

cores. If one core completes its work while other cores still have big amount of 

work in their queue, it reassigns some of the work from busy cores to idle ones [36]. 

 

2.7 OpenCL 

 

OpenCL - is a framework for programming on heterogeneous high performance 

devices (ex.  GPGPU, FPGA connected to CPU) which allows the developer to 

write C++ functions, called kernels.  The framework provides a high level of 

abstraction to write low level hardware instructions.  

Hardware accelerator consists of compute units and processing elements. Compute 

unit consists of compute kernels written in OpenCL C. Kernels contain sequence of 

instructions, which are called work item. Work group consists of several work 

items, which are executed concurrently.  

OpenCL kernel is alternative to Intel® Threading Building Blocks library, with one 

major difference: it runs on hardware accelerators. Benefits of re writing some 

segments of code in Open CL kernels is that it will allow to process each pixel 

independently and in parallel to others on GPGPU/FPGAs.  

 

Kernels obtain information from main application via the following memory 

regions: 

- Global memory - all work items in all work groups have enough privileges 

to write to and read from this memory region 

https://en.wikipedia.org/wiki/Work_stealing
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- Constant memory - a fraction of global memory, is only accessible by a host 

system and is not volatile.  

 

- Work Group’s local memory - work items belonging to work group are only 

able to access this part of memory 

 

- Work item’s private memory - accessible by work item only 

 

Thread block on a current GPU contains up to 1024 threads. One kernel can be 

executed by several thread blocks therefore the total number of threads working on 

a single kernel (such as. ROI selection, Line sampling) is equal to number of 

threads in a single block multiplied by number of blocks. Thread blocks are not 

dependent on each other, can be executed in any order on any of the available cores 

thus enabling scalability tied to number of available cores.  

 

2.8 OpenCL – Runtime API 

2.8.1 Create Buffer Objects 

 

The memory objects located in the main memory of the host or the global memory 

installed at the accelerator require careful treatment in OpenCL. One of the reasons 

of such condition is the slowness of these memories. Another reason is that the 

constant copying between these two memories takes a decent amount of time [23]. 

 

In programs written using OpenCL the buffer objects are applied to represent 

generic data. OpenCL provides the ability to transfer data without converting to 

OpenCL compatible device using buffer objects and then manipulate data using the 

familiar properties of the C similar languages. This approach eliminates the need to 

convert the data to a specific hardware format. 

 

Since the data transfer consumes some time, the best option would be to minimize 

the reading and writing sessions as much as possible. It is possible reduce the 

amount of data traffic needed for processing data using the method of packaging of 

all host data in a buffer object that may remain on the device [24]. 
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cl_mem clCreateBuffer (cl_context context,  

cl_mem_flags flags,  

size_t size,  

void *host_ptr,  

cl_int *errcode_ret) 

flags: CL_MEM_READ_WRITE,  

CL_MEM_{WRITE, READ}_ONLY,  

CL_MEM_HOST_NO_ACCESS,  

CL_MEM_HOST_{READ, WRITE}_ONLY,  

CL_MEM_{USE, ALLOC, COPY}_HOST_PTR [25]. 

 

The function clCreateBuffer is based on the creation of OpenCL-specific object 

that is passed as an argument to the kernel.  

 

The parameters can be described as: 

size 

The buffer memory object has to be allocated using size in bytes. 

host_ptr 

Is a pointer to the buffer data which is allocated by the application. 

errcode_ret 

Returns an appropriate error code. If it is NULL, no error code is returned. 

 

2.8.2 Read, Write Buffer Objects  

 

With the event mechanism in OpenCL it is extremely easy to manage different parts 

of algorithm. For example, memory objects can be transferred from the host 

memory to the memory of the devices and back using data transfer APIs 

clEnqueueReadBuffer and clEnqueueWriteBuffer. 

 

With the application of API clEnqueueWriteBuffer it is possible to write to the 

device memory immediately before the launch of Kernel. In order to get back the 

buffer data from the device memory to the host upon completion of the processing 

of the kernel clEnqueueReadBuffer function is used [27]. 
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cl_int clEnqueueWriteBuffer (  

cl_command_queue command_queue,  

cl_mem buffer,  

cl_bool blocking_write,  

size_t offset,  

size_t size,  

const void *ptr,  

cl_uint num_events_in_wait_list,  

const cl_event *event_wait_list,  

cl_event *event) [28]. 

 

The function clEnqueueReadBuffer reads data from the device to the host 

memory: 

 

cl_int clEnqueueReadBuffer (  

cl_command_queue command_queue,  

cl_mem buffer, 

cl_bool blocking_read,  

size_t offset, 

size_t size, 

void *ptr, 

cl_uint num_events_in_wait_list,  

const cl_event *event_wait_list,  

cl_event *event) [29]. 

 

The parameters can be described as: 

command_queue 

Refers to the command-queue in which the read (write) command will be 

queued.  

buffer 

Refers to a current buffer object. 

blocking_read 

Indicates if the read operations are blocking or non-blocking.  

If operation blocking_read is true i.e. the read command is blocking, 

clEnqueueReadBuffer does not return until the buffer data has been read 

and copied into memory pointed to by ptr. 

If operation blocking_read is false i.e. the read command is non-

blocking, clEnqueueReadBuffer queues a non-blocking read command and 

returns. The contents of the buffer that ptr points to cannot be used until the 

read command has completed.  
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blocking_write 

Indicates if the write operations are blocking or nonblocking. 

If operation blocking_write is true, the OpenCL implementation copies the 

data referred to by ptr and enqueues the write operation in the command-

queue. The memory pointed to by ptr can be reused by the application after 

the clEnqueueWriteBuffer call returns. 

If operation blocking_write is false, the OpenCL implementation will 

use ptr to perform a nonblocking write. As the write is non-blocking the 

implementation can return immediately. The memory pointed to 

by ptr cannot be reused by the application after the call returns.  

offset 

The offset in the buffer object to read/write from (in bytes). 

cb 

The size of data being read/written (in bytes). 

ptr 

The pointer to buffer in host memory where data is to be read into. 

event_wait_list , num_events_in_wait_list 

event_wait_list and num_events_in_wait_list specify events that need to 

complete before this particular command can be executed.  

event 

Returns an event object that identifies this particular read command and can 

be used to query or queue a wait for this particular command to complete.  

 

2.8.3 Kernel Arguments and Queries 

 

It is not possible to invoke a kernel with a certain list of arguments, in contrast to a 

function call in the C++ programs. In order to start the kernel the scheduling 

through the initialization function of the queue should be applied. Each argument of 

the kernel must be specified separately with clSetKernelArg () function (the syntax 

of C++ language allows it). It should also be noted that kernel arguments are 

persistent.  

 The inputs for this function are the object of the kernel, the argument number 

with an index, size of the argument and the pointer to the argument. Then, in order 

to make a correct extraction of the data according to the type, the information on the 

type should be applied from the list of kernel parameters [30].Arguments of the 

Kernel must be set prior to execution using the function clSetKernelArg [31] as 

follows:  
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cl_int clSetKernelArg ( 

 cl_kernel kernel ,  

 cl_uint arg_index,  

size_t arg_size,  

const void *arg_value) [32]. 

 

The parameters can be described as: 

kernel 

A current kernel object. 

arg_index 

The argument index. Arguments to the kernel are referred by indices that go 

from 0 for the leftmost argument to n - 1, where n is the total number of 

arguments declared by a kernel. 

arg_value 

A pointer to data that should be used as the argument value for argument 

specified by arg_index.  

arg_size 

Specifies the size of the argument value [32]. 

 

2.8.4 Kernel Execution on a Device 

 

Kernel is started with clEnqueueNDRangeKernel() function. The command-queue 

will be triggered successfully if the target device is already set. Object of the kernel 

in the main class identifies the executable code. In order to create a work item four 

fields are being used. The parameter which defines the number of dimensions on 

the basis of which work item is being created is called - work_dim. 

global_work_size describes the number of work items for each dimension in 

NDRange and local_work_size specifies the number of work items for each 

dimension of the working groups. Another parameter named global_work_offset 

can be applied to ensure the balance so that global identifiers (ID) of the working 

items do not start from zero [30]. 

 

cl_int clEnqueueNDRangeKernel (  

cl_command_queue command_queue,  

cl_kernel kernel ,  

cl_uint work_dim,  

const size_t *global_work_offset,  

const size_t *global_work_size,  

const size_t *local_work_size,  
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cl_uint num_events_in_wait_list,  

const cl_event *event_wait_list,  

cl_event *event) [34]. 

 

2.9 Particle Filter  

 

Particle filter [20] is a numerical approximation to the nonlinear Bayesian filtering 

problem and it’s used during Lane tracking phase. It helps to decrease overall 

computational time of the lane detection algorithm by using the previously 

calculated information such as best_lines and good_lines for predicting the 

measurements for the next frame, thus to avoid allocating hundreds of sampling 

lines and weighting them again. 

 

Particles in the particle set are the samples of posterior distribution and are 

represented by: 

 

Xt:= xt
[1]

 , xt
[2]

 ,....., xt
[M]

 ; 

 

1<= m <= M 

 

Each particle 𝑥𝑡

[𝑚]
 represents a possible true state at time 𝑡. M - Represents the 

number of particles and Xt is a particle set. The trick of PF is to approximate belief 

bel (𝑋𝑡 ) - measurements obtained during lane detection phase, by user defined 

number M of particles. Bigger the M is, the more likely it is to track the lane 

accurately. Similar to other filters from the family of Bayes filter algorithms, PF 

obtains the right measurements for current frame bel (𝑋𝑡 ) recursively using the 

measurements obtained one time step earlier bel(𝑥𝑡−1). Belief is nothing but a set 

of particles, thus PF performs lane tracking by obtaining the set of particles 

𝑋𝑡  recursively from the previous set at an earlier time t𝑥𝑡−1. In this algorithm the 

previous set at time t 𝑥𝑡−1 can be obtained by an empirical set of particles, such as 

good lines and best lines, kept from a previous frame. 
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2.1 Algorithm Particle_filter (Xt -1, ut, zt ) 

1:  𝑋𝑡 = 𝑋𝑡 = Ø 

2:  for m = 1 to M do 

3:  Sample 𝑥𝑡
[𝑚]

~𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1

[𝑚]
) 

4:  𝜔𝑡
[𝑚]

= 𝑝(𝑧𝑡|𝑥𝑡
[𝑚]

) 

5:  𝑋𝑡 = 𝑋𝑡 + 〈𝜔𝑡

[𝑚]
, 𝜔𝑡

[𝑚] 〉 

6: Endfor 

 

 

7: 

  

 

for m = 1 to M do 

8:  draw i with probability ∞𝜔𝑡
[𝑖]

 

9:  add 𝑥𝑡

[𝑖]
 to 𝑋𝑡  

10:  end for 

11:  retrun 𝑋𝑡  

 

𝑥𝑡−1 - Particle set, ut - the recent control, zt - are the latest measurements [20] 

 

In the beginning the algorithm constructs a temporary particle set X, which is 

similar to the belief bel (𝑋𝑡 ) by processing each particle 𝑥𝑡−1

[𝑚]
 from the particle set.  

 

LANE TRACKING

Motion 

Update

Measurement 

Update
Resampling

 
Figure 2.11 Lane Tracking  

 

1. Line 3 assigns a probable state 𝑥𝑡

[𝑚]
 for time t based on the particle 𝑥𝑡−1

[𝑚]
 of 

the previous frame. The resulting sample is labeled by m, to show that it is 

obtained from the m-th particle in 𝑥𝑡−1 - of the previous measurement. The 

set of particles obtained in step 3 is the filter’s representation of bel(𝑥𝑡 ) and 

corresponds to motion update on Figure 2.11 

2. Line 4 calculates weight of a particle. Weights of a particle are used to 

include the latest measurements into the particle set. The set of weighted 

particles represents posterior bel (𝑥𝑡 ), and corresponds to measurement 
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update step of Figure 2.11. The weights will vary based on how likely the 

particles represent the true lane.  

3. Lines 8 through 11 implement resampling or importance resampling by 

drawing each particle by its importance weight. Resampling transforms a 

particle set of M particles into another particle set. By incorporating the 

importance weights into the resampling process, the distribution of the 

particles changes: whereas before the resampling step, they were distribution 

according to bel (𝑥𝑡 ), after the resampling they are distributed 

(approximately) according to the posterior bel (𝑥𝑡 ). Resampling step 

ensures survival of the fittest. 
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Chapter 3 
 

Implementation 

 

3.1 Overview of the Method 

Frame from 

Quadrocopter

Pre- Processing

Lane Tracking

Elimination of unnecessary 

objects(ROI)

Region of interest is 

grayscaled

Edge detection using Sobel 

operator

Noise removal by 

thresholding

X and Y 

coordinates 

of the lanes

Lane Detection

 
 

Figure 3.1: Structure of the Method 

 

As shown on Figure 3.1 algorithm works with stream of frames coming from a 

camera installed on top of a vehicle or quadcopter hovering over the car. It consists 

of three main stages: preprocessing, lane detection and lane tracking.  

Preprocessing stage comprises of several phases. In Elimination of 

unnecessary objects phase color image is cleared of objects of least interest, such as 

sky, trees, buildings and etc. by selecting the region of image where lane markings 

are most likely to be found. 
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In the next step selected region is Grayscaled, mainly for practicality reasons. After 

obtaining black and white image edge detection and Thresholding operations are 

performed. The final output of preprocessing stage is shown in Figure 3.2b.  

 

Execution time profiling revealed that programming bottlenecks within 

preprocessing phase occupied bulk of execution time therefore this phase has been 

completely re-written two times, first using parallel programming techniques in 

C++, to run on host machine, which later proved to be not sufficient, and eventually 

in OpenCL kernel, which allowed executing this stage completely in parallel on 

hardware accelerators. Thus sections of code hampering execution time of this stage 

were completely eliminated. 

 

  
a) Original frame b) Preprocessed frame 

 

Figure 3.2: Image before and after preprocessing 

 

As can be seen from Figure 3.1, following the preprocessing phase, depending on 

availability of previous weighing, either lane detection or lane tracking is 

performed. In case of lane detection - a random sampling is executed to sample 

probable road lane markings, lines are weighted according to their distance to the 

lane and line with the highest weight is selected to represent the real lane. 

In case of lane tracking - the weighing from a previous frame along with a 

Particle Filter are used to detect the road lane markings in the current frame. Lanes 

are not evaluated again but are tracked, thus the name Lane Tracking. 

 

Lane detection/ tracking are performed by OpenCL kernels, in parallel [because 

lines are completely independent] and computations are delivered by hardware 

accelerators. 

 

Subsequent sections will provide a detailed explanation of above mentioned stages , 

along with illustrations and achieved results.  
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3.2 Details of the implementation 

3.2.1 Pre-Processing 

 

Objects of least interest such as sky, trees and buildings are discarded by selecting 

regions where road lane markings are most likely to be located.  As can be seen on 

Figure 3.3 this area is surrounded by a green rectangle and called a region of 

interest. Further stages of algorithm work with ROIs only and discard everything 

outside of the green rectangle.  

 

 
 

Figure 3.3: Region of Interest 

 

3.2.2 Elimination of unnecessary objects by Botsch 2015 

 

In Botsch, 2015 ROI was selected in a sequential manner and was performed by 

host machine. Image was first processed by rows and then by columns. In each 

iteration of the loop calculations on color channels were performed, bit shifting was 

done and the values of three channels were combined. This worked pretty well for a 

single ROI but proved to be unacceptable for multiple ROIs.   

As can be seen on the Figure 3.4b, with one ROI where ROI.WIDTH = 

original_image.width, pre-processing phase alone occupied more than 83% of 

computation time and the remaining phases like Lane Detection and Lane Tracking 

took only 1.6% and 15% respectively. The reason for preprocessing stage 

consuming considerable computational time is that ROI selection was done in 

sequential manner on host.  

Execution time profiling revealed that within preprocessing stage 80% of the 

computational time was occupied by selection of ROI, and the rest of the operations 

like Grayscaling, Edge detection and Thresholding took only 20% of the time. 

Exact distribution of computational time is shown on Figure 3.4. 
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Figure 3.4 Distribution of the computation time in Botsch 2015  

 

Besides that, as shown on Figure 3.4a distribution of the workload between host 

and kernel is 97.40% and 2.60% respectively. The distribution is strongly uneven, 

host performs bulk of image processing task though hardware accelerator would 

have done it more efficiently.  One of the factors contributing heavily to such 

uneven workload distribution is the same - ROI selection was performed by host, in 

a sequential manner.  

 

Above mentioned issues had to be eliminated, otherwise allocation of multiple 

ROIs for each frame would increase computation time many folds, and the whole 

algorithm would not be able to meet hard real time requirements. The following 

sections will explain the work done and resolved issues.  

 

 

83.40% 

1.60% 

15.00% 

Composition of the average computation 
t ime for  one ROI 

Preprocessing(1'414'8
80)
Lane
Detection(28'744)

80.10% 

3.20% 

11.80% 

4.90% 

Composition of the average computation time within Pre 
processing stage 

ROI selection

Grayscaling

Edge Detection

Thresholding

a) Distribution of the computation time between 

host and device on NVIDIA GeForce GTX 660 TI 
 

b) Distribution of the computation time between 

Pre-processing, Lane Detection and Lane 
tracking in Microseconds, WIDTH of ROI is 

equivalent to the WIDTH of the image 

 

c) Distribution of computational time, one ROI  
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3.2.3 Elimination of unnecessary objects in current work  

Elimination of unnecessary objects phase has been completely re-written two times, 

first using parallel programming on host and second time on OpenCL kernel.  

3.2.3.1 Using parallel execution on the host 

 

Two loops iterating through the columns and rows of the image were replaced by 

code which divided this iteration into chunks, and run each chunk on a separate 

thread thus breaking computation down into tasks that can run in parallel. 

 

New algorithm used work stealing to balance a workload among available cores 

with the aim of increasing core utilization. If one of the cores completed its task and 

the other core has a long queue, work stealing would reassign tasks waiting in a 

queue to an idle core.  

 

This approach allowed to distribute image processing task among all available cores 

but did not reduced overall computation time.  The probable reason for that is that 

work stealing is not efficient for large numbers of processor cores. It causes 

significant amount of computation time to be spent in scheduling and workload 

balancing when running certain tasks on a multi core system. Therefore, it was 

decided to continue research and experimentation with other execution models. 

Detailed execution time profiling after implementing parallel execution by host are 

presented in Chapter4.  

3.2.3.2 Using OpenCL kernel 

 

As can be seen from Algorithm 3.1 new algorithm uses OpenCL write buffers to 

allocate image processing task to hardware accelerator.  

 

Algorithm 3.1 ROI selection on KERNEL: 

 

1: for each image : do 

2:  unsigned char image.data=OBTAIN_IMAGE_DATA(image); 

3:  CL_ENQUE_WRITE_BUFFER(image.data); 

4:  int row = GET_GLOBAL_ID_ROW(0); 

5:  int column = GET_GLOBAL_ID_COLUMN(1); 

6:  int x = ROI_X(ROI_START_X+col+ROI_START_Xtemp); 

7:  int y = ROI_Y(ROI_START_Y+row); 

8:  int ind = RGB_COLOR_CHANNELS(x,y); 

https://en.wikipedia.org/wiki/Task_parallelism


Chapter 3. Implementation  46 

 
 

9:  unsigned char B = image.data[ind]; 

10:  unsigned char G = image.data[ind+1]; 

11:  unsigned char R = image.data[ind+2]; 

12:  FINAL_OUTPUT[INDEX] = RGB_PROCESSING(R,G,B); 

13: end for 

 

Line 2 processes a raw image and assigns it to a data structure of type unsigned 

char.  

Line 3 resulting data structure is transferred to kernel using OPENCL Write Buffers 

Line 4 KERNEL accesses global memory region to obtain a starting point w.r.t X 

axis 

Line 5 KERNEL accesses global memory region to obtain a starting point w.r.t Y 

axis 

Line 6 and 7 obtains X and Y coordinates of needed pixels 

Line 8 obtains the actual index of required pixel 

Line 9, 10 and 11 obtain actual values of R, G, B colors.  

Line 12 Calculation is performed on RGB color channels (bit shifting, summation 

and etc.), the values of three channels are combined to yield the actual color of the 

pixel and the result is stored in a new data structure. New matrix is forwarded for 

further processing (grayscaling, edge detection and etc.) using OPENCL WRITE, 

READ and COPY Buffers.  

 

 

Summary 

 

In Botsch, 2015 this phase was executed in sequential fashion on CPU using double 

nested loops which was a programming bottleneck and did not allow to have 

multiple regions of interest due to doubling computation time with every additional 

ROI.  

 

The new algorithm obtains raw image on the host and writes it to kernel. Due to 

ability of hardware accelerators to allocate large amount of highly parallel hardware 

resources, due to pipelining ability and because of the large amount of data 

parallelism this approach reduced computation time, contributed to more even 

distribution of tasks between host and kernel. Detailed execution time profiling 

after delegating this phase to hardware accelerators are presented in Chapter4.  
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3.2.4 Grayscaling 

 

The remainder of the image (ROI) is in RGB color format. In this format each pixel 

contains three color channels, RED, GREEN and BLUE. In color images the values 

of the three channels are combined to yield the actual color of the pixel. The 

drawback of RGB format is that it’s harder and computationally more expensive to 

extract lanes from the road because three color channels would have to be 

compared. 

 

On contrary, grayscale image is simply one in which the only colors are shades of 

gray. The reason for grayscaling region of interest is that verses to colored version 

it needs less information to be provided for each pixel. In `grayscaled' format red, 

green and blue components all have equal intensity in RGB space, and therefore it 

is sufficient to assign a single intensity value for each pixel, as opposed to the three 

intensities needed to specify each pixel in a full color image [38]. There is no need 

to use more complicated and harder-to-process color images, grayscale images are 

sufficient for detecting road lane markings. Each frame is transformed to grayscale 

format by summing up weights of all three channels; the resulting value denotes the 

intensity of a pixel. 

 

After performing grayscaling of an image road lanes could be identified based on a 

property that lane markings are substantially brighter than the road they are printed 

on, this can be seen on Figure 3.5.  

 

  
 

Figure 3.5 Input and output of the Grayscaling phase  

 

On Figure 3.5 each pixel reflects the intensity of the pixel in the original image and 

therefore dark pixel representing the asphalt will receive low intensity values and 

bright pixels representing white lane markings on the road will receive higher 

weights. 

During grayscaling tens of thousands of pixels are processed independently and in 

parallel by hardware accelerators which provided additional performance gains. To 

expedite computations no floating point values were used. 

 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
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Figure 3.6: Edge Detection 

3.2.5 Edge detection 

 

Edges in an image are being detected using Sobel filter. It calculates the change in 

the gradient of an image and identifies regions where the frequency of color 

transition is higher. These regions denote sharp changes in the gradient and 

therefore correspond to edges in the original frame [39] 

 

The following two 3x3 masks are used for approximating intensity gradient of 

every pixel. One mask is used to calculate the edge gradient w.r.t y axis, the other 

w.r.t x axis.  Each neighboring pixel found around that point is given a value. The 

values are then added together and assigned to 𝐺𝑥 andGy. 

 

Formula 3.1 Horizontal and vertical image convolution 

1. 

 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑙𝑦 (𝐺𝑥) = [
−1 0 +1

−2  0  +2
−1 0 +1

] × [𝑑𝑎𝑟𝑘 𝑖𝑚𝑎𝑔𝑒] 

 

2. 

 

Vertically (Gy)    =    [
−1 −2 −1
0 0 0

+1 +2 +1

] ×[𝑑𝑎𝑟𝑘 𝑖𝑚𝑎𝑔𝑒] 

 

3. |G| = |Gx|+|Gy| 

 

  
Figure 3.7 Before and after Edge detection 

 

Line 1 - absolute value of the intensity gradient is calculated – horizontally (image 

convolution for horizontal direction) 

Line 2 - absolute value of the intensity gradient is calculated – vertically (image 

convolution for vertical direction) 
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Line 3 - the edges are calculated using less expensive summation method: |G| = 

|Gx|+|Gy| 
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Figure 3.8: Thresholding 

3.2.6 Thresholding  

 

Thresholding is the last phase of Pre-processing. It is a method of eliminating noise 

from an image. In this phase value of each pixel is compared to a user defined 

threshold value and based on the results, the original value of the pixel gets updated 

by a maximum value or set to NULL.  

 

Normally the outcome of the Thresholding phase is that regions containing lanes on 

a road obtain a maximum value, thus get brighter.  Other disturbances such as 

shadows, light reflections, roadside markings and etc. are cleared off the image by 

assigning gradient intensity value to NULL. The algorithm is executed completely 

on hardware accelerators. 

 
 

Algorithm 3.2 For performing Thresholding 

 

 

1: 
I = INTENSITY(pixel); 

2: If (I < THRESHOLD_VALUE)  then I = 0; 

3: ELSE 

4: I = MAX_VALUE; 

  

 
 

  
 

Figure 3.9: Before and after Thresholding is applied 
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3.2.7 Summary of the Pre-processing 

 

Algorithm 3.3 Preprocessing stage 

 

1: 

 

SELECT_ROI (full_original_image); 

2: Load required PIXELS 

3: for all PIXELS P do 

4:  P=GRAYSCALING (P); 

5:  G = CONVOL_X (P); 

6:  Gx= Gx + G; 

7:  G= CONVOL_Y (P); 

8:  Gy= Gy + G; 

9:  

10: end loop 

11: SUM= |Gx|+|Gy| 

12: If SUM < THRESHOLDING_VALUE     

13:   Then SUM = 0 

14: Else if SUM ≥ THRESHOLDING_VALUE   

15:  Then SUM = MAX. 

16: End if  

 

Line 1 – Obtains a section of the image where lanes are most likely to be located 

Line 4 - Applies grayscaling 

Line 5 - Obtains intensity gradient w.r.t X axis (image convolution for horizontal 

direction) 

Line 6 – Sum of horizontal intensity gradients 

Line 7 - Obtains intensity gradient w.r.t Y axis (by applying image conv. for 

vertical direction) 

Line 8 - Sum vertical intensity gradients 

Line 11- Sum of intensity gradients SUM= |Gx|+|Gy| 

Line 12-16 - Clears off minor disturbances 

 

  

a) Original image b) The final outcome of preprocessing 

phase. 

Figure 3.10 Summary of preprocessing phase 
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In preprocessing phase: first all unnecessary objects were eliminated by selecting 

portion of image where road lane markings are most likely to be found.  Since even 

small sections of image may contain thousands of pixels eliminating some parts of 

the original image reduces computational effort significantly. 

In the next stage the remainder of image was converted from color to grayscale. 

The reason for that is that verses to colored version grayscaled one needs less 

information to be provided for each pixel, thus reducing computational time as well.  

In the third step edges were detected by applying Sobel operator.  

 

And finally a noise is eliminated by applying Thresholding. It assigned a maximum 

value to pixels containing high intensity values, which most of the time correspond 

to lanes and NULL value to pixels containing low intensity values, thus eliminating 

minor disturbances from the image.  

 

100% of the preprocessing stage is executed on hardware accelerators. Outcome of 

preprocessing stage is an image with lane markings of the road only. The image 

shown on Figure 3.10 b) is used in further phases of the algorithm for identifying 

the exact X and Y coordinates of lanes.  

 

 

Continuous video 

stream from camera

Extract Region 

of Interest

Sobel Edge 

Detection
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Frame L = 0?
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Detection
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YesNo
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image

 

 

Figure 3.11: The general flow of the algorithm 
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3.3 Lane Detection 

 

Detection of lane markings in image is not an easy task. That is mainly due to the 

poor quality of lane markings, different sorts of occlusions, presence of traffic or 

complex geometry of lanes. But there are few properties which make it easier to 

detect lanes:   

 

 Lanes do not cross 

 

 Each lane is located in its own region 

 

 Regions corresponding to real lanes on average contain up to 10 pixels in 

width 

 

As shown on Figure 3.11 lane detection is performed only when there is no any 

information available from a previous frame or lane tracking cannot proceed. As 

shown on Figure 3.12 Lane Detection is done by placing candidate lines randomly 

on preprocessed frame and calculating their weights. Weight of a line is nothing but 

a sum of all intensities of all pixels in the line. Thus some candidate lines 

correspond to real lanes, thus have a higher weight but some do not and therefore 

their weight is less. After candidate lines are weighted, the line with the highest 

weight is selected. Selected line is considered as the most accurate representation of 

a real line.  

 

 

  
a) Sampling on preprocessed frame b) Sampling on color image 

 

Figure 3.12: a) Line sampling, b) Lane Detection allocates thousands of line samples 

and evaluates weights of each of them 

 

During Lane Detection step tens of thousands of sampling lines are created and 

weighted independently. Placing a bigger number of candidate lines produces more 

accurate results, but increases computational effort, especially if line sampling is 

done by host. In this case nested for loops would evaluate each line in a sequential 

manner, thus creating a programming bottleneck. But because the lines are 

independent from each other, this phase is executed on device.  
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Once sampling is completed host only performs sorting. It selects the line with the 

highest score, which is the most accurate representation of a real line and stores 

dozens of candidate lines with the weight above average inside of a data structure 

named good_lines which are used for lane tracking. 

 

LANE DETECTION

Line 

Sampling

Line 

Weighting

Sort 

Weighting

Select Highest 

Weights

 
 

Figure 3.14: Phases of Lane Detection 

 

As shown on Figure 3.14 Lane Detection consists of four phases and is the second 

most resource consuming task. On average it is triggered once for 300 frames but 

the amount of resources it consumes is ten times of lane tracking. 

3.4 Lane Tracking 

 

The vehicle moving at a speed of 80km/h will produce an enormous amount of data 

at a high speed for processing real time and it is extremely important to be able to 

process incoming frames on time, otherwise casualties are unavoidable. This places 

the algorithm into the category of hard real time systems. 

As mentioned before, lane detection step is computationally expensive because it 

clears all the calculations done for the last image and re-processes frames afresh by 

allocating thousands of sample lines and calculating weight of every line, therefore, 

if it is performed too often, it might jeopardize the execution time, especially for 

frames with several regions of interests.  

 

Benefits of Lane Tracking is that it uses pre-processed frame, good lines and best 

lines measurements obtained at earlier time t-1 as an input to track the lanes in 

subsequent frames. Lane tracking does not detect lanes but keeps information about 

line markings from the previous frame, makes some adjustments to retained 

information based on measurements obtained real time and applies it to the current 

frame. It is based on Particle Filter and consists of Motion Update, Measurement 

Update and Resampling phases. 
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Figure 3.15: The result of lane tracking phase are exact x and y coordinates of lane 

markings 
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Figure 3.16: Lane tracking is performed in three phases 

 

3.4.1 The Lane Tracking Algorithm 

 

Algorithm 3.4 Particle Filter for Lane Tracking[40] 

 

1: for i = 1 : num_good_lines do 

2:  MOTION_UPDATE (good_lines(i), Δρ, Δθ, motion_noise) 

3:  MEASUREMENT_UPDATE (good_lines(i), measurement_noise) 

4: end for 

5: *good_lines_new ← RESAMPLE (*good_lines) 

6: *good_lines ← *good_lines_new  

 

Where i - identifies the line with the weight above average, good_lines 

Δθ - is orientation of a line 

Δρ – distance 
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Line 2 - MOTION_UPDATE - shifts each line by Δρ and rotates by Δθ depending 

on the slope and lane direction 

Line 3 - MEASUREMENT_UPDATE - compares x intercept and orientation of 

good lines with the nearest best line and assigns a weight along the Gaussian 

probability distribution based on how close a good lines is to best line.  

Line 5, 6 - RESAMPLING - forms a new set of particles by selecting the highest 

weights.  

 

Motion Update 

 

Motion update provides rough probability distribution of the new states 𝑋𝑡 by using 

the measurements obtained one time step earlier thus the main input for motion 

update step are the particle sets at 𝑋𝑡−1.[20] Algorithm first constructs a temporary 

particle set which is very similar to the previous set but not the same. It does this by 

systematically processing each particle in the input set of particles  𝑋𝑡−1. The 

mathematical representation of the algorithm for processing particles in the input 

set from a previous state is based on the following formula: 

 

Motion Update MOTION_UPDATE subroutine in Algorithm 3.4 is constructed 

based on Equation 3.1 

𝑃𝑟(𝑋𝑡 |𝑌𝑡−1) =  ∑ 𝑃𝑟(𝑋𝑡
𝑖 |𝑋𝑡−1

𝑖 , 𝑌𝑡−1
𝑖 ) × 𝑃𝑟(𝑋𝑡

𝑖 |𝑌𝑡−1
𝑖 ) × 𝛥𝑋𝑡−1

𝑖

 (3.1) 

Where 𝑖 -is a particle 

𝑋𝑡 − Is a new state  

𝑋𝑡−1 – represents an old state 

𝑃𝑟(𝑋𝑡|𝑌𝑡−1)  −  Posterior probability distribution at an earlier state 
 

 

In this algorithm the state at time 𝑡  is expressed as position of a lane marking with 
coordinates of x_top and x_bottom. 
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Measurement Update 

 

Measurement update is performed after motion update to obtain more accurate 

probability distributions.  

 

Mathematical representation of this stage is shown on Formula 3.2: 

 

𝑃𝑟(𝑋𝑡 |𝑌𝑡 ) =
𝑃𝑟(𝑌𝑡 |𝑋𝑡

) × 𝑃𝑟(𝑋𝑡
)

𝑃𝑟(𝑌𝑡 )
 (3.2) 

 

Where 𝑃𝑟(𝑋𝑡 |𝑌𝑡
) represents posterior probability distribution 

𝑃𝑟(𝑌𝑡|𝑋𝑡 ) – Likelihood 

𝑃𝑟(𝑋𝑡) −  Prior probability distribution 

𝑃𝑟(𝑌𝑡) − Evidence 

 

Numerator of the equation (prior x likelihood) - 𝑃𝑟(𝑌𝑡 |𝑋𝑡 ) × 𝑃𝑟(𝑋𝑡) is obtained by 

calculating the weight of each particle and is based on the following formula: 

 

𝜔𝑖 =
1

√2𝜋 𝜎2
𝑒

−
1
2(

𝑋𝑡
𝑖 −µ
𝜎 )

2

 (3.3) 

 

Denominator of the equation, 𝑃𝑟(𝑌𝑡 ) is an evidence and is obtained by summing up 

the weights for all the particles 

 

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 =  ∑ 𝜔𝑖

𝑁𝑝

𝑖=1

 (3.4) 

 

Every iteration of measurement update will filter out probability distribution of the 

particle states and will produce more accurate values. As a result particles located 

closer to actual road lane markings will be assigned a higher values compared to 

those far away from actual lane [20] 
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Resampling 

 

Resampling or importance resampling is performed by selecting each particle by its 

importance weight. Resampling transforms a particle set of M particles into a new 

particle set by incorporating the importance weights, obtained during measurement 

update, into the resampling process and changes the distribution of the particles. For 

instance, before the resampling was performed, particles were distribution 

according to an earlier belief  𝑏𝑒𝑙(𝑋𝑡 ), after the resampling particles in a new 

particle set are distributed (approximately) according to the posterior 𝑏𝑒𝑙(𝑋𝑡 ) which 

ensures survival of the fittest by sorting out probability distribution and selecting 

the particles with the highest weights as shown on Algorithm 3.5. [20] The 

Resampling algorithm used in this paper is identical to (Madduri, 2014, p. 55-60). 

 

Algorithm 3.5 Resample - ensures that particles re assigned to a new set have a 

weight less than the value of β 

 

1: 

 

idx = rand()%Np 

2: β = 0.0 

3: for i = 1 : Np do 

4:  β + = rand()%(2*ωmax) 

5:  while β > ωidx do 

6:  β - = ωidx 

7:  idx = (idx + 1)%Np 

8:  end while 

9:  particle(i) = particle(idx) 

10: end for 

 

idx - is a random  index drawn from a particle indexes.  

ωmax - maximum weight in the particle set 

β - Variable β is assigned a random value which must be less than the double of 

maximum weight 

ωidx – weight of a particle 

M – Number of particles in the particle set 
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3.5 Redetection cases 

 

Redetection algorithm contains set of checks to ensure that lane tracking is able to 

proceed. It is triggered in cases where lane markings are no longer visible, vehicle 

moves from one lane to the other or there is significant amount of noise in the 

frame.  Code performing the checks contains the following criteria: 

 

 Lanes should not intersect 

 

 The minimum distance between lines is observed 

 

 The minimum length of lane is present in pre-processed frame– this criteria 

is especially important for scenarios where vehicles switch between lanes 

 

 Lanes are not out of frame, still visible 

 

If all the criteria are met algorithm proceeds with lane tracking, if not lane detec tion 

is triggered. Figure 3.17 illustrates scenarios where redetection criteria fail 

 

 

 

a) Lanes are no longer in the frame 

 

 

 

b) Redetection is triggered immediately 

 

     c) Vehicle switches between lanes,  

thus only part of lane is in the frame 

 

d) Initialization of the algorithm 

 

Figure 3.17 Redetection cases 

Lane detections are mostly triggered during lane changes, for first frames, presence 

of significant amount of noise in the frame or when line is no longer visible. 



Chapter 3. Implementation  59 

 
 

3.6 Angle calculation 

 

For the calculation of the inclination angle, the connection between two or more 

regions of interests (ROIs) is necessary. Weather two or more ROIs are connected 

is computed in the following way: 

 Right and left side (Xstart, Xend) coordinates for each ROI are stored 

 If Xend coordinate of ROI one is in the range of  

 

Xstart_ROI_0 –predefined_offset < Xend_ROI_1 < Xstart_ROI_0 + predefined_offset  

it is assumed that these two ROIs are connected 

 after connection is defined next ROI’s connection should be detected in the 

same way 

 If all ROIs are connected, the flag value will change to true. This indicates 

that all ROIs for the current frame form one line, as shown on Figure 3.18 

 Calculation of inclination angle is performed 

 The same procedure is applied to the right side of the ROI  

 

ROI 0

ROI 1

ROI 2

Frame N

ROI_Height

Lane

Good lines

 
Figure 3.18 Best lines across all ROIs approximately form one line 
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ROI 1

ROI 0

Xstart_ROI_0, Ystart_ROI_0 

Xend_ROI_0, Yend_ROI_0 

Xend_ROI_1, Yend_ROI_1 
Xstart_ROI_0 -10 < Xend_ROI_1 <  Xstart_ROI_0 +10

ROI_Height

ROI_Height

Xstart_ROI_1, Ystart_ROI_1 

 
Figure 3.20: Scheme of Connection detection between ROIs 

 

The following formula is used for calculating the inclination angle: 

 

tan−1 (
a

b
) (3.5) 

 

where a, b - cathects of the rectangle shown on Figure 3.21 

a is height of one ROI multiplied to the number of all ROIs 

b is equal to difference of Xstart coordinate of the last ROI and Xend 

coordinate of the first ROI. 

Xend_ROI_0, Yend_ROI_0 

 

ROI 0

ROI 1

ROI 2

Left side of frame N

ROI_Height

Xstart_ROI_last, Ystart_ROI_last 

tan (α)

b = Xstart_ROI_last - Xend_ROI_0

a = ROI_Height * ROI number

Lane

 
 

Figure 3.21: Scheme of calculation of inclination angle 

 

As can be seen from Figure 3.18 after computing inclination angle, the value is 

printed on a frame.  
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3.7 Further contributions 

3.7.1 Multiple regions of interests 

In order to provide a long distance sensing of lane markings it was suggested by 

Botsch, 2015 to populate frame with multiple, independent ROIs. To be able to 

achieve that, some sections of code in pre-processing phase had to be replaced. 

 

 

 
Figure 3.22: The process of processing ROIs 

 

 

For instance, in order to draw multiple ROIs on the frame, it had to pass through 

preprocessing phase several times, but with different image_width, 𝑋 and 𝑌 

coordinates thus processing different sections of image. It was not possible with the 

previous algorithm because previous algorithm was designed to receive image, 

detect/track lanes and dispose the image. Therefore when the frame did not get 

disposed but went through preprocessing phase multiple times the algorithm wrote 

one frame on top of the other, creating several layers of information as shown on 

Figure 3.23. For example, ROI_0 from Figure 3.20 was preprocessed and its values 

were stored inside of image_raw data structure. In the next iteration when the same 

frame was passed through preprocessing phase again but with different ROI 

coordinates, algorithm wrote new values on top of previous image_raw. As a result 

final preprocessed frame had several layers of information thus was corrupted and 

the rest of the algorithm did not function any more, Figure 3.23a. 
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a) Lane Tracking 

 

 

 

 

 

b)Previous algorithm with multiple 

ROIs 

 

Figure 3.23 a) Lane Detection/tracking on corrupt frames b) Preprocessed frame 

with several layers of information 

 

The problem was solved by “cleaning” the specific memory regions inside of 

image_raw data structure before using it in preprocessing phase again. In a new 

approach image_raw stores values of ROI_0 first, than on the second iteration left 

and right edges of image_raw are set to 0 and values in the middle are replaced by 

new measurements obtained from ROI_1. The values which are set to 0 are filtered 

out by thresholding phase, therefore do not affect the results of Lane 

Detection/Tracking.  

3.7.2 Adaptive regions of interest 

 

One of the aims of this work is to achieve an accurate and fast lane 

detection/tracking for multiple regions of interest for views from top and front 

Since, “The size of the ROI is a driving parameter that determines computational 

speed and effort of the lane detection/tracking. The smaller the ROI is chosen, the 

faster the lane detection performs” - Botsch 2015. Therefore straightforward 

allocation of ROIs on a frame would linearly increase computation time, and 

algorithm would not be able to meet hard real time requirements. Adaptive 

(meaning that the WIDTH, 𝑋 and 𝑌  coordinates of ROI’s are not hardcoded but 

keep adjusting w.r.t. lanes) ROIs guarantees that the image to be processed is as 

small as possible and mainly focused on road lane markings. 

 

ROI 0

ROI 1

ROI 2

 

Figure 3.24 Adaptive ROIs 
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“Adaptivity” was achieved by dynamically defining ROI WIDTH based on 𝑋 and 

𝑌  coordinates of lanes detected in a previous ROI. As shown on Figure 3.20 width 

of ROI_1 is smaller than X_END_ROI_0 thus maximum width limit set for ROI_1 

can be calculated based on coordinates of lanes detected on ROI_0 and so on. 

Execution time profiling presented in subsequent chapters illustrates that this 

feature slightly reduced computation time.   

 

3.8 Summary 

 

Programming Bottlenecks: There were several code segments across the project 

where computations were performed neither on device nor in parallel. As shown on 

Figure 3.4 Distribution of computation time between host and device, bulk of the 

computations were performed by host, while hardware accelerator was idle most of 

the time. This was one of the areas which required careful analysis. After several 

weeks of research more even distribution of the workload across hardware 

accelerators and the host was achieved and had a positive impact on overall 

performance. It was accomplished by eliminating selection of ROIs in a sequential 

manner by host and delegating this task to kernel. This allowed breaking 

computation down into tasks that can run in parallel by hardware accelerators which 

gave shorter computation time and more even distribution of workload between 

host and kernels, more about it in Chapter 4. Currently 100% of pre-processing is 

done by kernel. This allowed achieving maximal computation speed. It was also 

calculated that communication overheads for transferring original image to kernel 

and back to host are insignificant. 

 

The next contribution is developing an algorithm for multiple ROIs and lane 

inclination angle calculation: There was a suggestion to develop an algorithm which 

would be able to compute inclination angle of the lane .  Which would allow DAS to 

deal with road bending and sharp turns in advance. The developed algorithm detects 

connection between all best lines on multiple regions of interest, computes the 

length of all sides of an imaginary triangle and calculates the degree of inclination. 

Allocation of multiple ROIs was achieved by passing frame through replaced 

preprocessing, updated lane detection and updated lane tracking phases multiple 

times.  
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And finally adaptivity for ROIs was achieved by dynamically changing ROI width 

and x_start values based on lanes detected in other ROIs. The computational time 

gains after implementing adaptivity feature are presented in the following chapter. 

 

All above mentioned changes contributed towards more feature reach lane 

detection/tracking algorithm, resulted in more even distribution of workload 

between host and kernel and allowed to shorten computation time. 

 

 



 

 

 

 

Chapter 4 

 

Results 
 

 

 

4.1 Chapter outline 

 

Testing of the algorithm was conducted to ensure that planned goals have been 

achieved and defects or sections of code degrading performance were found and 

fixed.  

This chapter is structured the following way, in section 4.2 computation time and 

distribution of workload between host and device in Botsch 2015 and in current 

work is shown. Section 4.3 presents testing of the algorithm on TUM_DLR dataset 

and compares execution time obtained with adaptive ROIs to measurements 

obtained with fixed sized ROI. The testing in section 4.3 was conducted via 

allocating different number of particles and defining different value for a threshold 

parameter. In the last section some know issues were presents. 

 

For evaluation of the performance of the algorithm testing was performed on 

TUM_DLR dataset which was recorded during day time in the surroundings of 

German Aerospace Centre, Munich and TUM_DAY dataset, recorded in the 

surroundings of Garching.  
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4.2 Composition of the computation time. 

4.2.1 Initial Performance  

 

Initially the algorithm of Botsch 2015 was evaluated against TUM_DLR dataset by 

allocating one ROI. Profiling revealed that pre-processing phase alone occupied 

more than 80% of execution time and the remaining phases like Lane Detection and 

Lane Tracking took only 1.6% and 15%. This is shown on Figure 4.1b)   

Also on Figure 4.2 it is shown that within preprocessing stage 80% of the 

computation time is spent for selection of ROI and 20% of time is spent for  

Grayscaling, edge detection and Thresholding. Besides that as shown on Figure 

4.1a) distribution of the workload between host and kernel is 97.40% and 2.60% 

respectively. The distribution is uneven with host performing bulk of computations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Distribution of workload and computation time in Botsch 2015  

 

Figure 4.2 Distribution of the computation time in Botsch 2015  

80.10% 
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4.90% 
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a) Distribution of the computation time 
between host and device on the NVIDIA 

GeForce GTX 660 TI 

 

b) Distribution of the computation time between 

Pre-processing, Lane Detection and Lane 

Tracking      in Microseconds 
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4.2.2 Parallel processing by host 

 

As mentioned in Chapter 3, initial attempt to improve computation time was done 

by introducing parallel for, in hope that it would break computation down into tasks 

that can run in parallel. If computational results are satisfactory, there will be no 

further need in developing OpenCL kernels. Thus segments of code occupying bulk 

of computation time due to sequential execution on host could still remain on host 

but instead would be executed in parallel. This would shorten development time, as 

writing kernel code, managing memory problems and integrating kernels into the 

main application is a time consuming task.  The outcome of this attempt is 

presented below. 
 

Parallel for allowed to distribute image processing task among cores but did not 

reduced overall computation time. The measurements obtained after implementing 

parallel execution on the host are shown on Figure 4.3 and Figure 4.4.  From Figure 

4.3b) it can be seen that pre-processing phase occupied 85% of execution time and 

the remaining phases took 1.6% and 13.4%.  Also on Figure 4.4 it is shown that 

within preprocessing stage more than 81% of the time is still spent for ROI 

selection, distribution of the workload between host and kernel is even more 

skewed towards host showing 98.10% and 1.90% respectively where host still 

performs bulk of computations 

 

 

 

 
 

   Figure 4.3 ROI selections on the host with parallel loops 

 

85.00% 
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a) Distribution of the computation time 
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execution on host 

 

b) Distribution of the computation time between 
Pre-processing, Lane Detection and Lane 

Tracking 

https://en.wikipedia.org/wiki/Task_parallelism
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Figure 4.4 Distribution of computation time with parallel loops  

 
As can be seen on Figure 4.3b and Figure 4.4 Pre-processing took a bit more time 

than the previous approach.  
 

 

4.2.3 Parallel processing by kernel 

 

In this approach the idea was to delegate most resource consuming tasks to 

hardware accelerators. After allocating ROI selection task to the kernel the 

following measurements were obtained. 
 

 

 

 

 

Figure 4.5 ROI selections on kernel 
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Figure 4.6 Distribution of computation time within Pre processing 
 
 

The new algorithm obtained raw image on the host, and delegates it to the kernel, 

where all computations are performed. This approach reduced computation time 

and contributed to more even distribution of tasks between host and kernel. 

Communication overheads incurred during write and read operations are negligible.  

As can be seen from Figure 4.5b) hardware accelerators handle image processing 

tasks more efficiently, pre-processing phase occupies less than 70% of execution 

time. Also on Figure 4.6 it is shown that within preprocessing stage less time is 

spent for ROI selection. Distribution of the workload between host and kernel is 

more balanced, with 81.10% and 18.90% respectively.  

The host still consumes significant amount of computational time (more than 81%) 

due to ARM Cortex-A9 processor running on the host and not by the programming 

bottlenecks in the algorithm or the Altera FPGA board and also execution time 

profiling revealed that significant amount of computation time is spent for loading 

images and writing them back to the disk. 

 

 

4.3 Testing the algorithm on datasets 
 

Following computation time profiling the algorithm was tested on pre-recorded 

video which was captured during daytime in the surroundings of German Space 

Operations Centre. The dataset mostly contains the suburban roads with less traffic 

and is suitable for testing the algorithm with multiple ROIs.The video was recorded 

by Parrot Bebop Drone quad copter.   
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Recorded Video 

 

 

TUM_DLR 
 

Name of the dataset 

 

ROI1 

 

1280 

 

 

Size of the first ROI 

 

ROI2 

 

 

800 

 

Size of the second ROI 

 

ROI3 

 

 

680 

 

Size of the third ROI 

 

NUM_FRAMES 

 

686 

 

 

Total number of frames in the 

dataset 

 

 

THRESHOLD_VALUE 

 

100,150,200,250,300 

 

 

Only weights above threshold 

value is considered 

 

GOOD_LINES 

 

16,32,64,128,256 

 

 

Number of particles used for 

Lane Tracking 

 

 

Table 4.1 Testing settings - the algorithm was tested with different parameters for threshold and 

sampling lines. 

 

4.3.1  Lane Detection 

 

On Figure 4.7a) an image with clearly identifiable lane markings is shown. Lane 

detection algorithm uses the same frame to allocate multiple ROIs and detected the 

lanes using 128 sampling lines, the outcome is shown on Figure 4.7c).  

From Figure 4.7b), it can be noticed that the lane markings occupy the entire ROI 

and have different orientations. This was done to handle the cases where lanes are 

not straight but have complicated road lane geometry.  

Following lane sampling the algorithm selects the two best lines, to represent the 

real lanes. As can be seen from Figure 4.7c) d) selected two best lines are the 

perfect match to the real lane.  These experiments were conducted to prove that the 

algorithm is able to detect/track lanes for images taken from cameras installed on 

top of the vehicle across multiple ROI.  
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a) Full original image 

 

 

 

b) Allocation of hundreds of sampling lines 

c) Multiple ROIs are allocated 

 
 
 

 

d)Detected best lines match the real lanes 

 

Figure 4.7 b) Orientation of sampling lanes are in all directions and cover the whole ROI. 

c) Lane detection/tracking is performed separately for each ROI and is not influenced by 

neighbouring ROIs across all frames in the dataset. d) The accuracy of detecting the lanes 

in the algorithm is high for 256,128 or 64 sampling lines but degrades if number falls 

below 64. 

 

4.3.2   Lane tracking 

 

As mentioned in previous sections lane detection is triggered on average once for 

300 frames (depending on the quality of the recording and lane geometry). It is 

triggered mostly during lane switches, intersection of detected lanes or if minimum 

distance between lanes is not observed. The rest of the time lane tracking operation 

is performed. Therefore performance of the algorithm is heavily dependent on the 

performance of lane tracking phase.  

 

Performance of Lane tracking phase is dependent on the number of allocated 

particles and ROI size. Higher are the numbers more time it takes for the algorithm 

to compute the results.  
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Sections below presents testing conducted on the dataset with different  number of 

particles. The purpose of this testing was to find the minimum number of particles 

required for obtaining accurate results.  

 

 

a) Original image 

 

 

b)Number of particles is set to 16 
 

 
c) 32 particles  

 

 
d) 64 particles  

 
e) 128 particles  

 
f) 256 particles  

 

 

Figure 4.8 Lane tracking/detection performs well for 256, 128, 64 sample lines but 

allocating a number less than 64 degrades the accuracy of the algorithm . 

 

 

Figure 4.8, presents the results obtained for different number of particles. Figure 

4.8a) shows the original image and images 4.8b) to 4.8f) show different outputs 

using 32, 64,128,256 particles.  The outcome of the testing is that the algorithm is 

able to track lanes with 32 particles, but not across all ROIs. If second or third ROIs 
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will have complicated lane geometry or weights of lanes will be less then weights 

of white buildings in the vicinity the Particle Filter might not be able to perform 

tracking any more. This will trigger lane detection more often and will result in 

increase of overall computation time. Defining the number of particles to a bigger 

value (64, 128, and 256) generally improves the accuracy of the algorithm but 

requires additional computation time.  

In summary: The robustness of the lane tracking algorithm was evaluated across all 

ROIs for all frames in the dataset. For 98% of the frames algorithm was able to 

track lanes accurately when 64 particles were allocated, this can be seen from 

Figure 4.8d).   

 

 

4.3.3 Threshold 
 

As mentioned before the TUM_DLR dataset was tested with different threshold 

values. The testing was conducted to find out the minimum required value for this 

parameter.  

 

 

 
a) Full original image 

 

 
b)Threshold value is equal to 100 

 

c)For 96.2% of the frames the algorithm  
produced accurate results when threshold value 

is set to 150 

 

d)Threshold value is equal to 200 
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e) Threshold value is equal to 250  

 
 
f)Threshold value is equal to 300 

  

Figure 4.9 testing performed on TUM_DLR dataset with various threshold values 

 

Testing revealed that the algorithm produces optimal results across all ROIs when 

the threshold value is set to 150. 

 

 

4.3.4 Adaptive ROIs 
 

Experiment was performed on a TUM_DLR dataset with three ROIs to measure 

computation time of the algorithm with adaptive ROIs. Following the experiment 

the results were compared to measurements obtained when “adaptivity” feature is 

disabled.  

 

 
 

Figure 4.10 Algorithm with adaptive ROIs is computationally faster 

 

The size of the ROI has a great influence on computational speed of the algorithm. 

The smaller the size of the ROIs, the shorter is the computation time. Adjusting 

ROI size dynamically for a frame with three ROIs reduces computational time for 

preprocessing phase for 30%, lane detection/tracking phases for 35%.  
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Table 4.2  

a)  Distribution of computation time for a frame with three non-adaptive ROIs 

Operation Time in microseconds Frames per second 

Preprocessing 1.844.640, 00   

Lane detection 86.232,00   

Lane tracking 767.286,00  

Total 2’ 698 ‘158  114 

 

b) Number of processed frames per second for a frame with three non-adaptive ROIs 

Number of particles Frames per second 

64 114 

128 123 

256 123 

512 117 

1024 105 

2048 88 

 

 

 

Table 4.3  

a) Distribution of computation time for a frame with three adaptive ROIs 

Operation Time in microseconds Frames per second 

Preprocessing 1.148.880   

Lane detection 53.969,00  

Lane tracking 475.994  

Total 1’ 678 ‘843 194 

 
b) Number of processed frames per second for a frame with three adaptive ROIs 

Number of particles Frames per second 

64 194 

128 190 

256 151 

512 111 

1024 64 

2048 41 
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4.3.5 Computation Speed 
 

As mentioned earlier the algorithm developed in this thesis falls under a category of 

hard real time systems, and thus should detect/track lanes as fast as possible, 

therefore computation speed and accuracy are the most important characteristics of 

the algorithm.   

Number of processed frames and computation time are dependent on few factors 

like, the size of the ROI, the number of ROIs and number of particles. Figure 4.11a) 

and b) demonstrates the influence of those factors.  

 
 

 

a) Diagram above depicts measurements obtained. Y axis represents number of 
frames per second processed on GPU, X axis shows allocated number of 

particles. During the experiment three ROIs were allocated for each frame. As 
can be seen from diagram above performance is higher for 64, 128 and 256 
particles when “adaptivity” feature is enabled. But if more particles are 

allocated algorithm performs better when ROI size is fixed.  
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b) During the experiment one ROI was allocated for each frame. The results are 
different, the performance is higher for 64, 128, 256, 512, 1024 and 2048 

particles when adaptivity feature is enabled, and algorithm performs better 
when ROI size is fixed if less particles are allocated.  
 

Figure 4.11 Performances on GPU 

 

 
 

Figure 4.12 Performances on GPU of Botsch, 2015 

 

Number of particles has major influence on the processing speed. On GPU the 

average frames per second decrease by less than 80 % if the number of particles is 

raised from 64 to 2048 for three ROIs and decreased by less than 25% for frames 

with one ROI.   

 

Current algorithm produces accurate results with 64 particles. With 64 particles on 

average 258 frames per second are processed for one adaptive ROI, and on average 
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194 fps are processed for frames with three adaptive ROIs. The results show the 

slight increase in performance compared to a previous work.  

In Botsch 2015, on average 245 fps are processed with 64 particles (excluding 

inclination angle calculation) versus to 258 fps with the same number of particles in 

current work (including angle calculation) 

 

4.4 Known problems 
 

Testing revealed that algorithms working for one scenario may not work well in 

others. Examples are the datasets like TUM_DAY where camera is installed in 

front of the vehicle and has a view directed towards the horizon. In this case 

detection/tracking of lanes will be accurate for the first ROI but will fail for the rest 

because other ROIs are not visible. But for cases where frames are captured from 

quad copter or from a camera installed on top of the vehicle, ex. TUM_DLR 

dataset, the algorithm is able to detect/track lanes across all ROIs.  

 

 

 
a) Algorithm works with one ROI 

 

 

b) Lanes on a second ROI are still 

visible 

 

c) Lanes on third ROI are no longer 
visible 

 

d) Tracking/detection for two ROIs 
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e) Tracking/detection for three ROIs 
 

Figure 4.13 a), b) For frames taken by a camera installed in front of the vehicle the 
algorithm will detect/track lanes accurately only on two ROIs. c) Within the third ROI 

lanes no longer exist, d), e) the camera should be installed on top of the vehicle in order to 
detect/track lanes for higher number of ROIs.  

 

4.5 Summary 
 

Initial section presented issues of the previous work and different approaches taken 

to solve them. The most efficient strategy to reduce computation time was to 

delegate image processing task to hardware accelerator and read results back to the 

host using Open CL read, write and copy buffers. This approach allowed to 

decrease ROI selection time by 20%.  

In subsequent sections the testing of the algorithm against different datasets was 

presented along with sample outputs and obtained computation times. The 

algorithm was tested against TUM_DLR and TUM_DAY datasets with the help of 

shell script. The script triggered the program several times and on every fifth 

execution increased number of particles [64, 128, 256, 512, 1024, and 2048]. The 

final measurements representing computation time, processed frames per second, 

distribution of the workload between host and device were calculated by summing 

up the intermediary results and obtaining an average value. Obtained measurements 

were compared to the initial results and conclusion was drawn. In the last section of 

the chapter some known issues were presented.  

 
 
 



 

 

 

 

 

Chapter 5 
 

 

 

 

Conclusion and Future Work 
 

5.1 Conclusion 

 

The algorithm consists of three main phases:       

 

 preprocessing 

 lane detection/lane tracking  

 

During preprocessing phase original image is first cleared of all unnecessary objects 

(ex. Sky, trees and buildings) by selecting the region of image, ROI – where lane 

markings are most likely to be located.  Selected region is grayscaled, mainly for 

practicality reasons, applied Sobel filter and cleared from minor disturbances.  

 

Execution time profiling showed that significant amount of computation time was 

spent on preprocessing stage therefore this phase has been replaced by kernel and 

delegated to hardware accelerators. As a result 100% of preprocessing is now 

performed by kernels. This allowed accomplishing more even distribution of the 

workload between device and the host. Communication overheads for transferring 

image data between host and device are insignificant. 
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Following the preprocessing phase, either lane detection or lane tracking is 

performed. In case of lane detection – region of interest is populated with hundreds 

of random sampling lines to sample probable road lane markings, lines are 

weighted according to their distance to the lane and line with the highest weight is 

selected to represent the real lane. 

In case of lane tracking – the weightings from a previous frame, motion noise and 

measurement noise are used to track the road lane markings in the current frame. 

Lanes are not evaluated again but are tracked. 100% of lane detection and lane 

tracking are also computed by hardware accelerators.  

 

Previous algorithms were designed for one ROI: ROI was extracted, preprocessed, 

passed through lane detection/tracking and disposed. New algorithm is able to 

support multiple, independent, adaptive ROIs. Adaptivity was accomplished by 

dynamically changing ROI width and x_start coordinates. 

 

The inclination angle of detected lane is calculated and printed on an original 

image. Thus, enabling on board system to deal with road bending and sharp turns in 

advance. Calculation of inclination angle was done by detecting connection 

between all best lines across all ROIs, and applying trigonometric functions to 

obtain the degree of inclination.  

The algorithm was tested on datasets with varying conditions, lane types and 

camera inclination angles. The results showed that overall computation time was 

reduced by 15% and more even distribution of workload between host and kernel 

was achieved. The current computation time (t > 85%) consumed by ARM Cortex-

A9 processor is justified due to peripheral tasks, read/writes performed by host and 

not by the programming bottlenecks or design faults in the algorithm.  

Testing revealed that the computation time differed with the selection of the ROI 

size, number of ROIs and number of particles. The algorithm was tested on Nvidia 

GeForce GTX 660 TI GPU and compared to preceding work. The results showed a 

slight increase in accuracy and robustness, approximately 15% faster execution on 

the GeForce GTX 660 TI, due to elimination of programming bottlenecks and 

implementation of parallel execution on kernels. 

All above mentioned changes contributed towards feature reach, accurate and 

robust lane detection/tracking algorithm.   
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5.2 Future Work 

 

The proposal for future work is drive repetitive routes autonomously. Repetitive 

routes are the routes taken by drivers often; ex. Is the road from home to office and 

back driven at least five times a week (~20 hours a month).   

 

During the supervised learning phase the algorithm uses training sets (recorded 

stereo images from on board cameras), to identify lane markings, objects, patterns 

and match them to actions taken by the driver. Obtained information is used as an 

input to learning algorithm. Next time the algorithm is used it can output the same 

steering action for a similar occurrences. Initially accuracy may be low, but as 

algorithm learns the driver can rely on the vehicle to drive autonomously from 

home to office and back at least five times a week. Technology developed in this 

thesis can serve as a good starting point. 

 

In order to achieve semi-autonomous driving it is suggested to: 

 

1) First, model a set of virtual routes of different complexity, including a straight 

road, a circular route, a route with multiple turns, etc. Given certain amount of 

manually designed road types, it is possible to utilize them as building blocks 

for generating a comprehensive set of routes that could be encountered in real 

world. 

2) Draw virtual lanes across these roads, thus obtain ground truth. 

3) Model a virtual car equipped with a set of several cameras and possibly some 

other sensors such as LIDAR. 

4) Drive the car along these routes and record the videos from the cameras. With 

recent advancements in rendering technologies, it is possible to obtain very realistic 

videos.  

5) Using the ground truth of the lane, supervised learning (e.g. a convolutional 

neural network) to train a model to recognize the lane from video records and match 

it to actions taken by driver. 

6) After achieving this task it will be necessary to include traffic movement, 

cyclists, and pedestrians. Afterwards, the model needs to be adapted to dynamic and 

stochastic environments. The final goal of applying supervised learning is to 

achieve an automated driving experience for one single route. Due to threat 

imposed on lives of people the reliability of the recognition is of particularly high 

concern for such systems. A reinforcement learning method that supports successful 

driving experiences (e.g. identifying and following the lane without accidents) and 

very strongly penalizes unsuccessful ones, (e.g. hitting other traffic participants), 

can be used to train a reliable recognition and driving model [42] 
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7) And finally, real world driving experience should be used to update the model.  

The reason I suggest to involve simulated environment is that it allows for 

generating a dataset with ground truth, which may open the possibility for a deep 

learning based approach that learns the mapping between the raw video, the lane, 

the environment and driver’s response. Among other advantages is the possibility to 

train and evaluate the solution on very unusual and risky environments – 

experiences which are not always viable or even possible to obtain in real world.  

The final outcome of the next thesis is to arrive to a point where algorithm is able 

learn to drive autonomously the routes taken by drivers frequently. 
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